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Abstract

We derive high-order corrections to a modulation theory for the propagation of internal
gravity waves in a density-stratified fluid with coupling to the mean flow. The methodology
we use allows for strong modulations of wavenumber and mean flow, extending previous
approaches developed for the quasi-monochromatic regime. The wave mean flow modulation
equations consist of a system of nonlinear conservation laws that may be hyperbolic, elliptic or
of mixed type. We investigate the regularizing properties of the asymptotic correction terms
in the case when the system becomes unstable and ill-posed due to a change of type (loss
of hyperbolicity). A linear analysis reveals that the regularization by the added correction
terms does so by introducing a short-wave cut-off of the unstable wavenumbers. We perform
various numerical experiments that confirm the regularizing properties of the correction
terms, and show that the growth of unstable modes is tempered by nonlinearity. We also
find an excellent agreement between the solution of the corrected modulation system and
the modulation variables extracted from the numerical solution of the nonlinear Boussinesq
equations.

1 Introduction

The propagation of internal gravity waves represent an important feature of the dynamics of the
ocean and the atmosphere. The gravity waves in a stratified fluid are produced by buoyancy
disturbances, created when a fluid parcel is vertically displaced to a region with a different
density. A significant component of the literature devoted to the study of such wave motions in
fluids relates to modulation theory [1], an asymptotic method that describes the time evolution
of slowly-varying wavetrains. As an asymptotic analysis, the choice of modulation theory is
particularly appropriate for atmospheric gravity waves, as the vertical variations in profiles of
density stratification and horizontal wind shear from surface to stratosphere are often significant,
yet typically slowly-varying [2, 3].

Early works by Drazin [2] and Rarity [4] investigated the propagation of modulated sinusoidal
waves of finite amplitude. These works omitted however a critical feature of the nonlinear regime,
which is the coupling of waves with the mean flow. The later works of Bretherton [5, 6] and
Grimshaw [3, 7] addressed this issue and developed a modulation theory for the fully nonlinear
case. As presented in Grimshaw [3] for instance, the equations governing the dynamics of the
modulated variables are a system of nonlinear conservation laws for the wavenumber in the
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vertical direction, the wave action density and the horizontal mean flow. This system of quasi-
linear PDEs may be hyperbolic, elliptic or of mixed type, depending on the solution itself.

In the hyperbolic regime, the modulation system exhibits finite-time breakdown via shock
formation. The failure of the modulation theory due to wave breaking is a shortcoming of the
method that has been under-addressed in the literature. In our recent work [8], we consider
next-order asymptotic corrections to the modulation theory for the linear Boussinesq equations.
We find that the correction terms introduce dispersion that significantly alters the steepening
process that precedes the shock singularity. The dispersive regularization effects are similar
to those seen in the small dispersion limit of the Korteweg-deVries equation [9]. However, [8]
presents only the modulation theory for the linear Boussinesq, where no coupling with the mean
flow is present.

An equally under-addressed issue is the breakdown of modulated wavetrains when the gov-
erning system of conservation laws loses hyperbolicity. In this instance the breakdown is due
to to the exponential growth of the solution in regions where the system is elliptic [3] . In his
work, Rarity [4] makes a detailed investigation of the elliptic region and suggests the need for
introducing jump conditions at the hyperbolic-elliptic boundary, similar to the discontinuities
across the boundary of a subsonic bubble in compressible fluid flow. In [4], the elliptic domain
is associated with a trapping region, within which waves can no longer propagate. Rarity also
draws attention to the fact that the experiments indicate that small amplitude internal waves
are able to negotiate the trapping region, without necessarily acquiring large amplitudes or
degenerating into quasi-turbulence, while preserving the sense of the direction of propagation.

In the present paper we take the ideas from [8] further and develop a corrected modulation
theory for the nonlinear Boussinesq equations, that accounts for weak wave coupling to the mean
flow. The quasi-linear system of equations is augmented with high-order, nonlinear correction
terms that change, in a fundamental way, the behavior of the solutions. In the hyperbolic case,
the shock formation is prevented by the dispersive effects of the asymptotic corrections in a simi-
lar manner to what was observed and reported in [8]. The novelty regards the elliptic instability,
where we present numerical and analytical evidence that the asymptotic corrections regularize
the dynamics of the modulated wavetrain, by suppressing the growth of large wavenumbers.

Related studies were recently done in [10, 11]. Sutherland [10] investigated numerically
and analytically a weakly nonlinear, quasi-monochromatic modulation theory and compared
the results with fully nonlinear simulations of the Boussinesq equations. The author also dis-
cussed modulation instability and the role of third-order dispersion in stabilizing the unstable
wavepackets. The study [10] concludes that the modulation equation accurately describes the
interaction between the waves and the wave-induced mean flow before the onset of parametric
instability. Tabaei and Akylas [11] extended a previous study performed by Shrira [12] and
considered a modulation theory for flat wavetrains which yields resonant instabilities. Their
numerical observations indicate that no elliptic instability is observed provided the modulation
equations are augmented with a certain additional term that allows for high-order dispersive
effects. The additional term is derived from a higher-order modulation theory performed in the
small-amplitude, quasi-monochromatic regime.

The methodology we develop in our paper is more general that those from [10, 11], as it
applies to strong (but slowly-varying) modulations. We work within the weakly nonlinear regime
in order to derive asymptotically valid correction terms, but numerical experiments indicate,
similar to observations from [11], that the same asymptotic corrections can also be used to
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regularize the dynamics of finite-amplitude wavetrains. Higher-order modulation theories and
their possible impact on the dynamics have been addressed since early works. For instance, in
his book (Chaper 15.5, [1]), Whitham derives a high-order modulation theory for a nonlinear
Klein-Gordon equation and briefly comments on the stabilizing effects of the correction terms.
Other discussions of higher-order extensions for modulation theory appear in the early literature
[13, 14, 15], but they have found little use in applications, and seldom have their regularization
effects have been investigated numerically.

An atmospheric context for the breakdown of waves is the upward transport of momentum
to the stratosphere that is an important process in the phenomenon known as the quasi-biennial
oscillation (QBO) [16, 17, 18]. The QBO is an atmospheric climate phenomenon where the
equatorial winds in the stratosphere reverse in (east/west) direction with a period averaging ap-
proximately 28 months [19]. The atmospheric QBO was reproduced in a laboratory experiment
by Plumb and McEwan [20], as well as illustrated in various computational (virtual) experiments
[21]. In their recent work, Wedi and Smolarkewicz [21] investigated the turbulent breakdown of
an inertia gravity wavetrain and find that viscous dissipation and critical level absorption are
mechanisms secondary to instabilities from nonlinear flow interactions. It is this line of research
that motivates our specific efforts to refine modulation theory applied to atmospheric gravity
waves.

In the next section, we highlight the main results of this study. We write down the modulation
equations, describe briefly the regularization procedure and discuss the effects that the correction
terms have on the dynamics. Section 3 presents the derivation of the corrected modulation theory
for the nonlinear Boussinesq equations. In Section 4 we investigate the type of the modulation
system and perform a linear stability analysis to get a better account for the effects of the
correction terms. Section 5 shows several numerical experiments that illustrate the regularizing
properties of the correction terms, as well as the close approximation of the corrected modulation
theory when compared against the solution of the full Boussinesq equations.

2 Regularized modulation theory — highlights

In this section we give a brief overview of the corrected modulation theory for the nonlinear
Boussinesq equations. The details of the derivation and the numerical results are presented in
the subsequent sections.

The nonlinear Boussinesq equations for a 2-dimensional stratified fluid are given by

ηt + uηx + wηz + bx = 0 (1a)

bt + ubx + wbz +N2w = 0, (1b)

where x and z are, respectively, the horizontal and vertical spatial coordinates, u(x, z, t) and
w(x, z, t) represent, respectively, the horizontal and vertical components of the velocity, η(x, z, t) =
uz −wx denotes the vorticity and b(x, z, t) is the buoyancy disturbance. The Brunt-Väisälä fre-
quency N is assumed to be constant; by rescaling we can take N = 1.

One of the main concerns of this study is how the horizontal mean flow couples with the
wave propagation. To this purpose we decompose the velocities and the buoyancy fields into
mean and wave components. The velocities are thus expressed in the form u = U(z, t) + ψ̃z and
w = −ψ̃x, where incompressibility is imposed through a disturbance streamfunction ψ̃(x, z, t).
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The horizontal mean flow U(z, t) allows for vertical shear, but as is typical for stratified flow,
the vertical velocity is assumed to have no mean flow. Likewise, the buoyancy field is expressed
as b = B(z, t) + b̃. The mean components are distinguished from wave components by imposing
disturbances to have zero mean. The y-component of vorticity is η = Uz(z, t) + η̃, where its
wave part satisfies η̃ = ∇2ψ̃. This application of modulation theory requires the assumption
that the mean flow U(z, t) and the mean buoyancy B(z, t) are slowly-varying functions of z and
t, relative to the wavelength of the wave.

The disturbance equations (1) are now

η̃t + Uη̃x + η̃xψ̃z − η̃zψ̃x + b̃x = −Uzt + Uzzψ̃x (2a)

b̃t + Ub̃x + b̃xψ̃z − b̃zψ̃x − ψ̃x = −Bt +Bzψ̃x (2b)

∇2ψ̃ − η̃ = 0. (2c)

We consider a small-amplitude wavetrain solution to (2),



b̃
η̃

ψ̃


 = Re



ε



α1

β1
γ1


 eiφ + ε3



α2

β2
γ2


 e2iφ + h.o.t.





= Re
{
εA1(z, t)eiφ + ε3A2(z, t)e2iφ + h.o.t.

}
, (3)

that is dominated locally by a single plane wave whose phase is φ(x, z, t). As we focus on
possible breakdown in the vertical propagation of waves, the modulation theory is simplified by
restricting to exact periodicity in x, and considering only spatial modulations in the z-direction.
Thus, the phase gradient φx = k is assumed constant, while the vertical wavenumber φz(z, t) and
frequency −φt(z, t) will be slowly-varying. The phase φ(x, z, t) is taken to be real-valued. The
higher-order terms (h.o.t.) include all other harmonics, with the exception that zeroth harmonics
are accounted for by mean fields. Finally, the Boussinesq equations (1) have the property that
its linearized (single-mode) plane wave solutions are also exact nonlinear solutions by fortuitous
cancellation of the quadratic advection terms. As a consequence, harmonic generation by a
modulated plane wave is weaker than usual, and this is reflected in the O(ε3) scaling of the
second harmonic in (3).

Modulation theory assumes that the wavetrain properties vary on a long spatial scale ζ = εz
and evolve on a slow time scale τ = εt, where ε is small [6]. Therefore, the vector amplitudes
A1(z, t), A2(z, t), the phase gradients φt(z, t), φz(z, t), the mean flow U(z, t) and the mean
buoyancy B(z, t) are assumed to depend on the slow variables ζ = εz and τ = εt. Choosing the
ε for the modulation theory to be the same as the ε-scaling for the wave amplitude (3) will result
in the mean flow coupling having the same order as the dispersive corrections. Also note that
the modulation theory developed here allows for strong modulations of the vertical wavenumber
and extends previous approaches [10, 11] which apply only in the quasi-monochromatic regime.

As derived by Grimshaw [3], the dynamics of the modulated wavetrain can be specified by
the time evolution of the wavenumber in the vertical direction m(ζ, τ) ≡ φz, the wave action
F(ζ, τ) and the horizontal mean flow U(ζ, τ). The modulation equations coupled with the mean
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flow are given by the following system of conservation laws:

mτ + (Ω + kU)ζ = 0 (4a)

Fτ + (CF)ζ = 0 (4b)

Uτ + ε2
k

2
(CF)ζ = 0, (4c)

where the plane wave frequency Ω and the group velocity are given by

Ω2 =
k2

k2 +m2
, C =

∂Ω

∂m
= −mΩ3

k2
.

The ε2 in the mean flow equation (4c) arises due to the weak wave amplitude assumed in
(3). Analyzing the characteristic speeds for this conservation law system (4) shows it to be
elliptic in regions where m2 < k2/2 [10, 11] — a result independent of ε and the mean flow
coupling. This modulation instability of low vertical wavenumber waves is a mode of failure of the
modulation theory which is additional to the wavebreaking by gradient steepening, characteristic
to hyperbolic conservation laws, investigated by the authors in [8].

However, in a systematic derivation of the modulation theory, dispersive corrections appear
at order O(ε2). In [8] we show that the higher-order corrections can be introduced by replacing
Ω in (4a) with ω given by the O(ε2) corrected dispersion relation

ω2 =
k2

k2 +m2 + ε2R
.

The added term R is a regularization term that has a fairly complicated expression involving the
modulation variables and their (up to second order) spatial derivatives. With this regularization,
the time evolution of the modulation system is O(ε2) accurate. The regularization R introduces
third-order dispersive effects to (4a) and fundamentally changes the system dynamics. This
paper investigates the interplay between the mean flow coupling and the dispersive corrections.

A linear analysis of the regularized system shows that the instability present at all wavenum-
bers in the elliptic region for (4) has now reduced drastically to a finite band at small wavenum-
bers. Similar stabilizing effects are produced by high-order terms in the modulation theories
of nonlinear Klein-Gordon equation (see Chapter 15.5, [1]), water waves [22] and nonlinear
Schrödinger (NLS) equation (see Chapter 2d, [23]). In these systems, the instability (also known
as the Benjamin-Feir instability) manifests initially by an exponential growth of the bandwidth,
but this growth is eventually bounded by the action of nonlinearities and high-order terms.
Likewise, for the high-order modulation theory developed in this work, numerical experiments
show bounded solutions that are in excellent agreement with the full Boussinesq equations, even
when initial data lies entirely in the elliptic domain m2 < k2/2 of the unregularized equations
(4).

3 Derivation of the modulation equations

The derivation of the corrected modulation equations follows the procedure we developed for
the linear Boussinesq equations in [8]. The calculations are more involved in the nonlinear case
however, as we have to account for the contribution of the mean flow.
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We employ the notations

m(ζ, τ) ≡ φz ; ω(ζ, τ) ≡ −(φt + kU), (5)

for the wavenumber in the vertical direction and the reduced frequency.
Equality of the mixed partials in terms of the slow scales gives the conservation law

mτ + (ω + kU)ζ = 0. (6)

Corrected modulation theory. Introduce the perturbation expansion (3) into (2) and set
to 0 the coefficient of eiφ. We get 1

[M+ εL1 + ε2L2]A1 = O(ε4), (7)

where the matrix operators M, L1, L2 are given by

M =




k −ω 0
−ω 0 −k
0 −k −k(k2 +m2)


 , (8)

L1 = i




0 −∂τ 0
−∂τ 0 0

0 0 k(2m∂ζ +mζ)


 , (9)

L2 =




0 0 −kUζζ
0 0 0
0 0 k∂2ζ


 . (10)

Note that equation (2c) has been multiplied by ik to give a symmetric leading-order matrixM.
We start by inspecting (7). At leading-order, the zero determinant condition det(M) = 0

yields the dispersion relation

ω2 =
k2

k2 +m2
≡ Ω(m)2. (11)

We use Ω(m) to denote the dispersion relation (11), to distinguish from the corrected frequency,
ω, which has the former as the leading-order. We likewise identify the group velocity

c = c(m,ω) =
∂ω

∂m
= −mω

3

k2
(12)

as distinguished from its leading-order

C = c(m,Ω) = −mΩ3

k2
. (13)

Note that the sign for the square root branch of the dispersion relation (11) is implicit in the
above definitions of group velocity.

1Terms generated by harmonic coupling contribute at O(ε4) in (7). Subsequent calculations (26) show that
B = O(ε3), hence the mean buoyancy corrections also contribute at O(ε4) in (7).
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To include higher-order corrections into modulation theory, we anticipate an adjustment of
the frequency ω through the introduction of an O(ε2) correction to the leading-order operator
M. A regularizing correction R now appears in the modified matrix

MR =




k −ω 0
−ω 0 − k

0 − k − k (k2 +m2 + ε2R)


 . (14)

The regularization strategy is based upon the method of Poincaré-Lindstedt, where the frequency
imbedded in the leading-order operator is expanded to have deferred corrections [24].

The slow-scale equation (7) becomes

[MR + εL1 + ε2L2R]A1 = O(ε4), (15)

where the regularization term is added back into in the O(ε2) operator

L2R =




0 0 −kUζζ
0 0 0
0 0 k (∂2ζ +R)


 . (16)

Consider a perturbation expansion for the vector amplitude A1:

A1 = A
(0)
1 + εA

(1)
1 + ε2A

(2)
1 +O(ε3).

Plug this perturbation expansion into (15).
The zero-determinant condition on MR leads to the following corrected dispersion relation:

ω2 =
k2

k2 +m2 + ε2R
. (17)

Using (17), we can write MR from (14) as

MR =




k −ω 0
−ω 0 − k

0 − k − k3/ω2


 . (18)

At leading-order, the vector amplitude has the direction of the nullvector aN of MR, but it is
arbitrary up to a slowly-varying, real valued amplitude A(ζ, τ):

A
(0)
1 = AaN = A




1
k/ω
−ω/k


 . (19)

Since the procedure we follow is very similar to that developed in [8], we defer its details to
the Appendix.

First, from the solvability condition at next order, a transport equation for the amplitude
A(ζ, τ) is derived — see (36). Introduce a scaled wave action F , defined as

F = A2/ω =
(k2 +m2)γ21 + α2

1

2ω
∼ 2

ε2
ũ2 + w̃2 + b̃2

2ω
(20)
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which, by (3) and (19), is consistent with an equipartition of (horizontally averaged) wave energy
density [5, 3]. Upon use of an integrating factor and the identification of the group velocity (12),
the transport equation leads to the wave action equation:

Fτ + (cF)ζ = 0. (21)

Calculations at second order yield expression (41) (see the Appendix) for the regularizing term R.
Replacing the time derivatives by spatial derivatives (using the phase and transport equations)
we can rewrite R as

R(m,ω,A,U) =
3

4k2
1

ωA
(2m∂ζ +mζ)

{
ω2(2m∂ζ +mζ)(ωA)

}
+

m

2k2
(mωωζ)ζ +

1

4k2
(mωζ)

2

−
(ωA)ζζ
ωA

− k

ω
Uζζ . (22)

To illustrate the mean flow contribution to the regularization term, we write (22) as

R(m,ω,A,U) = RLin(m,ω,A)− k

ω
Uζζ ,

where RLin is the regularization term derived in [8] for the dispersive corrections of the linear
Boussinesq system. The most significant nonlinear contribution to the regularization appears
implicitly in the dependences of RLin on the modulation variables whose O(ε2) dynamics now
include coupling to the mean flow.

Mean equations. The mean flow equation for the horizontal velocity is typically derived by
averaging over one period, in the x-variable, the horizontal momentum equation. Alternatively,
it arises naturally in modulation theory as the x-independent mean terms obtained when the
perturbation expansion (3) is substituted into (2)

ε
ik

4
(β1γ

∗
1 − β∗1γ1)ζ +O(ε3) = −Uτζ , (23a)

ε2
ik

4
(α1γ

∗
1 − α∗1γ1)ζ +O(ε4) = −Bτ . (23b)

It is noteworthy that waves can also induce changes to the mean stratification, although the
effect is asymptotically weaker relative to the mean flow coupling. In addition, the quadratic
terms generate only real contributions due to conjugate symmetry.

It is necessary to expand α1, β1 and γ1 to first correction using (19) and (38) to obtain

β1γ
∗
1 − β∗1γ1 = ε 2i

(
A2

ω

)

τ

+O(ε2) (24a)

α1γ
∗
1 − α∗1γ1 = ε

i

k

(
A2
)
τ

+O(ε2). (24b)

In the above, the O(1) terms have cancelled by their being real-valued, and hence the nonlinear
effects enter one order higher than might be expected.
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To obtain the mean flow equation as a conservation law, (24a) is expressed in terms of the
wave action F and the wave action equation (21). Upon ζ-integration, the equation governing
the evolution of the horizontal mean flow to O(ε2) is

Uτ + ε2
k

2
(cF)ζ = 0. (25)

The above mean flow equation, with the wave action equation (21), indicates that U − ε2 k2F
is a time-independent conserved quantity. For a Boussinesq fluid, this is the statement of con-
servation of (horizontal, Eulerian) momentum, which includes the wave-induced, O(ε2) pseudo-
momentum [25, 10, 26]. The mean flow equation is commonly satisfied by the slaving relation
U = ε2 k2F , which defines the wave-induced flow in the absence of background flow [27, 28]. The
conservation law form is more general, as it allows for independent initialization of background
horizontal shear, U , and wave amplitude, F , as is done in the computations of Section 5.

However, we choose to satisfy the mean buoyancy equation (23b) by the slaving relation

B = −ε3 1

4

(
A2
)
ζ
, (26)

which is the wave-induced, and adiabatic, heating/cooling as described in McIntyre [25]. This
effect occurs at O(ε3) so that this buoyancy correction decouples from the wave-meanflow inter-
action, and substantiates their neglect in the expansion (7)1.

4 A system that may change type

The corrected modulation theory developed in the previous section consists of the equation of
conservation of phase (6), the conservation of wave action (21) and the equation for the mean
flow (25). We gather them in the following system

mτ + (ω + kU)ζ = 0, (27a)

Fτ + (cF)ζ = 0, (27b)

Uτ + ε2
k

2
(cF)ζ = 0. (27c)

The regularization is an O(ε2) correction to the dispersion relation (17). The above system (27)
is completed by the following expressions for reduced frequency and group velocity

ω2 =
k2

k2 +m2 + ε2R(m,Ω(m), A, U)
(28)

c = C(m) = −mΩ3

k2
(29)

where R is given by (22) with
A2 = Ω(m)F . (30)

Note that the same square root branch is taken for both ω and Ω. This asymptotic truncation of
the modulation equations produces an additional order of accuracy in the physical fields (b, η, ψ)
over the standard (unregularized) system (4).
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Without the regularization term (R = 0), the modulation equations (27) form a first-order
PDE system whose characteristics are determined by the eigenvalues of the matrix




C 0 k

C ′F C 0

ε2 k2C
′F ε2 k2C 0




where C ′ = ∂C
∂m . The roots of the characteristic polynomial

λ

[
(λ− C)2 − ε2k

2

2
C ′F

]
(31)

show that the system is hyperbolic (real eigenvalues) when C ′F > 0, but weakly elliptic if
C ′F < 0. This change of type is clearly a consequence of the mean flow coupling. Despite that
the coupling is only an O(ε2) perturbative effect, this dramatic change of type occurs via the
breaking of the degeneracy of the double characteristic roots. The appearance of λ = 0 as an
eigenvalue reflects the conservation of the total horizontal momentum. Using (11) and (29) we
calculate

C ′(m) = = −Ω3

k2

(
1− 3m2

k2 +m2

)
(32)

=
Ω3(2m2 − k2)
k2(k2 +m2)

.

Hence, from (30), we get

C ′F =
A2Ω2(2m2 − k2)
k2(k2 +m2)

,

so that the system is seen to be weakly elliptic for long vertical waves m2 < k2/2.

Linear analysis of the truncated modulation system. We investigate the effect of the
correction terms by performing a linear perturbation analysis for the truncated modulation
system (27). Consider a (normalized) perturbation around a constant state (m0,F0, U0):

m = m0(1 + µ), F = F0(1 + f), U = U0(1 + u).

We also use
ω = ω0(1 + σ), Ω = ω0(1 + σ̃) and A = A0(1 + a),

where

ω2
0 =

k2

k2 +m2
0

and A2
0 = ω0F0.

From (17), (11) and (30), we obtain by linearization:

µ+ σ

(
1 +

k2

m2
0

)
+

1

2m2
0

ε2R = 0,

µ+ σ̃

(
1 +

k2

m2
0

)
= 0,
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and
2a = f + σ̃.

Also, from (22),

R(m,Ω, A, U) ∼ 3

2k2
m2

0ω
2
0(µζζ + 2σ̃ζζ + 2aζζ) +

1

2k2
m2

0ω
2
0σ̃ζζ − (σ̃ζζ + aζζ)−

k

ω0
U0uζζ .

Based on the formulas (29) and (32), we make the notations

C0 = −m0ω
3
0

k2
and C ′0 = −ω

3
0

k2
− 3m0ω

2
0C0

k2
.

Finally, the linearization of the system (27) reads

µτ = −C0

(
µ+ ε2αµζζ + ε2βfζζ + ε2γuζζ

)
ζ
− kU0

m0
uζ

fτ = −C0

(
m0C

′
0

C0
µ+ f

)

ζ

uτ = −ε2k
2

C0F0

U0

(
m0C

′
0

C0
µ+ f

)

ζ

,

where coefficients α, β and γ of the regularizing terms, are given by

α = −5

2

ω4
0

k4
m2

0 +
3

2

ω2
0

k2

β = −1

4

C ′0
m0C0

γ = −1

2

kU0

m2
0ω0

.

Looking for solutions proportional to eil(ζ−λτ) leads to the condition that λ is an eigenvalue of
the matrix

C0




1− ε2αl2 −ε2βl2 kU0
m0C0

− ε2γl2
m0C′

0
C0

1 0

ε2 k2
F0
U0

m0C′
0

C0
ε2 k2

F0
U0

0


 .

The eigenvalues are the roots of the characteristic polynomial

λ

[
(λ− C0)

2 + ε2αl2C0(λ− C0)− ε2
k2

2
F0C

′
0 +

(
ε4
k

2

F0

U0
m0C0C

′
0γ + ε2m0C0C

′
0β

)
l2
]
.

With no regularizing terms (α, β, γ = 0), the characteristic polynomial has real eigenvalues when
F0C

′
0 > 0, recovering the previous result regarding the stability (see (31)).

Replacing β and γ by their expressions, we find that the non-zero eigenvalues solve

(λ− C0)
2 + ε2αl2C0(λ− C0)− ε2

k2

2
F0C

′
0 +

(
−ε4k

2

4

F0

m0ω0
C0C

′
0 − ε2

1

4
C ′0

2
)
l2 = 0.
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The eigenvalues are imaginary (implying instability) when the discriminant of the 2nd-order
equation is negative:

ε2α2C2
0 l

4 + 2k2F0C
′
0 + C ′0

2
l2 + ε2k2

F0

m0ω0
C0C

′
0l

2 < 0.

Using
k2

m0ω0C0
= −ω

2
0

C2
0

,

we can describe the instability region by

ε2α2C2
0 l

4 + C ′0
2
l2 < −2k2F0C

′
0 + ε2ω2

0l
2F0C

′
0.

Consider the case F0C
′
0 < 0, when the unregularized system (α, β, γ = 0) is linearly unstable for

all wavenumbers l. Note that by adding the regularizing terms, the instability region is reduced
to

ε2
(
2k2 − ε2ω2

0l
2
)
|F0C

′
0| > ε2α2C2

0 l
4 + C ′0

2
l2,

which is a subset of

0 < l2 <
2k2

ε2ω2
0

.

Therefore the added correction terms introduce a short-wave cut-off of the unstable wavenum-
bers, reducing them to a subset of the range specified above. As discussed in Section 2, similar
stabilizing effect of the correction terms can be observed in the modulation theory for the Klein-
Gordon equation (Chapter 15.5, [1]) and the focusing NLS equation (Chapter 2d, [23]).

5 Numerical results

The goals of this numerical study are a) to investigate the effect of adding the correction terms
to the modulation system and b) to compare the solution of the modulation system against the
corresponding variables from the original Boussinesq equations.

Therefore we solve numerically both the nonlinear Boussinesq equations (1) and the modu-
lation system (27). For the latter, ω and c are given by (28) and (29), while the correction term
R, the amplitude A and the leading-order frequency Ω are computed from (22), (30), and (11),
respectively.

The numerical method we use is standard: the spatial derivatives are computed pseudo-
spectrally and the time-stepping is done using the 4th-order Runge-Kutta method. The linear
part in the Boussinesq equations is solved exactly using the integrating factor method.

We consider the following initial condition for (27):

m(ζ, 0) = 1 (33a)

A(ζ, 0) = 0.5(1 + 0.05 cos ζ)4 (33b)

U(ζ, 0) = 1− 0.03 sin ζ, (33c)

corresponding to a modulated monochromatic wavetrain. The initial data for the wave action
F(ζ, 0) is computed from (11) and (30). Also, using (33), we initialize the Boussinesq system
according to (3).

12



The slow space variable ζ takes values in [−π, π], while the fast variable z = ζ
ε in

[
−π
ε ,

π
ε

]
.

In the numerical experiments presented here, ε = 1/12. Note that in all figures below the
modulation and the Boussinesq variables are plotted against the fast variable z.

We show two sets of numerical results, corresponding to two values of k:

1. run 1: k = 1

2. run 2: k = 2

Run 1 corresponds to initial data entirely contained in the hyperbolic region of the unregularized
modulation system, as m(ζ, 0) > k/

√
2 for all ζ. Figure 1(a) shows the initial data (33) (k = 1),

where part of the boundary of the hyperbolic-elliptic region (m = k/
√

2) is indicated by a
horizontal dashed line in the top plot. Figure 2(a) shows the cross-section x = 0 of the initial
buoyancy b(z, 0) of the Boussinesq system. It consists of a monochromatic (m = 1) wavetrain
whose envelope is given by A(ζ, 0) from (33b) 2 .

Figure 1(b) shows both the solution of the corrected modulation system (dash-dot line) and
the modulation variables obtained from the Bossinesq equations (solid line) at t = 90. There is
an excellent agreement between the two sets of solutions. In fact they can barely be distinguished
from each other. The buoyancy b(z, t) at t = 90 obtained from the Boussinesq equations is shown
in Figure 2(b), along with its envelope (solid line on top) and the amplitude function A(z, t)
(dash-dot line) provided by the modulation theory. At t ≈ 54.09 the modulation variables
enter into the elliptic region, but no instability is observed in the solution of the corrected
system. The elliptic region continues to grow and at t = 90 it represents more than a third of
the entire domain, as can be seen in the top plot of Figure 1(b) — recall that the horizontal
dashed line depicts the boundary of the hyperbolic-elliptic region. The illustration of the elliptic
instability for the unregularized modulation system is depicted in Figure 3. Figure 3(a) shows
the high wavenumber instability, associated with the system’s change of type from hyperbolic to
elliptic. Figure 3(b) illustrates the effect of the instability in the physical space. High frequency
oscillations develop as soon as the system enters the elliptic region m2 < k2/2.

This numerical example illustrates how the regularization terms help in preventing the in-
stability associated with the change of type of the leading-order system. Even more impressive
is how the correction terms regularize the dynamics in run 2.

Run 2 corresponds to an initial condition that lies entirely in the elliptic domain of the
unregularized system (m(ζ, 0)2 < k2/2 for all ζ) — see the top plot of Figure 4(a), where the
graph of m at t = 0 is under the dashed line representing the hyperbolic-elliptic boundary. The
unregularized modulation system (R = 0) with such an initial condition is simply unstable for
all wave-numbers and its solution would blow-up quickly. When the regularization terms are
added however, the growth is stabilized and the modulation system produces results in excellent
agreement with the Boussinesq equations. Figure 4(b) shows the solution of the modulation
system at t = 60, compared against the solution of the Boussinesq system. The two sets of
solutions are virtually indistinguishable. Note that m(z, t) has crossed the boundary m = k/

√
2

during its time evolution. Once in the hyperbolic region, the solution steepens to form a shock,
but the regularizing terms prevent the singularity formation through dispersion, as illustrated

2According to (3), the Boussinesq variables b and η have an extra factor of ε that expresses the small amplitude
regime. We omit this factor to produce even more conclusive test cases for the regularized modulation theory
developed in this article.

13



(a)

−30 −20 −10 0 10 20 30
0

1

2

 m
(z

)

−30 −20 −10 0 10 20 30
−0.6

−0.4

−0.2

 F
(z

)

−30 −20 −10 0 10 20 30
0.8

1

1.2

 U
(z

)

 z−axis, time = 0

(b)

−30 −20 −10 0 10 20 30
0

1

2

 m
(z

)

−30 −20 −10 0 10 20 30
−0.6

−0.4

−0.2

 F
(z

)

−30 −20 −10 0 10 20 30
0.8

1

1.2

 U
(z

)

 z−axis, time = 90

Figure 1: Run 1: (a) Initial data (33) for k = 1, contained entirely in the hyperbolic region, as
m > k/

√
2. (b) Modulation variables m, F and U obtained from the Boussinesq equations (solid

line) and from the corrected modulation system (dash-dot line) at t = 90. The agreement is
excellent, as the two sets of solutions can hardly be distinguished from each other. The dashed
lines in the two top plots represent the hyperbolic-elliptic boundary m = k/

√
2.
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Figure 2: Run 1: (a) Cross section x = 0 of the initial buoyancy and its envelope. The initial data
for the Boussinesq system is obtained from (3) — see footnote 2 — and (33), where ε = 1/12.
(b) Cross section x = 0 of the solution b(z, t) of the Boussinesq equations and its envelope (solid
line) at t = 90. The dashed line on top of the solution represents the amplitude A(z, t) obtained
by solving numerically the modulation equations (33).
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Figure 3: Run 1: Illustration of the elliptic instability for the unregularized modulation system
(a) Fourier spectrum of m, F and U at t = 56.25 (solid line), shortly after the system changes
from hyperbolic to mixed hyperbolic-elliptic type, t = 57 (dotted line), t = 57.75 (dashed-
line) and t = 58.25 (dash-dotted line). (b) Modulation variables m, F and U obtained from
the unregularized modulation system at t = 58.25. The instability is indicated by the high
frequency oscillations present in the elliptic region. The dashed line in the top plot represents
the hyperbolic-elliptic boundary m = k/

√
2.

in our work on the linear Boussinesq equations [8]. We do not present the shock regularization
of the correction terms here.

6 Appendix

We present here details on the calculations leading to the wave action equation (21) and the
expression (22) for the regularization term R.

The O(ε) terms in the slow-scale equation (15) give

MRA
(1)
1 + L1(AaN ) = 0, (34)

which the correction A
(1)
1 must satisfy. As MR is a (symmetric) singular matrix, existence of

A
(1)
1 requires the solvability condition

(aN )TL1(AaN ) = 0 (35)

and results in the scalar transport equation for the amplitude A(ζ, τ)

∂τ

(
k

ω
A

)
+
k

ω
∂τA− ω {2m∂ζ +mζ}

(ω
k
A
)

= 0. (36)

By inspection, A is seen to be an integrating factor for this expression (since k is a constant),
allowing a conservation law form

(
A2

ω

)

τ

−
(
mω3

k2
A2

ω

)

ζ

= 0. (37)
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Figure 4: Run 2: (a) Initial data (33) for k = 2, contained entirely in the elliptic region
m2 < k2/2. (b) Modulation variables m, F and U obtained from the Boussinesq equations
(solid line) and from the corrected modulation system (dash-dot line) at t = 60. The two sets of
solutions are virtually indistinguishable from each other. The dashed lines in the two top plots
represent the hyperbolic-elliptic boundary m = k/

√
2. Note that a solution of the leading-order

modulation system (R = 0) with such an initial condition would blow up quickly due to the
elliptic instability.

Equation (37) can be written in terms of the wave action F to provide (21).

Continuing to next order in the perturbation requires an explicit representation of A
(1)
1 . We

showed in [8] that a solution of (34) that enables major simplifications in the calculations of the
regularizing term R is provided by

A
(1)
1 = = −i




−1

2

(
A

ω

)

τ

k

2ω

(
A

ω

)

τ

1

k
Aτ +

ω

2k

(
A

ω

)

τ




(38)

The O(ε2) terms in the slow-scale equation (15) yield

MRA
(2)
1 + L1(A(1)

1 ) + L2R(AaN ) = 0, (39)

from which the solvability condition for the existence of A
(2)
1 ,

(aN )T
{
L1(A(1)

1 ) + L2R(AaN )
}

= 0, (40)

determines R.
The solvability condition (40) becomes

−k
2

(
1

ω

)

τ

(
A

ω

)

τ

− ω

k
(2m∂ζ +mζ)

(
Aτ +

ω

2

(
A

ω

)

τ

)
+ UζζAω +

ω

k
∂2ζζ(ωA) +

1

k
ω2AR = 0.
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Solving for R we obtain

R =
1

ωA
(2m∂ζ +mζ)

(
Aτ +

ω

2

(
A

ω

)

τ

)
+
k2

2

1

ω2A

(
1

ω

)

τ

(
A

ω

)

τ

− 1

ωA
(ωA)ζζ −

k

ω
Uζζ . (41)
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