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Abstract

We consider a Leray-type regularization of the compressible Euler equations for an
isothermal gas. The regularized system depends on a small parameter @ > 0. Using Riemann
invariants, we prove the existence of smooth solutions for the regularized system for every
a > 0. The regularization mechanism is a nonlinear bending of characteristics that prevents
their finite-time crossing. We prove that, in the @ — 0 limit, the regularized solutions con-
verge strongly. However, based on our analysis and numerical simulations, the limit is not
the unique entropy solution of the Euler equations. The numerical method used to support
this claim is derived from the Riemann invariants for the regularized system. This method
is guaranteed to preserve the monotonicity of characteristics.

1 Introduction

We begin with the compressible Euler equations for an isothermal gas in one spatial dimension:

pt + (pv)e =0, (1a)
v + v, + m& = 0. (1b)
p

Here p denotes the mass density and v the velocity of the gas. The constant k is taken to be
positive. Subscripts denote partial differentiation. One obtains (1) from the compressible Euler
system by choosing the pressure function p(p) = kp. Then ¢ = /p'(p) = v/ is the sound speed.
The system may be written in the form

(0, +(0) -

o= (";/}P 5) ' )
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The following facts are well-known: system (2) has the Riemann invariants w; = v + v/klog p
and we = v — y/klog p. These Riemann invariants are used to show that if there exists xy such
that either wy 4(z0,0) < 0 or wa 5(xp,0) < 0, then the solution of (2) with smooth initial data
must develop a discontinuity in finite time. In other words, for a large set of smooth initial data,
system (2) fails to have classical solutions that exist for all ¢ > 0.

In the present work, we consider a system where the diagonal elements of the Ay matrix (2b)
have been smoothed. That is, we fix the constant o > 0 and consider the system

(0, 4(0) -

4= (';/Lp Z) ’ o)

v =u— g, (3c)

If « =0, then u = v, A = Ay, and system (3) reduces to system (2).

For av > 0, the effect of the elliptic equation (3c) is to generate from v a smoothed or filtered
velocity u. This can be easily seen in Fourier space. Using hats to denote Fourier transforms
and letting ¢ be Fourier conjugate to z, it is clear that (3c) is equivalent to & = v/(1+a?¢?). For
small > 0, the interpretation is that u is a low-pass filtered version of v. To our knowledge,
the first person to suggest filtering the convective velocity in a fluid-dynamical equation was J.
Leray [Ler34], so we refer to (3) as the Leray-Euler system.

There are three main results in this paper. First, for any a > 0, and for initial data in the
Sobolev space W21(R), the Leray-Euler system (3) is well-posed. Solutions (p,v) exist for all
t > 0 and retain their initial smoothness. Second, a subsequence of the solutions (p,v®) of
(3) converges strongly as a — 0 to functions (p,v) that satisfy the velocity equation (1b) in
the distributional sense. Third, using the characteristic form of (3), we develop a monotonicity-
preserving numerical method that provides evidence that as a — 0, solutions of the Leray-Euler
system (3) do not converge to the weak entropy solution of the Euler system (1).

Note that the proof of well-posedness for (3) uses the same Riemann invariants used to show
classical ill-posedness of (2). Associated to the Riemann invariants are characteristic curves. As
we will show, using the smoothed velocity field u on the diagonal of the A matrix (3b) has the
effect of bending the characteristics and hence preventing them from crossing in finite time. We
employed similar ideas in our previous and current work on the Leray regularization technique
applied to the Burgers equation! [BF06, BF08, BF09)].

We find remarkable the applicability of Riemann invariant/characteristic methods to the
Leray-Euler system. To explain this further, note that the finite-time breakdown of classical
solutions of (1) is often remedied by the addition of viscous or dissipative terms. When such
parabolic terms are included, one no longer gains useful information from characteristics or
Riemann invariants. To see the specific terms that distinguish the Leray-Euler system (3), we
may substitute (3b) and (3c) into (3a). This gives

pt + (pu)l‘ - azpuxxx = 07 (43)

Uy + Uty + K2z _ P Uy — P Ulyyy = 0. (4b)
p

!By the Burgers equation, we mean the inviscid equation v; 4 vv, = 0.



Again, choosing o = 0 gives the Euler system (1). The extra O(a?) terms all contain third-order
derivatives; two are nonlinear and one has a mixed derivative in space and time. It is not obvious
looking at these terms that they would stop the finite-time breakdown of classical solutions of
(1). As we show, the classical technique of Riemann invariants can be used to establish global
well-posedness for a system that can be viewed either as a coupled hyperbolic-elliptic system
with no added dissipation, as in (3), or as a third-order nonlinear 2 x 2 system, as in (4). It
remains to be seen whether these classical ideas can be applied to other nonlinear systems of a
similar form.

As already noted, the motivation to study the Leray-Euler system (3) stems from our past
work on the Leray-Burgers equation [BF06]. There it was proven that the Leray smoothing
mechanism regularizes the Burgers equation and captures, as o — 0, a weak solution of the
Burgers equation. Numerical evidence supported our conjecture that this weak solution was
indeed the unique entropy solution. Additional work on the stability of traveling waves [BF08]
and on the solution of Riemann problems [BF09] has confirmed that the Leray-Burgers equation
mirrors the physics of shocks and rarefaction in the Burgers equation.

Further motivation was provided by our past study [BaJGO07] of a Leray-type regularization
for the isentropic Euler equation with a v-law pressure function, p(p) = kp? (k,7 > 0). There,
using the asymptotic method of weakly nonlinear geometric optics [HK83, MR8&4], the authors
concluded that the Leray regularization did not prevent finite-time blowup for v # 1.

To our knowledge, the present work is the first to study a globally well-posed Leray regular-
ization for any compressible Euler system, in one space dimension or otherwise.

2 Well-posedness of the initial value problem

In this section we study the existence, uniqueness and regularity of solutions of the Cauchy
problem for the Leray-Euler system (3). Therefore we consider (3) with initial data

p(z,0) = po(z), v(x,0) = vo(x). (5)

We use H = 1 — a?9,, to denote the Helmholtz operator so that v = Hu is equivalent to (3c).
Using the Green’s function G of H, we have an explicit formula for u in terms of v:

6" (2) = 5 exp(~lal/0) (6)
u(z,t) = G¥xv = % /Rexp(—\x —yl/a)v(y,t) dy. (7)

Riemann invariants. We first construct the Riemann invariants corresponding to the system
(3). The matrix A defined by (3b) has eigenvalues \y = u — ¢ and Ay = u + ¢, where ¢ = /k.
The corresponding eigenvectors are ry = (p, —c)” and ry = (p,c)”. Define w; and wy as

wi(p,v) = v+ Vklogp, (8a)
wa(p,v) = v — Vklogp. (8b)

The two functions w; and we satisfy Vw;(p,v) -r; = 0 for ¢ = 1,2. The - represents the scalar
product in R?. We call w; and ws the Riemann invariants of the Leray-Euler system (3), by



analogy with the well-known definition of Riemann invariants for systems of conservation laws
(see, for example, [Smo83|). If we take v = u to reduce (3) to the Euler system (1), then w; and
wgy given by (8) are the classical Riemann invariants for (1).

By differentiating w; with respect to ¢ and x and using (3), one obtains:

Wi + Aqwy z =0, (9a)
wa ¢ + )\11&11733 =0. (Qb)

This is a remarkable property of Riemann invariants: the i-Riemann invariant is constant along
the j-characteristics (i # j). More precisely, define the two families of trajectories

d

subject to 7;(X,0) = X, ¢ = 1,2. Here, X denotes the Lagrangian coordinate (particle la-
bel). Then it is clear that, as long as a smooth solution (wq,ws) of (9) exists, we have
LTw;(n;(X,t),t)] = 0, i = 1,2. This implies

’LUZ(’I’}Z(X, t),t) = U}Z(X, 0), t>0, i=12. (11)

Of course, system (9) can be considered equivalent to system (3) (or (4)) only for smooth
solutions. We will show below that system (9) admits classical solutions, provided the initial
data is smooth enough. Then we infer a result regarding the existence of classical solutions for
system (3).

The equations (9a) and (9b) for w; and wy are in “characteristic” form. Non-crossing of
characteristics is equivalent to

Oxni(X,t) #0, forall X andt, i=1,2. (12)

It is well-known that as long as characteristics do not cross, system (9) has a global smooth
solution (w1, ws), provided the initial data is smooth. Differentiate (11) with respect to X,

to observe that the condition (12) is equivalent to the non-blow-up in finite time of ||w; 4| Lo,
i=1,2.

A priori estimates. We prove below that if at ¢t = 0 and for ¢« = 1,2 we have w; € L,
wi, € L', and w; 4, € L', then ||w; 4|1 cannot blow up in finite time. This implies the
non-blow-up in finite time of ||w; z|/z~, ¢ = 1,2.
L*>°-estimate on w;. From (11) we conclude that, as long as (9) has a smooth solution, it
satisfies:
[wi (- )l Loe = [lwi(- 0)l[poe,  £>0, i=1,2. (13)

Using
1
v = 5(’[1)1 + ’wg) (143)

p = exp (“”2;\/;2) (14b)



we can now obtain uniform bounds in time for ||v(-,t)||z and ||p(:,t)||L=. Also, some very
useful estimates for the variable u (see (3c)) become readily available, as we now show.

For the Green’s function G* given by (6), it is clear that ||GY||;1 = 1 and |G|z = 1/a.
Now examine the convolution formula (7) for w in terms of v. By Young’s inequality, v € LP
implies w € LP. In particular, for v € L*°, we may use (7) to conclude v € L*, and because
G2 € L', we know that u, exists and can be computed via u, = G % v. Using these facts, the
following estimates are immediate:

[ullzee < G 1l[ollzee = llvllzee, (15a)
1

[uzllzoe < GEllLtllvlzee = —lvlze, (15b)
1 2

[tze]lzoe = —5llu = vl < —5vllze. (15¢)

L'-estimate on w; .. Differentiate (9a) with respect to z, multiply by sgn(w; ;) and integrate
over the x domain to obtain:

/8t|w17z|d:c + /()\gwm):D sgn(wi z) dz = 0.
The second term in the left-hand side of the equation above is zero. Hence,
[wia(, Bl = llwie (5 0)zr, > 0. (16)
Clearly, a similar equation holds for ws, so we have
[wie (Ol = i 0, >0, i=1,2. (17)
Using (14), one can also derive uniform bounds in time for ||vy (-, )|z and ||pz(-,¢)||11-

L'-estimate on w; 4. Differentiate (9a) twice with respect to z, multiply by sgn(w 4;) and
integrate over the x domain to obtain:

%/ | W1 gg|dr = — /()\leyx)m: sgn(wy gz )dx
=— /()\2w1,x:v)m sgn (w1 ze)dr — /)\Q,zwl,zz sgn(wi ze)de
— /)\g,mwlw sgn(wi zg)de. (18)
The first term in the right-hand side of (18) is zero. We estimate the remaining two terms:
[ et sasgnoran)ds < [ Daluncalde < ol oo 01,0a]r (19)

and
/ Mo ot o 580 (W1 0a)d < / Mo sallonalde < [Aosellzoelwnallp (20)

Since ¢ = /k is constant, we have Ao, = uy and A9y = uy,. By (13) and (14a), we know
that ||v| e is uniformly bounded in time by a constant that depends only on the L*°-norms of



wi(+,0) and ws(-,0). Putting this together with (15), we conclude that ||Ag 4|/~ and [[A2 2z Lo
are bounded by constants that depend only on «, ||wi(+,0)||z~ and |Jwa(-,0)| L. Using these
facts and (16), (19), (20) in (18), we derive:

d
%/]wl,m\dx < Cl/\wLm\dm—i—Cg, (21)

where C1, Cy depend only on « and the initial data w;(-,0) and wa(-,0).

Clearly, a similar estimate holds for wy as well. One can now use Gronwall’s lemma in (21)
and in the similar estimate for wy to infer the boundedness for finite times of ||w; 4z |11, i = 1, 2.
The Sobolev imbedding W!(R) c L (R) then guarantees the finite-time L*°-boundedness of
Wigy i =1,2.

As mentioned earlier, this non-blow-up condition on |w; z| /e, i = 1,2, is precisely what is
needed to show that characteristics cannot cross in finite time and conclude the global in time
existence of a solution of (9), and hence of (3).

Let S be the subset of weakly differentiable functions f : R — R such that f € L*°(R) and
f' € WHL(R). For the above a priori estimates to hold, it is sufficient to take initial data such
that w;(-,0) € S for i« = 1,2. In this case, the a priori estimates derived above guarantee the
existence of a unique global solution (w!,w?) to (9) such that (w!,w?) € S x S. It follows from
remarks made above that both v and p have the same regularity as w’. The following theorem
has been proved.

Theorem 1. Given initial data pgy, vo such that w;(-,0) € S, i = 1,2, there exists a unique
global solution (p,v) € S x S to the initial-value problem (3)-(5).

Next we show that if w;(-,0) itself is a member of L', then w; remains in L! for finite times.
From (9a) we may derive

d
& [l de < s VRl [ ol <c.

where the constant C' depends only on the initial data w(-,0) and wa(-,0). For the last inequality
we used the uniform boundedness of ||v||r~, (15a) and (16). A similar result holds for we and
thus we have L!-control of w; for finite times:

lwi(, )|l < |lwi(-,0)||pr +Ct, t>0, i=1,2.

The L!-control of v for finite times follows immediately from (14a). The analogous L' estimate
for p can be derived from the p; equation in (3a), using the uniform boundedness of |u| e,
1ol oo, Vel and [lpz||Ls-

Now suppose that w;(-,0) € W*L(R) for i = 1,2. In this case, the Sobolev imbedding
theorem guarantees that w; € L (R), so w; € S and the hypotheses of Theorem 1 are satisfied.
Based on the arguments presented in the previous paragraph, this is sufficient to conclude that
(wh,w?) € W2YR) x W2Y(R), which in turn implies that (p,v) € W21(R) x W21(R). What

we have shown can be summarized in the following extension of Theorem 1.

Theorem 1'. Given initial data po, vo such that w;(-,0) € W3L(R), i = 1,2, there ewists a
unique global solution (p,v) € W3L(R) x W2L(R) to the initial-value problem (3)-(5).



Remark. It is interesting to note that (13) and (14b) also imply that p is bounded away from
zero. The impossibility of vacuum formation is consistent with the Euler equations for a y-law
gas with v =1 (see [Smo83]).

3 The a — 0 limit

Consider the system (3) subject to initial data (5). Suppose the hypotheses of Theorem 1 are
satisfied and denote by (p®,v®) the unique solution to the Cauchy problem (3)-(5). Now we
can formulate the question: what happens to p®, v® and u®(z,t) = H~'v%(z,t) in the limit as
a— 07

In what follows, we work with system (4) with initial data p®(z,0) = po(z) and u®(z,0) =
H~tvg(x). This is equivalent to working with system (3) with initial data (5). We want to
investigate if p* and u® converge in some sense to a solution of the compressible Euler system.

It is important to remember that as we repeatedly solve (3) with decreasing values of a, the
initial data vy stays fixed. How does this affect u®(x,0)? To answer this, simply note that using
the Green’s function G of the operator H, we may write u®(z,0) = (G *vg) (z). We have
|G*||z1 = 1, while vg is bounded and continuous, for all @ > 0. Then it is a standard property
of convolutions (see [Fol99, Thm. 8.14]) that as @ — 0, u®(-,0) — vg uniformly on compact
subsets of R.

A compactness argument. Our next step is to use the a priori estimates from the previous
section to prove estimates uniform in « for solutions (p®,v*) to (3). The uniform L*° and BV
bounds that we are about to show will enable us to pass to the @« — 0 limit by a standard
compactness argument; we then study if the resulting limit is a weak solution of the isothermal
Euler system.

Proposition 1. Provided the initial data (po,vo) satisfies the hypotheses of Theorem 1, the
resulting solution (p*,v®) satisfies

1p% (5 Mlzee < M, (P1)
T.V.p%(-,t) < My, (P2)
[p* (-t + k) — p“(-, )|, < M3k,  for any k > 0, (P3)
and
[0 (-, )L < M, (P1')
T.V.v*(-,t) < My, (P2
|lo* (-t + k) —v®(-, )|, < Mk,  for any k > 0, (P3)

for any t € [0,T). Here, My, Mj are independent of o, My, M., are independent of t and o and
Ms, M are independent of t, k and « .

Proof. From Section 2, as consequences of (13), (14) and (15a), we have uniform in o bounds on
0> )| Loe, [Ju® (-, t)||Lee and ||p®(-,t)||Lee. We can also derive from (13), (17) and (14) uniform
in « bounds on |[v¢ (-, )|z and |[pS(-,¢)||z1. In turn, the uniform bounds on |[v%(-,t)||;1 and
lp% (-, t)|| 1 yield uniform bounds on the total variations T.V. v® and T.V. p®.



Also, by integrating (3a) with respect to time from ¢ to t + k (k > 0) we obtain

t+k
[t = oo < [ [ Que) 4 e de ds
R R Jt

< K ([[u[[poe 1oz e + [[o% [ zoe [[vF [ 1)
< MBk) (22)

and

t+k
[ttt =t olde< [ (el + nly/p oz dods
R R Jt

<k (lullzeellog |z + 111/ 0% ([ o< 221 £1)
< Mk, (23)

where M3 and Mj do not depend on «, but only on the initial data pg, vg. Here we used the
previous observations regarding the uniform L>°-bounds of p® and u® and the L!-bounds of p¢
and v?. Note that the uniform lower bound of ||p%||r~ also follows from (13) and (14). O

Using the two sets of properties (P1)-(P3) and (P1')-(P3") we can establish

Theorem 2. Suppose we solve the Cauchy problem (3)-(5) with an initial data satisfying the
hypotheses of Theorem 1. Then, as a — 0, passing if necessary to a subsequence, there exist two
functions p(z,t) and u(x,t) such that

p* — p in C([0,00); Liye(R)) (24)

and
v* — u in C([0, 00); LIIOC(R)). (25)

Proof. The theorem concerns compactness, i.e. strong convergence of p® and v® in the zero-«
limit. The two sets of uniform estimates proved in Proposition 1 are precisely the conditions
of the L' compactness theory for conservation laws — see [HR02, Thm. A.8] or [Smo83, Thm.
19.9] for modern accounts of this. This enables us to construct a subsequence a; — 0 such
that {p®(t)}, {v¥(t)} converge strongly to functions p(x,t) and wu(x,t), respectively, where
p(-,t),u(-,t) € Li (R) for each t > 0. The convergence is in C([0,00); LL (R)). O

loc loc
We show in the following proposition that u®(z,t) = H~lv*(x,t) also converges to u in
C([0,00); Ljo. (R)).

loc

Proposition 2. Let u be the limit on a subsequence of v*, as derived in Theorem 2. Then,
u® — u in C(]0,00), L. (R)), (26)
on the same subsequence.

Proof. Considering (25), it is enough to show

sup/ |lu® —v%|dx — 0, asa—0, (27)
0,7 K



for any finite time 7" and compact K. We have

/ |uo‘—vo‘|d:c:/
K K

Here, we used u® = G* x v®. Integrating by parts, we get

1

%/Re_lm_yl/ava(y,t)dy—vo‘(:ﬂ,t) dzx.

1

1
3 [ ) dy = (et + 5 [ seny o) . dy,

Continuing, we find

1
/ |ua—va|dx§—/ /e|y1|/°‘|v;(y,t)|dydx
K 2 )k Jr

1/ ly—
= - vy (y, t dy/e ly=al/e gy
5 [ s oldy [
:a/ oy (v, )] dy.
K

The term

/ o (3, 1) dy
K

is uniformly bounded with respect to ¢ € [0,T] and o — see (P2'). Hence, (27) follows and the
argument is complete. O

Strong convergence to a weak solution of the isothermal Euler equations? In this
paragraph we consider the solution (p®,u®) of the Leray system (4) and study if its limit (p, u)
represents a weak solution of the compressible Euler system for an isothermal gas given by (1).

Considering that the system (4) is not in conservation law form, the answer to this question
is not immediate. In fact we can prove only a partial result, i.e. (p,u) is a weak solution of the
momentum equation (1b). It seems that we do not have sufficient properties on the sequences
p% and u® to conclude that (p,u) is a weak solution of the continuity equation (1la) as well and
we will give a formal argument on why we believe that in fact this is not actually true.

The next proposition contains the positive half of the result.

Proposition 3. The limit (p,u) established in Theorem 2 is a global weak solution of (1b), i.e.
the momentum equation of the compressible Euler system for an isothermal gas.
Proof. We use equation (4b), which we repeat here using superscripts a:

(0%

P 2 2
ug' + uug + mp—z — a‘ug,, — a‘uus,, =0. (28)

We wish to prove that the o terms

2.« 2, o, «
« utzz+a U Uprgs

converge weakly to 0 as @ — 0. Suppose we have shown this; then, we may multiply (28) by a
test function ¢ that is compactly supported in R x [0, 00) and integrate in space and time. Now



taking o — 0, we will find that the order ? terms vanish, and we are left with a function u
that satisfies

o
1
/ / wpy + ~ulp, + klog pp, dxdt =0,
0o Jr 2

for all compactly supported . This is precisely the statement that (p,u) is a global weak
solution of the momentum equation (1b), and would prove the proposition.
For the first o2 term from (28), we have, for any compactly supported ¢,

T T
a2/ /uf‘mgpd:cdt: —aQ/ /uo‘gotm dx dt.
0 R 0 R

Using the convergence of the sequence u®, it is clear that this term converges to 0 as v — 0.
For the second a? term from (28), we may derive using integration by parts

T 1 T 3 T
aQ/ / utug,pdr dt = Zaz/ / (u®)? Pape dz dt — Eaz/ / utug, g d dt. (29)
0 R 0 R 0 R

By using the boundedness and the convergence of u®, we conclude that the first term on the
right-hand side of (29) vanishes in the & — 0 limit. Regarding the second term, by considering
the boundedness of u®, it is enough to show that

T
a2/ /\ug‘x]dx—ﬂ),
0 JK

for any compact K. But this follows from (25) and (26), where one uses a?ug, = u® —v®. 0O
Consider now (4a), which we repeat with superscripts «:
P+ (0 u)e — @?pPug,, = 0. (30)

Can we pass to the limit @« — 0 in (30) and conclude that (p,u) established in Theorem 2 is
a global weak solution of (1a)? Yes, provided the a? term, a?p®ug,, converges weakly to 0 as

T
a — 0.

Integrating by parts we have

T T T
o? / / pousp dr dt = —az/ / plul o dr dt — o / / pus oy dx dt, (31)
0o JK 0 JK 0 JK

for any test function ¢ with support K. The second term in the right-hand-side goes to 0 as
a — 0, due to an argument similar to that used to conclude that the second term on the right-
hand side of (29) vanishes in the a — 0 limit. We only need to use the uniform boundedness of
p% instead.

It seems however that we do not have enough properties on p® and u® to conclude that
the first term on the right-hand-side of (31) vanishes in the o — 0 limit. We list the relevant
properties of p® and u® here:

o™z < My, o8l < Mz, p™ — p in C([0,00); Lo (R)),

10



and
[u|[poe < M7, [lugllpr < Ms,  [lo*ug, ]l — 0 in C([0,00); Ly (R)).

We expect that p& and u$ converge to the Dirac § distribution at the shock, that is p* ~ ¥y (%),
with p¢ ~ é\Ill (%), and u® ~ Wy (%), with u$ ~ —\IJ ( ) Here, ¥; and ¥, are smooth
functions with compact support such that [ U;dz = 1 and f Wsodxr = 1. Note that the above
properties on the L> and L'- norms of p%, u® and their derivatives are satisfied when p® and

u® are in this form. We also have a2 ~ \IJ’ (%) and hence

||aumup~/1%( i =a [ 195wl dy.

Provided || W) || 1 is finite, we have ||a?u,|;1 — 0, as needed. There is no reason however to
expect the first term on the right-hand-side of (31) to vanish in the a — 0 limit, for p, u® in
this form. Indeed, ignoring the time dependence,

aZ/px Mgodxwé/‘lﬂ( )lll' ( )gpdm
- [ M@ dy

If we choose ¢ to be equal to 1 in the interior of a compact set and 0 outside, then the integral
above does not vanish as a — 0. Though this is only a formal argument, we nevertheless
conjecture that the Leray regularization does not capture entropy solutions of the compressible
Euler equations for an isothermal gas. This conjecture is supported by the numerical results of
the next section.

4 Numerical results

This section contains numerical results confirming that the Leray regularization does not capture
entropy solutions of the isothermal Euler equations. The numerical experiments are performed
using a discretization based on the Riemann invariant system (10)-(11). By discretizing the char-
acteristic form of the equations, we produce a numerical method that preserves the monotonicity
of the characteristics, an important feature for long-time integration.

Numerical method. We wish to integrate the equations (10), which can be written as

m(X,t) = u(m(X,1),t) +c (32a)
(X, t) = u(na(X,t),t) —c. (32b)

Our goal now is to rewrite u o 7; in such a way that it can be evaluated using only (X, 1),
12(X, t), and the initial data for the problem. It is not obvious that this is possible, so we outline
the procedure. In the relationship between u and v, given by (7), we use (14a) to obtain

u(a,t) = o /R &7/ w0y (3, 1) + wa(y, 1)) dy.

11



We split the integral into two pieces

1 1
- —lz—yl/c il —lz—yl/a
u(z,t) 404/Re w1 (y,t) dy—|—4a/Re wa(y,t) dy.

In the first integral, we substitute y = 11 (Y, t). In the second integral, we substitute y = n2(Y, t).
We use (11) and set « = 7;(X,t). This gives expressions for u(n;(X,t),t), which we then
substitute into the right-hand side of (32). We thereby obtain

i(X0) = (<1t oo [ e OO0 e, (v, 0)0y (V. 0) Y
R

+ L e~ (GO =m (0l ey (Y, 0)0y ma (Y, £) dY.  (33)
da SR
Together with the initial conditions n;(X,0) = X, this is a closed system of equations for 7;(X, t)
and 72(X,t). If we now discretize this system in time and space, we have a purely Lagrangian
scheme for solving the Leray system.
Assume first that w;(X,0) vanishes as |X| — oco. Then it is possible to choose an interval
[a,b] so that w;(X,0) is negligible for X ¢ [a,b]. This justifies truncating the domains of
integration from R to [a, b], resulting in

. 1 o
(X1) = ()7 e o [y (v o)y (v, ay

1 b
e / e~ M X O=m (Do, (v, 019y na (Y, £) Y. (34)

Again under the assumption that w;(X,0) vanishes as | X| — oo, we see that for | X| sufficiently
large we have, asymptotically in X, 7;(X,t) ~ (—1)7T1c. Integrating both sides with respect to
t and using 7;(X,0) = X we find that n;(X,t) ~ (=1)7"tct + X. Therefore,

dxny(X.1) ~ 1 (35)

asymptotically in X for | X| sufficiently large. We will use this fact shortly.

Discretization in space. The next step is to approximate the integrals and derivatives in
(34). Fix N. For 0 < i < N, define X; = a +iAxz where Az = (b—a)/N. Let n;(t) denote the
numerical approximation to 7;(X;,t) on the interval [a,b], and let n;(t) = (1;0(t),...,n;n (1))
In the present study, we use a 7-point, 5th order finite difference formula to approximate first
derivatives in space. That is, we approximate dy by the (N +1) x (N + 1) antisymmetric matrix
Dy = (M — M7T)/Ax where M has the entries (3/4, —3/20,1/60) on the first, second, and third
superdiagonals, respectively. Since the first three and last three rows of D; cannot possibly
contain the full 7-point stencil, when we compute D17, the first three and last three entries will
be incorrect. To remedy this, we use the asymptotic expression (35) to replace these incorrect
entries by 1. Let [?ﬂyj denote the derivative vector obtained after fixing D17, in this way.

We now have a choice of quadrature rules to approximate the integrals in (34). In the present
study, we use the trapezoidal rule. Applying the above spatial discretizations to (34), we obtain

N
. , Az o - o N
i = (1) e 8_%20% el (Dymy) e g (Dymy) | (36)
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where w; , = w;j(Xy,0) and

1 k=0
or=42 1<k<N-1
1 k=N.

Monotonicity. Note that (36) is a system of N + 1 coupled nonlinear ordinary differential
equations which we can abbreviate as 1, = f;j(n;,m2). The system is well-posed: for j = 1
and j = 2, we have that f; is differentiable and that the partial derivatives 0f;/0n;; are all
bounded. Hence f; is Lipschitz and the standard existence and uniqueness theorem for ODEs
can be applied.

We know that the true characteristic curves satisfy 7;(X,0) = X, which implies dxn;(X,0) =
1. From the well-posedness results in Section 2, we get dxn;(X,t) > 0 for all ¢ > 0. In other
words, for each fixed ¢t > 0, n;(X,t) is a monotonic function of X. It is of interest to show that
(36) respects the monotonicity of 7; in a discrete sense:

Proposition 4. Suppose 1;;+1(0) > n;i(0) for each i = 0,1,...,N — 1. Then under the
dynamics of (36), we have nj;1(t) > n;:(t) for each i =0,1,...N —1 and for all t > 0.

Proof. Define s;;(t) = nji+1(t) —n;,:(t) for 0 <i < N — 1. Using (36),

Ax &
§ii=—Y o] |e i mkl/e _ g=Inpimmkl/ed g (D
J 8a ’ 1 k
k=0

+ [e—lﬂj,iﬂ—m,k\/a — e—\nj,i—”zk\/a] wa (blnz)k}.

It is a simple exercise to rewrite the right-hand side as a function of the s;; only, and thereby
show that the standard existence and uniqueness theorem applies to the $;; dynamical system.

Now fix 4. Suppose sj; = 0, so that 7;;11 = 1;;. Then it is clear that in the above expression,
each of the terms in square brackets vanishes. In this case, 5;; = 0. Therefore, given the initial
time ¢y € R and the initial condition s;;(tg) = 0, we see that the unique solution of the §;;
equation is s;;(t) = 0 for all ¢. By uniqueness of solutions, the initial condition s;;(0) > 0
necessarily implies s;;(¢) > 0 for all ¢, finishing the proof. O

Remarks:

1. To restate the argument from the above proof in a geometric way, we can say that the phase
space for the $1,$2 dynamical system is sliced by 2N invariant hyperplanes of the form
sj; = 0. It is impossible for trajectories that start on one side of one of these hyperplanes
to cross over to the other side.

2. Note that in practice, we will always use (36) with the initial condition 7;,;(0) = Xj, so
that 7;,11(0) —n;:(0) = Az > 0 and the condition of the above proposition is satisfied.

3. We can prove the monotonicity result in precisely the same way if instead of the trapezoidal
rule we use the lower-order rectangle rule to evaluate the integrals in (34). However, the
proof fails if we use the higher-order Simpson rule. We have not explored generalizations
involving quadrature on non-equispaced grids.

13



Discretization in time. In the present study, we will use a standard fourth-order Runge-
Kutta method to solve the ODE system (36). In future work, we hope to analyze the errors
incurred by the specific choice of spatial and temporal discretizations made here.

Convergence of the method. In the absence of a proof of convergence for the numerical
method, we carry out a numerical test. Each choice of initial data we present below will depend
on a real parameter 0. For each choice of initial data, we freeze the values of v and § and then
repeatedly run simulations with increasing values of N (the number of particles) and decreasing
values of the timestep At. We take as a reference solution the numerical solution computed
with the largest space and time resolution: N = 4001, At = 0.0025. We compute the relative
L? errors at the final time T = 4 between the reference solution and the numerical solutions
obtained for (a) N = 251, At =0.04, (b) N =501, At =0.02, (¢) N =1001, At =0.01 and (d)
N = 2001, At = 0.005.

Let e; denote the computed relative error for n;, j = 1,2. Then we observe that loge;
plotted versus log(At?/N) yields a line with slope close to one. Hence, the numerical test of
convergence yields a relative error decay of e; = Cj(At)QN ~1 for constants Cj, 7= 1,2, and
gives evidence that the numerical method is converging.

Comparison with finite difference scheme. We also have a finite difference code that solves
the Leray system in the p and v variables (3) directly. The results of the two numerical methods
are in complete agreement for as long as the finite difference code is well-resolved, which can
be for fairly long times if fine spatial and temporal resolutions are used. However, as we have
found, the finite difference scheme for (3) is not suitable for the long-time integration of problems
involving shocks. There are two reasons. First, the scheme does not guarantee the monotonocity
of characteristic curves, and second, in the numerical solution of (3), quantities such as v(x,t)
tend to steepen exponentially in time, requiring very high resolution and small final times. The
characteristic/particle method that we employ circumvents these obstacles.

Numerical results. We consider two types of initial data for the Leray system: Gaussian
and front-like initial conditions. We perform these numerical experiments to determine whether
these initial profiles evolve into the entropic solutions of the Euler equations. This is a typical
test to check if a regularization of the Euler equations is faithful. For the front-like initial data
the exact solution of the Euler equations can be computed exactly, while for the Gaussian initial
data we use as the entropic solution of the Euler system the numerical solution produced by a
numerical conservation law scheme. For this purpose we use the CLAWPACK software pack-
age?. In all numerical simulations, the parameter & is taken to be 0.4.

A. Gaussian initial data. We first consider the initial data

ro =1+ 15exp (—((X +0.1)/6)?), (37a)
vg = 0. (37b)
Here § measures the width of the Gaussian. This initial data corresponds to a detonation wave.

The initial density consists of a large amplitude disturbance localized around one point while
the initial velocity is simply zero.

2CLAWPACK is freely available on a website hosted by the Department of Applied Mathematics at the
University of Washington. See http://www.amath.washington.edu/~claw/.
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Convergence to the Euler solution? Here we address the main question of this study: do
the solutions of the Leray system (3) approach the entropic Euler solution as the smoothing
parameter « decreases to 07 Here « is the width of the Helmholtz filter (7); we expect that
the role of a in the Leray regularization (3) is analogous to the role of viscosity v in a viscous
regularization of the compressible Euler equations.

For successively smaller values of o, we compare the numerical solutions of the Leray system
(3) to a reference solution of the Euler system. By reference solution, we mean a high-resolution
numerical solution of the isothermal Euler system (1) that we compute using the CLAWPACK
package. For the reference solution, we use N = 10000 grid points and the initial data (37).
Table 1 displays the relative L?-errors between the entropic Euler solution as computed by
CLAWPACK and the numerical solutions of the Leray system with o = 0.4, 0.2, 0.1, and 0.05.
The final time is T' = 4, ¢ is fixed at 0.1 and the resolution used for all the runs is N = 4001
and At = 0.0025. The plots presented in Figure 1 clearly show that the Leray system fails to
capture the shock speed of the entropic Euler solution.

Table 1: Gaussian initial data: convergence to the Euler solution? The table displays the relative
L?-errors between the entropic Euler solution as computed by CLAWPACK and the numerical
solutions of the Leray system for o = 0.4,0.2,0.1,0.05 at 7' = 4. For all the runs, N = 4001,
At = 0.0025, and the initial data is given by (37). Note that the errors approach an order O(1)
limit as a approaches 0.

p: relative L2-error | v: relative L?-error
a=04 0.3736 7.9194 x10~1
a=0.2 0.3174 6.8900 x10~!
a=0.1 0.3017 6.4291 x1071
o =0.05 0.2980 6.2727 x10~!

B. Front-like initial data. We consider smoothed Riemann data to initialize our numerical
method, that is the initial condition w?, w3 represent smoothed fronts connecting a left state
(wir,wer) to a right state (wig, war). The corresponding initial profiles of p and v—computed
using (14)—also represent smoothed fronts connecting a left state (pr,ur) to a right state
(pr,ur). In the numerical experiment presented below, the values pr, ur, pr and ug are chosen
so that the exact solution of the Euler equations corresponding to the Riemann initial data with
these left and right states represent a combination of a 1-shock and a 2-rarefaction waves. Other
choices of left and right states lead to similar conclusions.

It is well-known that standard regularizations such as the viscosity method, initialized with
smoothed Riemann data profiles, recover the entropic solution of the Euler equations when the
viscosity and the parameter controlling the smoothing of the initial data decrease to 0. However,
a similar study for the Leray regularization renders a negative result.

For the numerical simulations in this section, we use the smoothed Riemann initial data

- X

wl = R WL oy () 4 WIRT 0L (38)
2 5 2
- X

Wg = 7?1]2}{ 5 WaL tanh <?) + 7w2R ;— 2L . (38b)
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Figure 1: Gaussian initial data. The solid line represents the numerical solution at T" = 4 of
the Leray system with o = 0.05, computed using a very fine spacetime grid with N = 4001
and At = 0.0025. The dash-dot line represents the entropic solution of the Euler equations
computed using CLAWPACK. Note the O(1) error between the two solutions.

Here, 6 measures the smoothing in the initial data.

Note that for the front-like initial data, an assumption made earlier in the derivation of the
particle method no longer holds. Specifically, since w;(X,0) does not approach 0 as | X| — oo,
we cannot truncate the integrals from (33). In future work, we will explain how to deal with this
issue in a systematic way. For now, we employ a solution that is convenient from the point of
view of numerical implementation. Namely, we start with (33) and again truncate the domains
of integration from R to a finite interval [a,b]. However, when we evaluate these integrals, we
include a sufficient number of “ghost” particles that lie to the left of ¢ and to the right of b. In
this extension scheme, we assume that the ghost particles move at fixed speeds determined by
the boundary values of w;(X,0).

With this in mind, assume that limx_,_o w;(X,0) = w;r and limx_, ;o w;(X,0) = wjg.
By (14) and (7), this implies that p(X,0), v(X,0) and u(X,0) all have right/left limits as
X — +oo, which we will denote using subscript R and L, respectively. Now assume® that
limy 100 M(X,t) = £oo. Then if we take X — £o0 in (32), we obtain

lim 7;(X,t) = ur, + (1) "¢, lim 7;(X,t) = ug + (1) e, (39)
X——00 X—4o00

Let M be a positive integer denoting the number of ghost particles we wish to add on each side
of [a,b]. Then we rewrite (36) in the following way:

N+M

Z o [e—\nj,i—m,k\/ozwuC (Dlnl)k + e_|77j,i—772,k|/0‘w27k (f)an)k] , (40)
k=—M

Ax

. i1
Mji = (=1) e+ ==

3This assumption is true at ¢t = 0 and holds for ¢ > 0 if we make certain assumptions on the initial data.
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where for —M < k < —1, we prescribe the following positions for the M ghost particles to the
left of a:

nik(t) = X+ (up + (=17 e) ¢
Also, for N+1 < k < N + M, we prescribe the following positions for the M ghost particles to
the right of b: '

k() = Xi + (ur + (=1) o) t.

We take (Dlnj>k =1 for K < 0 and K > N. The above definitions are exact at ¢ = 0 and

consistent with (39) for ¢ > 0. We also extend w; ; and oy, as follows:

wjp, -M<k<-1
wik = w;(Xg,0) 0<k<SN
WjR N+1<E<N+M
1 k=-M
op =412 —-M+1<k<N+M-1
1 k=N+M.

Note that the monotonicity result proved earlier still applies to (40). We omit further details.
Ezact solution of the Euler system. The initial data (38) is intended to be a smoothed version
of initial data for which we have an exact solution of the Euler system (1). Here we outline the
construction of this exact solution.
Take pr, = 0.1, u, = 0.2. Now consider the right state (pr,ur) and an intermediate state
(pint, Uint) such that (pine, uint) can be connected to (pr,ur) on the right by a 1-shock and
(pr,ur) can be connected to (pint, wint) on the right by a 2-rarefaction. We take p;,; = 0.4,

pr = 0.5 and compute u;,;, up using standard shock-rarefaction curves?*:
K
Uint = UL — (Pint - PL),
PintPL
R
UR = Uint + VK log PR
Pint

4The calculation of shock and rarefaction curves for the Euler equations for an isothermal gas is standard and
we omit to present it here in detail (see the classical monographs [Smo83] or [CF76] for instance). A left state
(pL,ur) can be connected to a right state (p,u) by a 1- or a 2-shock, provided the right state is on the following
1- and 2-shock curves, respectively

K
Sit u—up=—/—(p—pL), p>prL,
poL
K
Syt u—wup=,/—(p—pr), p<pr.
pPL

Also, the 1- and 2- rarefaction curves can be computed as
Ri: u—uL:—\/Elogﬁ, p < pL,
PL
Ro: ufuL:\/Elogpﬁ, p > pL.
L
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Here we used the equations for S7 and Ry from the footnote.
Therefore, the exact solution of the Euler system is a 1-shock followed by a 2-rarefaction:

Uy, T < st

Uing 8t < T < A2 (Pints Wint )t

F—c  N(pint, wint)t < T < A2(pRr,ur)t
ugp x> do(pr,up)t,

UEuler (xv t) = (41)

where the 1-shock speed is

5 — PintUint — TLUL .
Pint — PL
The expression for p follows from the expression for u. The density has a shock transition from
prL t0 pint across x = st, followed by a rarefaction fan where we need to use Ry (see the footnote)
to get p(x,t) from u(x,t).

Convergence to the Euler solution? Let us now compare the numerical solutions of the Leray
system (3) to the Euler solution (41) when the smoothing parameter o decreases to 0. In Figure
2 we plot the entropic Euler solution (41) and the solution of the Leray system with o = 0.05
at the final time 7" = 3. The numerical method uses a very fine spacetime grid with N = 4001
and At = 0.0025. Table 2 displays the relative L2-errors between the entropic Euler solution
(41) and the numerical solutions of the Leray system with o = 0.4,0.2,0.1,0.05. The final time
is T =3, 9 is fixed at 0.1 and the resolution used for all the runs is N = 4001 and At = 0.0025.

Table 2: Front-like initial data: convergence to the Euler solution? The table displays the
relative L2-errors between the entropic Euler solution (41) and the numerical solutions of the
Leray system for o = 0.4,0.2,0.1,0.05 at 7' = 3. For all the runs, N = 4001 and At = 0.0025.
Note that the errors approach an O(1) limit as a approaches 0.

p: relative L?-error | v: relative L?-error
a=0.4 0.4530 9.4340 x10~!
a=0.2 0.4474 9.3453 x10~!
a=0.1 0.4470 9.3437 x107!
a=0.05 0.4469 9.3435 x10~!

As Figure 2 shows, the solution computed using the Leray regularization has a shock that
is clearly to the right of the shock in the exact entropy solution. This indicates that the Leray
system fails to recover the correct shock speed. Also clearly shown in Figure 2 is that the Leray
solutions p(x,3) and v(z,3) do match the exact solutions at the boundary, but the intermediate
values p;n: and v;,+ are wrong. The intermediate values for p and v are both noticeably larger
than those of the exact solution.

We conclude that solutions of the Leray system (3) with smoothed Riemann initial data (38)
do not, in the @ — 0 limit, converge to a smoothed version of the exact entropy solution (41) of
the Euler system (1).

Remark. We also performed a numerical study where the smoothing of the initial data is
sequentially reduced, i.e. § = 0.2, 0.1, 0.05, and 0.025, while keeping « fixed. We observed that
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Figure 2: Front-like initial data. The solid line represents the numerical solution at T' = 3 of
the Leray system with o = 0.05. The numerical calculation uses a very fine spacetime grid with
N = 4001 and At = 0.0025. The dash-dot line represents the exact entropy solution of the Euler
equations computed using (41). Note the order O(1) error between the two solutions.

the shock location and the value of the jump at the shock remain unchanged. The only difference
can be noted in the rarefaction fan which becomes steeper as d decreases. This suggests that,
besides failing to capture the correct shock speed and jump, the Leray regularization is also
unable to recover the qualitative behavior of the rarefaction fan. As § approaches 0, it seems
that the Leray solutions converge to an unphysical shock, instead of a rarefaction fan, thus
strengthening the conclusion of the present numerical study.
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