
JOURNAL OF GEOMETRIC MECHANICS doi:10.3934/jgm.2019020
c©American Institute of Mathematical Sciences
Volume 11, Number 3, September 2019 pp. 397–426

SELF-ORGANIZATION ON RIEMANNIAN MANIFOLDS

Razvan C. Fetecau∗ and Beril Zhang

Department of Mathematics
Simon Fraser University

Burnaby, BC V5A 1S6, Canada

(Communicated by Darryl D. Holm and Manuel de León)

Abstract. We consider an aggregation model that consists of an active trans-
port equation for the macroscopic population density, where the velocity has

a nonlocal functional dependence on the density, modelled via an interaction
potential. We set up the model on general Riemannian manifolds and provide a

framework for constructing interaction potentials which lead to equilibria that

are constant on their supports. We consider such potentials for two specific
cases (the two-dimensional sphere and the two-dimensional hyperbolic space)

and investigate analytically and numerically the long-time behaviour and equi-

librium solutions of the aggregation model on these manifolds. Equilibria ob-
tained numerically with other interaction potentials and an application of the

model to aggregation on the rotation group SO(3) are also presented.

1. Introduction. The literature on self-collective behaviour of autonomous agents
(e.g., biological organisms, robots, nanoparticles, etc) has been growing very fast
recently. One of the main interests of such research is to understand how swarm-
ing and flocking behaviours emerge in groups with no leader or external coordina-
tion. Such behaviours occur for instance in natural swarms, e.g., flocks of birds
or schools of fish [14, 25]. Also, swarming and flocking of artificial mobile agents
(e.g., robots) in the absence of a centralized coordination mechanism is of major
interest in engineering [37, 38]. Consequently, there exists a variety of models for
swarming or flocking, ranging from difference equations (discrete in both time and
space) [27, 25, 26] to ordinary/partial differential equations (continuous in time and
discrete/continuous in space) [23, 45, 28].

In this paper we consider an aggregation model that consists in an integro-
differential equation for the evolution of a population density ρ(x, t) on a Riemann-
ian manifold M :

ρt +∇M · (ρv) = 0, (1a)

v = −∇MK ∗ ρ. (1b)
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Here, K : M ×M → R is an interaction potential, which models social interactions
such as attraction and repulsion, and K ∗ ρ is defined as:

K ∗ ρ(x) =

∫
M

K(x,y)ρ(y)dµ(y), (2)

where the integration is with respect to the canonical volume form µ of the Rie-
mannian manifold M .

Model (1) set up in Euclidean space Rn has received a great deal of interest
in recent years. On one hand, it has been used in numerous applications such as
swarming in biological groups [45], material science and granular media [20], self-
assembly of nanoparticles [36], opinion formation [46], robotics and space missions
[38], and molecular dynamics [35]. On the other hand, there have been excellent
progress and insight in the numerics and analysis for model (1). It has been shown
numerically that the model can capture a wide variety of self-collective or swarm
behaviours, such as aggregations on disks, annuli, rings, soccer balls, etc [41, 53, 52].
At the same time, the mathematical analysis of model (1) in Rn has posed challenges
that stimulated a rich and diverse literature. The issues addressed include the well-
posedness of the initial-value problem [12, 9, 17, 11], the long time behaviour of its
solutions [13, 43, 30, 8, 32, 31], evolution in domains with boundaries [19, 33], and
studies on minimizers for the associated interaction energy [6, 5, 22].

Despite the extensive research on equation (1) in Euclidean spaces, there is very
little done for the aggregation model posed on arbitrary surfaces or manifolds. In
[54], the authors investigate the well-posedness of the aggregation model (1) on
Riemannian manifolds, but in a certain restrictive setting (as detailed in the next
paragraph). To the best of our knowledge, the present paper is the first to provide
a formulation of the aggregation model on general Riemannian manifolds, which we
believe has important applications (e.g, in robotics). We point out that it has been
only very recently that other classes of models have been considered on surfaces and
manifolds too; see for instance [44] for a Vicsek-type model [27] set up on a sphere.

With very few exceptions, in the studies of the aggregation model in Rn, the
interaction potential K(x,y) at two locations x and y is assumed to depend on
the Euclidean distance between the two points, i.e., K(x,y) = K(|x − y|). In
particular, interactions are symmetric, as two individuals positioned at x and y
sense each other equally. Note that for such interaction potentials, the operation
∗ defined in (2) is a standard convolution between two scalar functions on Rn. As
alluded to above, in [54], the aggregation model is indeed posed on a Riemannian
manifold, but the setup is very restrictive, as it is assumed there that the manifold
is a subset of Rn and that mutual interactions depend on the Euclidean distance
(in Rn) between points.

Different from [54], we consider in this paper general Riemannian manifolds
(M, g), for which interactions depend on the geodesic distance (on M) between
points. Mathematically, by an abuse of notation, we write:

K(x,y) = K(d(x,y)), (3)

where d(x,y) denotes the geodesic distance between x and y. Not only that (3)
generalizes naturally the Euclidean setup, but we also find it more meaningful. For
example, consider applications of the model in engineering (robotics) [34, 38], where
individual agents/robots are restricted by environment or mobility constraints to
remain on a certain manifold. To achieve efficient swarming or flocking, agents
must approach each other along geodesics, so the geodesic distance should be built



SELF-ORGANIZATION ON RIEMANNIAN MANIFOLDS 399

into the model, which in this class of models amounts to incorporating it into the
interaction potential.

Similar to the setup in Euclidean spaces, we assume that there are no limita-
tions on the mutual sensing of individuals, that is, all individuals sense each other.
For the example above (coordination of mobile agents), the assumption is valid
provided the agents are set to communicate globally with each other via a central
unit. For coordination of biological agents, one can assume that individuals possess
a sensing mechanism (such as smell for instance) which enables them to commu-
nicate with each other regardless of the geometry of the space they live in. We
note here that from a mathematical point of view, including local sensing and/or
asymmetry/anisotropy in the model is expected to bring up major challenges (see
for instance [29] for a study of anisotropic interactions in model (1) posed on R2).

Model (1) is in the form of a continuity equation for the density ρ. Note that
this is an active transport equation, as the velocity field defined in (1b) depends
on ρ. The interpretation of (1) as an aggregation model is in fact encoded in (1b):
by interacting with a point mass at location y, the point mass at x moves either
towards or away from y. The velocity v at x computed by (1b) takes into account
all contributions from interactions with point masses y ∈ M . Also, in geometric
terms, the continuity equation (1a) represents the transport of the volume form
ρµ along the flow on M generated by the tangent vector field v [1, Chapter 8].
Equivalently, the mass in each subregion of the manifold remains constant through
time, as the subregion evolves by the flow. In particular, the total mass m =

∫
M
ρ dµ

is conserved. This geometric interpretation of the aggregation equation will play a
major role in the paper.

In the present research we investigate solutions for model (1) posed on two simple
manifolds: the two-dimensional sphere and the two-dimensional hyperbolic space.
We design interaction potentials for which the equilibrium densities have a simple
structure that is amenable to analytic investigations (specifically, equilibria are con-
stant on their supports). The strategy for designing such potentials is inspired by
[32, 31], where similar goals were pursued for the aggregation model in Euclidean
spaces. Our work is the first to demonstrate that model (1) set up on manifolds
leads to swarming behaviour that can be studied mathematically. We also perform
numerical investigations for other interaction potentials and find a diverse set of
equilibrium solutions. Given the outstanding interest shown recently in the ag-
gregation model on Rn, we hope to have set up the stage for further studies on
swarming and self-collective behaviour on general manifolds, opening new perspec-
tives and motivating applied mathematicians to expand the research on this class
of models to novel applications.

We finally note that the continuum model (1) has an immediate discrete/ODE
analogue, in which one considers the time evolution of a fixed number of individ-
uals/particles on a manifold. While the discrete model is used in this paper only
for numerical purposes (Sections 3.3 and 4.3), it has an interest in its own (e.g.,
for applications in biology or robotics). Specifically, equilibria of constant densi-
ties, as achieved in this paper, translate in the discrete setup to agents covering
uniformly (with respect to the metric) a certain space modelled as a Riemannian
manifold. This relates to the coverage problem in robotics, where the goal is to
have a group of robots well-distributed over a region/area, so that it achieves an
optimal coverage needed for surveillance/tracking. Such configurations are referred
to as balanced or anti-consensus in the control literature [49]; see also [24] for a
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recent survey on coordinated control of robot systems. The ODE model has been
extensively employed for the aggregation model in Euclidean space, either as a nu-
merical tool [41, 53, 5, 32], or in rigorous analysis studies that establish the passage
from discrete to continuum by mean-field limits [21]. Consequently, we also expect
a rich use and interest for the discrete aggregation model on Riemannian manifolds,
as set up in the present paper.

The summary of the paper is as follows. In Section 2 we present some prelimi-
naries and provide motivation to the present research. In Section 3 we set up the
aggregation model on the two-dimensional sphere, with a certain choice of the in-
teraction potential, and investigate the long-time behaviour of solutions. A similar
study is done in Section 4 for the model on the two-dimensional hyperbolic space.
In Section 5 we showcase some numerical simulations with other interaction poten-
tials and discuss a new application, namely the aggregation model on the rotation
group SO(3).

2. Preliminaries and motivation. In this section we present briefly some stan-
dard concepts from differential geometry that will be used in the sequel, as well as
bring motivation to the present work.

Local coordinates. Consider a generic n-dimensional Riemannian manifold (M, g)
with local coordinates (x1, x2, . . . , xn) and local metric coefficients gij .

Expressed in the local basis
{

∂
∂x1 ,

∂
∂x2 , . . . ,

∂
∂xn

}
of the tangent space, the gradient

(with respect to the metric g) of a scalar function f on M is the tangent vector
∇Mf given by

∇Mf = gji
∂f

∂xj
∂

∂xi
, (4)

where gij are the entries of the metric’s inverse, and we used the Einstein convention
on index summation [42].

Given a tangent vector field F = F i ∂
∂xi on M , its divergence ∇M · F is given in

local coordinates by

∇M · F =
1√
|g|

∂

∂xi

(√
|g|F i

)
, (5)

where |g| denotes the determinant of the metric.
By combining (4) and (5) one then finds the Laplace-Beltrami operator ∆M in

local coordinates:

∆Mf =
1√
|g|

∂

∂xi

(√
|g| gji ∂f

∂xj

)
. (6)

Aside from the operators above, we will also use the representation in local
coordinates of the canonical volume form µ on (M, g) [1]:

µ =
√
|g| dx1 ∧ · · · ∧ dxn. (7)

Continuity equation on Riemannian manifolds. As discussed in [1, Chapter
8.2], the continuity equation (1) posed on Riemannian manifolds has the following
interpretation.

Consider the flow Φt : M →M on M generated by the vector field v, that is:

dΦt(α)

dt
= v(Φt(α), t). (8)



SELF-ORGANIZATION ON RIEMANNIAN MANIFOLDS 401

For a fixed time t, denote by ρt(x) = ρ(x, t), and also recall that µ represents the
canonical volume form on M . Then, the continuity equation (1) is equivalent to
the transport of the volume form ρtµ along the flow Φt, that is:

d

dt
Φ∗t (ρtµ) = 0, or Φ∗t (ρtµ) = ρ0µ.

Here, Φ∗t denotes the pull-back by Φt. Moreover, this is equivalent to:

Φ∗t (ρt) · J(Φt) = ρ0, (9)

where J(Φt) denotes the Jacobian of Φt (with respect to the canonical volume form
µ).

We also note that for a smooth, invertible flow map Φt, the Jacobian J(Φt)
satisfies (see [1, Proposition 7.1.10]):

Φ∗tµ = J(Φt)µ. (10)

Other properties of the model. Energy. The aggregation model (1) in Euclidean
spaces can be formulated as a gradient flow on the space of probability measures
with finite second moments, equipped with the 2-Wasserstein metric [4]. Such
interpretation exists as well for the model on Riemannian manifolds with Euclidean
pairwise interactions from [54]. The general model (1) also has an energy associated
to it, which decays with time. Indeed, define:

E[ρ] =
1

2

∫∫
M×M

K(x,y)ρ(x)ρ(y) dµ(x)dµ(y). (11)

By formally computing the evolution of the energy in time, we find:

dE

dt
= −

∫
M

∇M · (ρv)K ∗ ρ(x)dµ(x)

= −
∫
M

ρ(x) g(v,v) dµ(x) ≤ 0. (12)

For the first equal sign in the derivation above we used the symmetry of the potential
and equations (1) and (2). For the second equal sign we used the formula [1,
Proposition 6.5.17]:

∇M · (ρv)K ∗ ρ = ∇M · (ρK ∗ ρv)−∇ρv(K ∗ ρ),

where ∇ρv(K ∗ρ) denotes the covariant derivative of the scalar function K ∗ρ along
the vector field ρv. Integrating the equation above over M , by divergence theorem
(either assuming that M has no boundary or that M is non-compact, but density
vanishes at infinity) the first term in the right-hand-side yields zero. Then, (12)
follows from ∇ρv(K ∗ ρ) = ρ∇v(K ∗ ρ) (linearity of the covariant derivative) and
the definition of gradient on M by which:

∇v(K ∗ ρ) = g(∇MK ∗ ρ︸ ︷︷ ︸
=−v

,v).

Though we do not make any further energy considerations in this work, we
believe that there is a rich potential for applications of the theory on gradient flows
as developed in [4, 48] to the model investigated here. In addition, the study of
equilibria of model (1) as minimizers of energy E seems a very interesting direction
to pursue as well. This approach has been proven very successful for the model in
Rn [22, 50, 15, 5].



402 RAZVAN C. FETECAU AND BERIL ZHANG

Centre of mass. An important property of model (1) in Euclidean space Rn is the
conservation of the centre of mass. This can be derived easily as follows: multiply
equation (1) by x and integrate over Rn, then use integration by parts and the
symmetry of K to conclude that

∫
Rn ρ(x)dx remains constant in time.

In the context of Riemannian manifolds, as a generalization of the usual centre
of mass in Rn, we consider the L2 Riemannian centre of mass (also known as
the Karcher mean) [39, 2]. The L2 Riemannian centre of mass (simply referred
throughout as the Riemannian centre of mass) of a subset A ⊂M is a minimizer in
M of the function

f(x) =
1

2

∫
A

d2(x,y)dµ(y).

One can check indeed that for M = Rn, f has a unique minimizer which coincides
with the usual centre of mass of set A. For general manifolds, existence and unique-
ness of the Riemannian centre of mass, along with numerical methods for finding
it, are delicate issues [2, 3].

We make the important observation here that model (1) does not necessarily
conserve the Riemannian centre of mass. Explaining this fact in detail would be an
unnecessary detour for the purpose of this paper. To give some intuition on why
such result is not expected to hold in general however, we point our that in Rn, by
symmetry of K (see (3), which in Rn it amounts to K(x,y) = K(|x− y|)), ∇K is
antisymmetric in x, y, i.e., ∇xK(x,y) = −∇yK(x,y). This property is used in an
essential way to show conservation of centre of mass in Rn. On the other hand, such
a property would not even make immediate sense on general Riemannian manifolds,
as the manifold gradients with respect to x and y lie in tangent spaces at different
points (∇M,xK(x,y) ∈ TxM and ∇M,yK(x,y) ∈ TyM). The lack of conservation
of centre of mass brings an additional challenge for analytical investigations of model
(1). We return to this point at the end of Section 4.

The aggregation model in Euclidean space. To motivate and put the present
work in context, we present first some key ideas and calculations for the aggregation
model in Euclidean space, that is, model (1) set up on M = Rn endowed with the
standard Euclidean metric. We refer here to the research in [32, 31], where one of
the main goals was to design interaction potentials for the aggregation model in Rn
that yield equilibrium states which are biologically relevant and at the same time,
are simple enough to be investigated analytically.

Of particular importance in [32] is an attractive-repulsive interaction potential
that yields equilibria of constant densities and compact support. Specifically, this
potential consists of Newtonian repulsion and quadratic attraction, which in two
dimensions (n = 2) it amounts to:

K(x,x′) = G(x;x′) +
1

2
|x− x′|2, (13)

where G(x;x′) denotes the Green’s function for the negative Laplacian in R2:

G(x;x′) = − 1

2π
log |x− x′|. (14)

Note that
∆K(x,x′) = −δx′ + 2, (15)

and hence, from (1b),
∇ · v = −∆K ∗ ρ

= ρ− 2m,
(16)
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where m is the (constant) total mass. The key conclusion from (16) is that with
this choice of interaction potential, ∇ · v is a local quantity, despite the fact that v
itself is nonlocal, as given by (1b) through a convolution.

Expand now
∇ · (ρv) = v · ∇ρ+ ρ∇ · v, (17)

and write the continuity equation (1a) as

ρt + v · ∇ρ = −ρ∇ · v. (18)

The left-hand-side of (18) is the material derivative of the density ρ along the
flow generated by v. Hence, by (18) and (16), along the particle path Φt(α) that
originates from location α (see equation (8)), ρ(Φt(α), t) satisfies

D

Dt
ρ = −ρ(ρ− 2m). (19)

Note that the right-hand-side of (19) depends only on ρ evaluated along the carrying
characteristic Φt(α), and not on values of ρ along any other other characteristic.
Therefore, this ODE for ρ(Φt(α), t) can be investigated individually.

From (19) one infers immediately that the solution ρ(Φt(α), t) approaches the
value 2m as t → ∞. Consequently, equilibria of model (1) in R2, with potential
(13), have constant densities on their supports. In fact, it was shown in [32, 10]
that the constant density supported on a disk, i.e.,

ρ̄(x) =

{
2m if |x| < 1√

2π

0 otherwise ,
(20)

is a global attractor for solutions of model (1) with potential (13) in R2; see Figure
1 for a numerical simulation using a particle method.

The considerations above extend to the aggregation model set in Euclidean Rn of
arbitrary dimension. Indeed, one can construct an interaction potential that leads
to similar long-time behaviour of solutions (for G(x,x′) one would have to use the
fundamental solution of the negative Laplacian in Rn instead).

Motivation for the present work. The ideas above can be extended to model (1)
posed on arbitrary Riemannian manifolds (M, g). Indeed, similar to (15), consider
an interaction potential that satisfies

∆MK(x,x′) = −δx′ + C, (21)

where C > 0 a constant. Then, as in (16), we can calculate from (1b), (21), and
the conservation of mass:

∇M · v = ρ− Cm. (22)

On a Riemannian manifold (M, g), analogous to (17), we have

∇M · (ρv) = ∇vρ+ ρ∇M · v, (23)

where ∇vρ denotes the covariant derivative of ρ along the tangent vector field v.
Then, one can proceed as in the Euclidean case (see (18) and (19)), and get from
(1a), (22) and (23) an ODE for the evolution of ρ(Φt(α), t):

D

Dt
ρ = −ρ(ρ− Cm). (24)

Here, the left-hand-side denotes the material derivative of the density along the flow
Φt defined in (8):

D

Dt
ρ = ρt +∇vρ.
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(a) (b)

Figure 1. Numerical simulation with N = 100 particles for model
(1) in the Euclidean plane with interaction potential given by (13)-
(14). (a) Random initial configuration of particles. (b) Starting
from the configuration in (a), the model evolves into a uniform
particle distribution supported on a disk – see (20). The solid lines
represent the trajectories of the particles indicated by stars in figure
(a).

By (24), densities along particle paths approach the constant value Cm. There-
fore, as in the Euclidean case, equilibrium states have constant densities on their
supports. The primary purpose of the current paper is to apply the considera-
tions above for two specific geometries: the two-dimensional sphere in R3 and the
two-dimensional hyperbolic plane. In particular, we find interaction potentials that
satisfy (21) and then investigate the dynamics and equilibria of the aggregation
model (1) in these setups.

3. Aggregation model on the sphere. In this section we set up the aggregation
model (1) on the 2-dimensional sphere in R3. We then construct a certain interaction
potential and investigate analytically and numerically the long time behaviour of
the solutions.

3.1. Model setup. Let x = xe1 + ye2 + ze3 denote the position of a particle in
R3, where {e1, e2, e3} is the standard orthonormal Cartesian basis.

Consider the unit sphere S in R3, parametrized by spherical coordinates (θ, φ):

x = sin θ cosφ, y = sin θ sinφ, z = cos θ, (25)

where θ ∈ [0, π] is the angle from the positive z-axis, and φ ∈ [0, 2π) denotes the
polar angle in the xy-plane.

The tangent vectors at (θ, φ) on S are

xθ = cos θ cosφ e1 + cos θ sinφ e2 − sin θ e3,

xφ = − sin θ sinφ e1 + sin θ cosφ e2,
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and the first fundamental form (the metric) is given by:

g11 = 1, g12 = 0, g22 = sin2 θ. (26)

The metric matrix has determinant |g| = sin2 θ and its inverse has entries:

g11 = 1, g12 = 0, g22 =
1

sin2 θ
. (27)

Gradient and Laplace-Beltrami operator on sphere. For a scalar function f
on the sphere, its surface gradient is given by (see (4)):

∇Sf =
∂f

∂θ
xθ +

1

sin2 θ

∂f

∂φ
xφ. (28)

Also, by (6), we have the expression of the Laplace-Beltrami operator in spherical
coordinates:

∆Sf =
1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂φ2
. (29)

Choice of interaction potential. We look for an interaction potential on the
sphere that satisfies (see (21)):

∆SK(x,x′) = −δx′ + C, (30)

where ∆S is the Laplace-Beltrami operator given by (29), and C > 0 a constant.
We remark from the start that since the sphere is a closed manifold, the constant
C cannot be arbitrary; by the solvability condition for (30), C = 1

4π .
Based on the observation above, we choose K to be the Green’s function in the

generalized sense of ∆S [40], i.e., we set

K(x,x′) = GS(x;x′), (31)

where

GS(x;x′) = − 1

2π
log sin

(
d(x,x′)

2

)
. (32)

Here, d(x,x′) denotes the spherical distance between the points x and x′. It is a
simple exercise to check indeed that GS satisfies:

∆S GS(x;x′) = −δx′ +
1

4π
. (33)

In local coordinates (θ, φ), (θ′, φ′) (corresponding to x and x′, respectively), the
spherical distance is given by the law of cosines on sphere:

cos d(x,x′) = cos θ cos θ′ + sin θ sin θ′ cos (φ− φ′). (34)

Also, using local coordinates in (2) we have:

K ∗ ρ(θ, φ) =

∫ 2π

0

∫ π

0

K(θ, φ, θ′, φ′)ρ(θ′, φ′) sin θ′dθ′dφ′, (35)

where by an abuse of notation, we used K(θ, φ, θ′, φ′) for K(x,x′).
The interaction potential K is purely repulsive. Indeed, since K(x,x′) only

depends on the geodesic distance between the points, it is enough to take x′ as the
North pole of the sphere ((0, 0) in local coordinates). Then, d(x,x′) = θ and by
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(1b), (28) and the choice of K in (31)-(32), upon interacting with the North pole,
the point x moves in the direction

−∇SK(θ, φ, 0, 0) =
1

4π
cotan

(
θ

2

)
︸ ︷︷ ︸
>0 (repulsion)

xθ. (36)

Hence, all points on S sense a repelling force (except the South pole for which the
expression above vanishes) – see Figure 2(a) for an illustration.

North Pole

Repulsion

(a) (b)

Figure 2. (a) The interaction potential (31) on S is purely repul-
sive. The figure indicates how a generic point senses a repelling
force from the North pole – see (36). (b) The interaction potential
(58) on H is attractive-repulsive, as the two terms in the right-
hand-side of (58) have competing effects. Shown in the figure is a
generic point interacting with the vertex of the hyperboloid – see
(60).

3.2. Asymptotic convergence to equilibrium. For simplicity, set the total
mass m = 1. From (1b), (31), (33) and the conservation of mass, we find (see
also (22)):

∇S · v = ρ− 1

4π
. (37)

Hence, along the flow Φt generated by the vector field v on S, the density
ρ(Φt(α), t) satisfies (see (24)):

D

Dt
ρ = −ρ

(
ρ− 1

4π

)
. (38)

As noted above, along particle paths, densities ρ(Φt(α), t) approach a constant
value (here, the constant density at equilibrium is 1

4π ). The ODE (38) can be solved
exactly in fact, with solution:

ρ(Φt(α), t) =
1

4π +
(

1
ρ0(α) − 4π

)
e−

t
4π

, (39)

where ρ0 is the initial density.
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Also, from (9) and (39), one can find an exact explicit expression for the Jacobian
of the flow map:

J(α, t) = 4πρ0(α) + (1− 4πρ0(α)) e−
t
4π , (40)

where for notational convenience we have denoted

J(α, t) := J(Φt)(α). (41)

Note that

J(α, t) > 0 for all t,

guaranteeing that the particle map is invertible for as long as it exists.

Theorem 3.1 (Global attractor for sphere). Consider model (1) set up on the
sphere S, with the interaction potential K given by (31)-(32). Assume that the
model has a global in time C1 solution ρ(x, t) and that the flow map Φt : S → S is
C1 and invertible for all t > 0. Then, solutions ρ(x, t) approach asymptotically, as
t→∞, a constant equilibrium density supported over the entire sphere.

Proof. The proof is essentially provided by the considerations above. From (38) and
(39), along particle paths that originate from the support of ρ0 (i.e., ρ0(α) 6= 0),
one has

lim
t→∞

ρ(Φt(α), t) =
1

4π
.

Consequently, equilibria must have constant density 1
4π on their support. And since

the total mass m = 1 is conserved through the time evolution, then necessarily the
support of the equilibrium state must be the entire sphere (up to a zero measure
set). This shows that

ρ̄S(x) =
1

4π
for all x ∈ S, (42)

is a global attractor.

Symmetric initial density. When the initial density is symmetric with respect
to rotations about a North-South axis, we can find explicit expressions for the
evolution of the particle paths, and hence, show directly the result in Theorem 3.1.
While the calculation is interesting in itself, it is key to investigating attractors on
the hyperbolic plane (Section 4.2).

For simplicity, assume the initial density is symmetric with respect to rotations
about the z-axis. In spherical coordinates, this amounts to considering an initial
density ρ0 that depends only on θ, but not on φ; by an abuse of notation we will
denote ρ0(α) by ρ0(θ). Note that a symmetric initial density results in a symmetric
solution for all times. Indeed, for the initial density ρ0(θ), evaluate the velocity at
a generic point (θ, φ) using (1b) and (35). One finds that the velocity only depends
on θ and also, that it points in the direction xθ, i.e., the point moves along the
meridian φ = const. The same argument applies to a symmetric density at an
arbitrary time instance, hence the symmetry is preserved through time evolution.

Note that in spherical coordinates (see (7)), one has

µ = sin θ dθ ∧ dφ. (43)

By symmetry, the flow map in local coordinates takes a point α ∈ S of coordinates
(θ, φ) into Φt(α) ∈ S of coordinates (λ(θ, t), φ), that is, the coordinate φ remains
constant and the coordinate θ maps into λ(θ, t), for some function λ.
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Then, by (10) and (43) (see also notation (41)), we find in local coordinates that:

sin (λ(θ, t))λθ(θ, t) = J(α, t) sin θ. (44)

Note that, as expected, the Jacobian depends only on θ and not on φ, as the latter
coordinate remains constant along the flow. Now, we get from (40) and (44) the
following differential equation for λ(θ, t):

sin (λ(θ, t))λθ(θ, t) =
(

4πρ0(θ) + (1− 4πρ0(θ)) e−
t
4π

)
sin θ.

The ODE above can be solved by elementary methods. We find:

cos(λ(θ, t)) = 1− 4π

∫ θ

0

ρ0(ξ) sin ξ dξ − e− t
4π

∫ θ

0

(1− 4πρ0(ξ)) sin ξ dξ, (45)

where we used the fact that by symmetry, the North pole (θ = 0) remains fixed
(i.e., λ(0, t) = 0 for all t). Equation (45) provides an exact explicit expression for
the flow map (θ, φ)→ (λ(θ, t), φ) in spherical coordinates.

To find the asymptotic behaviour of the particle trajectories, one can send t→∞
in equation (45). We find:

cos Λθ = 1− 4π

∫ θ

0

ρ0(ξ) sin ξ dξ. (46)

where
Λθ = lim

t→∞
λ(θ, t).

Note that the (conserved) unit mass can be written in spherical coordinates as:

1 =

∫ 2π

0

∫ π

0

ρ0(θ) sin θ dθdφ. (47)

Now consider a symmetric domain θ0 ≤ θ ≤ θ1 that contains the support of ρ0.
Then, for any particle trajectory that originates from θ < θ0 (outside the support
of ρ0), we have by (46) that Λθ = 0. In other words, all trajectories starting from
θ < θ0 approach the North pole as t → ∞. Similarly, for any particle trajectory
that originates from θ > θ1 (also outside the initial support), one finds by (46) and
(47) that Λθ = π, so the trajectory approaches the South pole as t → ∞. On the
other hand, by (46), Λθ is monotonic and continuous in θ, so trajectories starting
from inside the initial support will spread over the entire sphere, as expected by
the result in Theorem 3.1 – see Figure 3 for a numerical illustration using a particle
method.

Remark 1. The considerations above hold for initial densities that are symmetric
with respect to rotations about any North-South axis of the sphere. The same exact
expressions of the particle trajectories hold, upon a rotation of the coordinate axes.

3.3. Numerical results. We will use the discrete particle system associated to the
macroscopic model (1). Set the total mass m = 1 and consider N particles of equal
mass (so each particle has mass 1

N ). Let xi(t) represent the location in R3 of the
i-th particle. Equation (1b) can be written in discrete form to express the velocity
of particle xi in terms of the locations xj (j 6= i) of the other particles. Hence, one
arrives at the discrete particle system:

dxi
dt

= − 1

N

N∑
j=1
j 6=i

∇S,iK(xi,xj), i = 1, . . . , N. (48)
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(a) (b)

Figure 3. Numerical simulation with N = 100 particles for
model (1) on S with interaction potential given by (31)-(32). (a)
Symmetric initial configuration on S, with θ coordinates generated
randomly in the interval

(
π
8 ,

3π
8

)
. (b) The configuration remains

symmetric for all times and evolves into a uniform particle distri-
bution supported over the entire sphere – see (42). The solid lines
represent the trajectories of the particles indicated by stars in figure
(a).

In Euclidean settings, the rigorous mean-field limit of the particle system (48)
was established in [21]. Specifically, it was shown that the empirical distribution

associated to (48), i.e., µN (t) = 1
N

∑N
i=1 δxi(t), converges weak-∗ as measures to a

weak solution ρ(t) of the macroscopic model (1). The result holds for a general class
of potentials, including repulsive-attractive potentials that have a (strictly better
than Newtonian) singularity at origin.

We write both sides of (48) in the local spherical basis at xi. By chain rule, the
left-hand-side can be expanded as:

dxi
dt

=
∂xi
∂θi

dθi
dt

+
∂xi
∂φi

dφi
dt
,

while for the right-hand-side we use (28) to get:

∇S,iK(xi,xj) =
∂K

∂θi

∂xi
∂θi

+
1

sin2 θi

∂K

∂φi

∂xi
∂φi

.

By matching the coefficients on each side, we obtain the following ODE system for
the spherical coordinates:

dθi
dt

= − 1

N

N∑
j=1
j 6=i

∂K

∂θi
(θi, φi, θj , φj), i = 1, . . . , N

dφi
dt

= − 1

N

N∑
j=1
j 6=i

1

sin2 θi

∂K

∂φi
(θi, φi, θj , φj), i = 1, . . . , N.

(49)

The results presented below are obtained by solving numerically the particle
system (49) with the classical (4th order) Runge-Kutta method. We note that the
particle method is very suitable here, as it complements the Lagrangian approach
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from Section 3.2. Simulating the discrete system is in fact the main numerical tool
used for the model in Rn.

Numerical simulations on sphere. We use the particle method to confirm
the theoretical findings from Section 3.2. First, we consider an initial configuration
which is symmetric about the z-axis (Figure 3(a)). To generate this initial density,
we first placed particles randomly along a given meridian (φ = const., π8 < θ < 3π

8 ),
and then rotated the configuration about the z-axis. We find indeed that particles
evolve along meridians (see the trajectories of the particles indicated by stars) into
a uniform particle distribution supported over the entire sphere.

The equilibrium (42) is a global attractor (Theorem 3.1). Figure 4 shows a nu-
merical validation of this result: a random initial particle distribution (Figure 4(a))
evolves into the expected equilibrium state (Figure 4(b)). The θ and φ coordi-
nates of the initial configuration were drawn randomly from the intervals

(
π
8 ,

3π
8

)
and

(
0, π2

)
, respectively. The solid lines in Figure 4(b) represent several individual

trajectories, corresponding to the particles indicated by stars.

(a) (b)

Figure 4. Numerical simulation with N = 100 particles for model
(1) on S with interaction potential given by (31)-(32). (a) Random
initial configuration on S, with coordinates θ and φ generated ran-
domly in

(
π
8 ,

3π
8

)
and

(
0, π2

)
, respectively. (b) The configuration

in (a) evolves into a uniform particle distribution supported over
the entire sphere – see Theorem 3.1. The solid lines represent the
trajectories of the particles indicated by stars in figure (a).

4. The aggregation model on the hyperbolic space. In this section we set up
the aggregation model on the 2-dimensional hyperbolic space and investigate the
dynamics of its solutions for interaction potentials that lead to equilibria of constant
densities.

4.1. Model setup. We use the hyperboloid model of the two dimensional hy-
perbolic space [16]. Specifically, we consider the upper sheet of the two-sheeted
hyperboloid:

H = {(x, y, z) ∈ R3 | x2 + y2 − z2 = −1 and z > 0},
embedded in R3 endowed with the Minkowski inner product

〈x,x′〉 = xx′ + yy′ − zz′.
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Here, x = xe1 + ye2 + ze3 and x′ = x′e1 + y′e2 + z′e3.
The hyperboloid H (in the pseudo-Euclidean space R3) can be parametrized as:

x = sinh θ cosφ, y = sinh θ sinφ, z = cosh θ. (50)

where θ ∈ [0,∞) can be identified with the hyperbolic distance from the vertex of
the hyperboloid (i.e., point (0,0,1)) and φ ∈ [0, 2π) denotes the polar angle in the
xy-plane.

The tangent vectors at (θ, φ) on H are

xθ = cosh θ cosφ e1 + cosh θ sinφ e2 + sinh θ e3,

xφ = − sinh θ sinφ e1 + sinh θ cosφ e2,

and the metric coefficients are given by:

g11 = 1, g12 = 0, g22 = sinh2 θ. (51)

The determinant of the metric is |g| = sinh2 θ and its inverse given by:

g11 = 1, g12 = 0, g22 =
1

sinh2 θ
. (52)

The hyperbolic distance d(x,x′) between two points x and x′ on H, of local
coordinates (θ, φ) and (θ′, φ′), respectively, can be found from the hyperbolic law
of cosines:

cosh d(x,x′) = cosh θ cosh θ′ − sinh θ sinh θ′ cos (φ− φ′). (53)

Gradient and Laplace-Beltrami operators on H. From (4) and (6) we find:

∇Hf =
∂f

∂θ
xθ +

1

sinh2 θ

∂f

∂φ
xφ, (54)

and

∆Hf =
1

sinh θ

∂

∂θ

(
sinh θ

∂f

∂θ

)
+

1

sinh2 θ

∂2f

∂φ2
. (55)

Choice of interaction potential. The Green’s function of the negative Laplacian
on H is given by (see [40]):

GH(x;x′) = − 1

2π
log tanh

(
d(x,x′)

2

)
. (56)

Indeed, using (55) and (53), one can check that −∆HG(x;x′) = δx′ holds in the
sense of distributions.

Motivated by the considerations made in Section 2, we look now for a function
with positive constant Laplacian. By elementary methods (using (55)), one finds
that

A(θ) = 2 log cosh

(
θ

2

)
(57)

satisfies

∆HA(θ) = 1.

Working in more generality, and using the hyperbolic distance between points, it
also holds that:

∆HA(d(x,x′)) = 1.

Consequently, we choose the interaction potential as

K(x,x′) = GH(x;x′) +A(d(x,x′)), (58)
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which by the considerations above satisfies

∆HK(x,x′) = −δx′ + 1. (59)

Remark 2. We note that one can multiply the function A by any positive constant
and reach a model with similar properties. Indeed, the interaction potential

K(x,x′) = GH(x;x′) + C ·A(d(x,x′)),

satisfies

∆HK(x,x′) = −δx′ + C.

Consequently, any C > 0 serves the purpose of the present study, which is to have
a model that evolves into an equilibrium of constant density (the constant density
in this case would be Cm, see (24)).

Using local coordinates, (2) becomes

K ∗ ρ(θ, φ) =

∫ 2π

0

∫ ∞
0

K(θ, φ, θ′, φ′)ρ(θ′, φ′) sinh θ′dθ′dφ′,

where we abused notation and wrote K(θ, φ, θ′, φ′) for K(x,x′).
To determine the nature of the potential (58) we proceed as in the sphere case.

With no loss of generality, we take x′ to be the vertex of the hyperboloid (of local
coordinates (0, 0)) and x = (θ, φ) a generic point on H, so that d(x,x′) = θ. From
(1b), (54) and (58) (see also (56) and (57)), by interacting with the vertex, the
point x moves in the direction

−∇HK(θ, φ, 0, 0) =
1

2π

1

sinh θ︸ ︷︷ ︸
>0 (repulsion)

xθ − tanh
θ

2︸ ︷︷ ︸
<0 (attraction)

xθ. (60)

Specifically, the first term in the right-hand-side of (36), resulting from the Green’s
function component of K, is repulsive, while the second term, corresponding to
term A(θ) of K, is attractive – see Figure 2(b) for an illustration. Repulsion and
attraction balance each other at θ = cosh−1

(
1 + 1

2π

)
, while the net effect of the

two interactions is repulsive or attractive at distances θ smaller or larger than this
value, respectively (short range repulsion and long range attraction).

Remark 3. The attractive-repulsive character of the interactive potential (58)
mimics very well that of the interaction potential (13) from the Euclidean case.
Namely, it contains a repulsive component due to the Green’s function of the nega-
tive Laplacian (on H), and an attractive component that is smooth and unbounded
(growing at infinity). Remarkably, as shown next, this similar structure results in
similar long-time behaviours of solutions of the two models, that is, to approach
asymptotically equilibria of constant densities supported on geodesic disks.

4.2. Asymptotic convergence to equilibrium. Set the (conserved) total mass
m = 1. Similar to the Euclidean and the sphere cases, from (1b), (58), (59) and the
conservation of mass, we have (see (22)):

∇H · v = ρ− 1. (61)

Hence, along the flow Φt(α), the density ρ(Φt(α), t) evolves according to (see
(24)):

D

Dt
ρ = −ρ (ρ− 1) . (62)
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We conclude from (62) that densities ρ(Φt(α), t) approach the constant value 1
along particle trajectories, and consequently, the equilibrium is constant (= 1) on
its support.

As for the sphere, (62) can be solved exactly, for an initial density ρ0:

ρ(Φt(α), t) =
1

1 +
(

1
ρ0(α) − 1

)
e−t

. (63)

Also, from (9) and (63), we find the Jacobian of the flow map:

J(α, t) = ρ0(α) + (1− ρ0(α)) e−t, (64)

where we have used the notation (41). Note again that J(α, t) > 0 for all times, so
the particle map is invertible for as long as it exists.

Regarding the equilibrium configuration, by conservation of mass, we can infer
immediately that the surface area of the equilibrium density is 1. However, (62) does
not provide any information about the shape of the equilibrium’s support. As op-
posed to the sphere case, where we showed the asymptotic convergence for arbitrary
initial densities (Theorem 3.1), for the hyperboloid we will only prove asymptotic
convergence for symmetric initial data. The result is the following theorem.

Theorem 4.1 (Attractor for hyperbolic plane: symmetric initial density). Consider
model (1) on H, with the interaction potential (58). Take a compactly supported
initial density ρ0 on H that is symmetric1 about the vertex of the hyperboloid, and
assume that model (1) with this initial data has a global in time C1 solution ρ(x, t),
with a flow map Φt : H → H that is C1 and invertible for all t > 0. Then, ρ(x, t)
approaches asymptotically, as t→∞, a constant equilibrium density supported over
a geodesic disk centred at the vertex.

Proof. We follow very similar considerations as in Section 3.2. The flow map Φt :
H → H (assumed to be smooth and invertible) has a Jacobian J(Φt) that satisfies
(10) [1, Proposition 7.1.10]. Here, µ represents the canonical volume form on H
which in local coordinates (50) is given by:

µ = sinh θ dθ ∧ dφ. (65)

Using an argument similar to that for the sphere, one infers that an initial density
that is symmetric about the vertex results in a symmetric solution for all times (as
points move along meridians with velocities which only depend on their θ coordi-
nate). Hence, the flow map in local coordinates takes a point α ∈ H of coordinates
(θ, φ) into Φt(α) ∈ H of coordinates (λ(θ, t), φ), for some function λ. Following
exactly the same steps as in Section 3.2, we find from (10) and (65):

sinh (λ(θ, t))λθ(θ, t) = J(α, t) sinh θ, (66)

and further, by using (64), we get a differential equation for λ:

sinh (λ(θ, t))λθ(θ, t) =
(
ρ0(θ) + (1− ρ0(θ)) e−t

)
sinh θ. (67)

Note that in (67) we abused notation and wrote (due to symmetry of initial data)
ρ0(θ) for ρ0(α). The left-hand-side in (67) is a total derivative. Upon integration,
we find:

cosh(λ(θ, t)) = 1 +

∫ θ

0

ρ0(ξ) sinh ξ dξ + e−t
∫ θ

0

(1− ρ0(ξ)) sinh ξ dξ, (68)

1We call a density symmetric about a point if it is constant on geodesic circles centred at that
point.
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where we used the symmetry of the flow, by which the vertex of the hyperboloid
(θ = 0) remains fixed (i.e., λ(0, t) = 0 for all t). Equation (68) provides an exact
explicit expression for the flow map (θ, φ)→ (λ(θ, t), φ).

For the asymptotic behaviour we pass t→∞ in (68). We find:

coshRθ = 1 +

∫ θ

0

ρ0(ξ) sinh ξ dξ. (69)

where

Rθ = lim
t→∞

λ(θ, t).

Recall that we have set the total mass to be 1, which in local coordinates yields:

1 =

∫ 2π

0

∫ π

0

ρ0(θ) sinh θ dθdφ. (70)

The initial density was assumed of compact support, so consider θ0 > 0 such
that the support of ρ0 is contained in 0 ≤ θ ≤ θ0. Then, for any particle trajectory
that originates from θ > θ0, by (69) and (70), we infer that Rθ = R, where

R = cosh−1
(

1 +
1

2π

)
. (71)

By elementary geometric considerations [16], R represents the radius of the geodesic
disk of unit area centred at the vertex of the hyperboloid. Hence, all trajectories
starting from θ > θ0 approach the geodesic circle of radius R as t→∞.

Finally, by (69), Rθ is monotonic and continuous in θ, so trajectories starting
from inside θ < θ0 end up inside the geodesic circle of radius R. Combining these
facts with the conservation of mass and the fact that ρ→ 1 along all particle paths
as t→∞, we infer that symmetric solutions of model (1) approach asymptotically
an equilibrium of constant density (= 1) supported on the geodesic disk of radius
R centred at the vertex. That is, initial densities that are symmetric about the
vertex, are globally attracted to:

ρ̄H(x) =

{
1 if θ < R

0 otherwise,
(72)

where x = (θ, φ) and R is given by (71) – see Figure 5 for a numerical illustration
using a particle method.

Remark 4. Theorem 4.1 holds more generally, for initial densities that are sym-
metric with respect to an arbitrary point on H. Since the interaction potential (and
consequently, the interaction forces) only depend on the geodesic distance between
points, by symmetry, particles flow along geodesic rays through the symmetry point.
The exact expressions for the particle paths, as well as the considerations on the
asymptotic behaviour could be then adapted to this more general context.

4.3. Numerical results. We use the particle method detailed in Section 3.3.
Specifically, we consider N particles xi on H and evolve them according to the
discrete model

dxi
dt

= − 1

N

N∑
j=1
j 6=i

∇H,iK(xi,xj), i = 1, . . . , N. (73)
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In local coordinates (see the derivation of system (49) for the sphere), this amounts
to solving:

dθi
dt

= − 1

N

N∑
j=1
j 6=i

∂K

∂θi
(θi, φi, θj , φj), i = 1, . . . , N

dφi
dt

= − 1

N

N∑
j=1
j 6=i

1

sinh2 θi

∂K

∂φi
(θi, φi, θj , φj), i = 1, . . . , N.

(74)

Again, the particle method is very appropriate for numerical simulations, given
the method of characteristics used in the theoretical results (Section 4.2). The
results presented below correspond to numerical solutions of (74) using the classical
Runge-Kutta method.

Symmetric initial data. We first validate numerically Theorem 4.1 and consider
an initial particle configuration that is symmetric about the vertex (Figure 5(a)).
This initial configuration was generated by first placing particles randomly along a
given meridian (φ = const., 0.2 < θ < 1.25), and then rotating the configuration
about the z-axis. We find that particles evolve along meridians (see the trajectories
of the particles indicated by stars) into the symmetric configuration shown in Figure
5(b); see also the zoom-in plot in Figure 5(c). The distance from the vertex of the
hyperboloid to the particles on the equilibrium’s boundary is 0.5742 which is within
3% of the geodesic radius computed in (71) (R ≈ 0.5570).

We have also performed numerical experiments with larger numbers of particles,
to confirm that the particle method gives better numerical approximations of the
continuum equilibrium as the number of particles increases. Indeed, with N = 400
and N = 900 particles we found symmetric equilibria supported in geodesic disks
of radii 0.5692 and 0.5661, respectively, which are within 2.1% and 1.6% of the
continuum geodesic radius in (71).

Arbitrary initial data. Our numerical simulations have indicated that all (not
just the symmetric) solutions to model (1) on H, with interaction potential given by
(58), approach asymptotically constant equilibrium densities supported on geodesic
disks of radius R given by (71). For the model in Euclidean space the analogous
result was illustrated and proved in [32, 10]. To have such a result hold for the model
on the hyperbolic plane suggests that the construction of the interaction potential
in (58) can be potentially extended, with similar outcomes, to other non-compact
manifolds.

Figure 6 corresponds to a numerical simulation with N = 100 particles initiated
at a randomly-generated configuration on H, with the θ and φ coordinates of the
particles drawn randomly in the intervals (0.3, 2.3) and (0, π/2), respectively. Figure
6(a) shows the initial configuration and Figure 6(b) shows the equilibrium state,
along with some particle trajectories (see also the zoom-in plot in Figure 6(c)). The
equilibrium density is constant within its support (see (62) and (63)), which for a
particle simulation translates into a uniform distribution (with respect to the metric
on H). We found very similar results with larger number of particles and different
initialization procedures. Equilibria obtained from simulations with N = 400 and
N = 900 will be discussed below.

Next we provide evidence that the support of the equilibrium is a geodesic disk.
We illustrate the procedure for the equilibrium in Figure 6(c). To check for the
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(a) (b)
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Figure 5. Numerical simulation with N = 100 particles for
model (1) on H with the interaction potential (58) (see also (56)
and (57)). (a) Symmetric (about the vertex) initial configura-
tion on H, with θ coordinates generated randomly in the interval
(0.2, 1.25). (b) The configuration remains symmetric for all times
and evolves into a uniform (with respect to the metric on H) parti-
cle distribution supported over a geodesic disk centred at the vertex
– see Theorem 4.1. The solid lines represent the trajectories of the
particles indicated by stars in figure (a). (c) Zoom-in of figure (b)
on the equilibrium configuration.

equilibrium’s shape, we calculate numerically the Riemannian centre of mass of the
equilibrium configuration. The Riemannian centre of mass is guaranteed to exist in
such case, given that H has negative curvature everywhere [2]. To locate the centre
of mass we use the intrinsic gradient descent algorithm investigated in [3]; recall that
the Riemannian centre of mass of a set of points on a manifold minimizes the sum
of squares of the geodesic distances to the data points, so using a gradient decent
method is very natural here. Figure 7(a) shows the centre of mass C (red diamond)
of the equilibrium configuration in Figure 6(c) computed with this method.

After we locate the particles on the equilibrium’s boundary (see filled blue circles
in Figure 7(a)) we compute the geodesic distances between the Riemannian centre
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of mass and the boundary points. We denote these distances by Ri (note that the
particles on the boundary have been relabelled so that they have consecutive in-
dices starting from 1) – see Figure 7(a) for an illustration. Figure 7(b) shows these
distances for three simulations. For the simulation with N = 100 discussed above,
there are 31 particles on the boundary. Their distances to the Riemannian centre of
mass of the equilibrium are shown in the figure as magenta circles connected by dot-
ted lines, where the thick dotted line represents their mean value. The mean value
is 0.5109 with a relative standard deviation of 0.55%. The blue circles connected by
dash-dotted lines correspond to a simulation with N = 400 particles (67 particles
on the equilibrium’s boundary). The mean value (thick dash-dotted line) is 0.5330
with a relative standard deviation of 0.47%. Finally, the red circles connected by
dashed lines represent the distances from the centre to the boundary points for a
simulation with N = 900 particles (98 of which on the boundary). Their mean
value (thick dashed line) is 0.5415 with a relative standard deviation of 0.20%.

The results presented in Figure 7 strongly suggest that the continuum equilibrium
is supported on a geodesic disk of radius R given by (71) (this value has been
indicated as a thick black solid line in the figure; recall R ≈ 0.5570). Indeed, as
the number of particles increases, not only that the mean value of the distances Ri
approach R, but also their relative standard deviation decreases. In other words, the
larger the number of particles, the closer the boundary of the particle equilibrium
is to a geodesic circle of radius R. Similar results were obtained with a variety of
initial configurations and different number of particles.

We conclude this section by posing the following conjecture: Geodesic disks
of constant density are global attractors for model (1) on H with the interaction
potential (58). Recall that the analogous statement holds for the model in Euclidean
space with potential (13) [32, 10]. One major obstacle for proving such a global
convergence result is that the aggregation model on manifolds (and in particular
on H) does not necessarily conserve the Riemannian centre of mass (see Section 2).
In Euclidean spaces the centre of mass is conserved and the general proof in [10]
relies fundamentally on this fact. Consequently, while the centre of the attracting
geodesic disk is a priori known in Euclidean spaces (it is the centre of mass of the
initial density), it is not known for the aggregation model on H. For this reason
the proof for global attractors in the plane does not immediately extend to H.

5. Other potentials and a new application. In this section we present numer-
ical results for the model on the hyperbolic plane using other interaction potentials.
We also present a completely new application, namely the aggregation model set
up on the rotation group SO(3).

5.1. Other interaction potentials. Potentials in power-law form have been fre-
quently considered in the literature on the aggregation model (1) in Euclidean spaces
[6, 31, 32, 41, 53]. In our context, by using the geodesic distance between points, a
power-law potential reads:

K(x,x′) = −1

p
d(x,x′)p +

1

q
d(x,x′)q, (75)

where the exponents p and q (with p < q) correspond to repulsive and attractive
interactions, respectively.

As shown in various works [31, 41, 53], the delicate balance between attraction
and repulsion often leads to complex equilibrium configurations, supported on sets of
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(a) (b)

(c)

Figure 6. Numerical simulation with N = 100 particles for model
(1) on H with the interaction potential (58) (see also (56) and (57)).
(a) Random initial configuration on H, with coordinates θ and φ
drawn randomly from intervals (0.3, 2.3) and (0, π/2), respectively.
(b) Equilibrium state corresponding to the initial configuration in
(a). The solid lines represent the trajectories of the particles in-
dicated by stars. (c) Zoom-in of the equilibrium state in figure
(b). Numerical investigations (see Figure 7) suggest that the equi-
librium configuration consists of a uniform (with respect to the
metric on H) particle distribution supported over a geodesic disk
of radius R (see (71)).

various dimensions. The existence and characterization of equilibria as minimizers
of the interaction energy has been an active research topic lately (existence was
investigated in [22, 50, 15], the dimensionality of local minimizers was studied in
[5]). Below, we consider the aggregation model (1) on the hyperbolic plane H and
demonstrate numerically that a variety of equilibria can also be obtained with a
power-law potential on such manifold.

Figure 8(a)-(c) shows three equilibria obtained numerically for model (1) on
H with interaction potential (75). The equilibria are of very different type and
dimension: (a) an equilibrium supported on an annular region, (b) concentration on
a geodesic circle (ring), and (c) delta accumulation on three points. We note that
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Figure 7. Numerical investigation of the equilibrium configura-
tions on H. (a) Boundary points (filled blue circles) along with
the Riemannian centre of mass (red diamond) of the equilibrium
state in Figure 6(c). (b) Distances from the Riemannian centre
of mass to the particles on the equilibrium’s support for 3 simula-
tions: N = 100, 400 and 900. Particles on the boundary have been
relabelled to have consecutive indices starting from 1. The dis-
tances are shown in circles (connected by dotted, dash-dotted and
dashed lines, respectively) and the corresponding thick lines repre-
sent their mean values. There are 31, 67 and 98 boundary points for
the 3 simulations, with mean distances to centre of 0.5109, 0.5330
and 0.5415, and relative standard deviations of 0.55%, 0.47% and
0.20%, respectively. The results strongly suggest that the contin-
uum equilibrium is supported on a geodesic disk of radius R given
by (71) (this value has been indicated as a thick solid line; R ≈
0.5570).

similar equilibria have been found for the aggregation model in Euclidean plane
with power-law interaction potentials [31, 41, 22, 5]. We also point out that to
establish whether certain boundaries/shapes consist of geodesic circles, we followed
a very similar procedure to that discussed in the previous section (see Figure 7).
Namely, we located the Riemannian centre of mass of the equilibrium, along with
the particles on the boundaries, and computed the mean distance (radius) from the
centre of mass to these particles. In all cases, including the simulations presented
below, the radii of these various circles had a relative standard deviation within 1%
(in most cases much smaller in fact).

Another class of interaction potentials which has been widely used in the litera-
ture on model (1) in Rn consists of (generalized) Morse-type potentials [18]:

K(x,x′) = V (d(x,x′))− CV (d(x,x′)/l), (76)

where
V (r) = −e− r

s

s , with s > 0. (77)

Here, C and l are positive constants, which control the relative size and range of
the repulsive interactions. In one dimension with s = 1, V (r) is a multiple of
the Green’s function of the differential operator ∂2r − Id. This property enables
explicit calculations of the equilibrium solutions by converting integral equations
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for equilibria into differential equations [7]. Potentials of form (76)-(77) have been
also used in other models for swarming and flocking [23].

The aggregation model (1) in the Euclidean plane with Morse-type interaction
potentials exhibits a wide variety of possible equilibria [18]. In Figure 8(d)-(f) we
showcase some equilibria obtained numerically for the model in the hyperbolic plane
with potential (76)-(77). We picked values of the parameters C, l and s that have
been used for the Euclidean model [18]. In each plot we observe mixed dimensional-
ity of the equilibrium’s support: (d) geodesic circle (ring) with a delta accumulation
at the centre, (e) concentration on a ring with a continuous density supported on
a concentric geodesic disk, (f) concentration on a ring with a continuous density
inside.

(a) (b) (c)

(d) (e) (f)

Figure 8. Numerical explorations of equilibria of model (1) on H
with the power-law interaction potential (75) (plots (a)-(c))) and
the Morse-type potential (76)-(77) (plots (d)-(f)). (a) p = 0.5,
q = 5. Equilibrium density supported on an annular region. (b)
p = 1, q = 8. Concentration on a geodesic circle (ring). (c) p = 6,
q = 7.5. Equilibrium consists of a delta accumulation on three
points. (d) C = 1.2, l = 0.75, s = 2. Equilibrium supported on a
geodesic circle with a delta accumulation at the centre. (e) C = 1.2,
l = 0.75, s = 1.8. Concentration on a ring with a continuous
density supported on a concentric interior disk. (f) C = 0.6, l =
0.5, s = 1.5. Concentration on a ring with a continuous density
inside.

A rigorous investigation of equilibria shown in Figure 8 is challenging. One
possible direction could be to study the stability of some of these equilibria (e.g., the
ring, the annular region), extending similar analyses in Euclidean spaces [41, 53, 6].
Also, the results in Figure 8 suggest that the dimensionality of the equilibria on H
relates to the strength of repulsion (value of the exponent p for potential (75)), as
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for the model in the Euclidean plane (see [5]). Investigating this connection further
is also an interesting future direction that can be pursued.

5.2. Aggregation model on the rotation group. Rotation group as a Riemann-
ian manifold. We present briefly the Riemannian structure on the 3D rotation group
SO(3), defined by

SO(3) = {R ∈ R3×3 : RTR = I, det(R) = 1}.
The tangent space to SO(3) at a rotation R ∈ SO(3) is given by

TRSO(3) = {RA : A ∈ so(3)},
where so(3) is the space of 3× 3 skew symmetric matrices. The Riemannian metric
on the tangent space TRSO(3) is given by:

g(W1,W2) =
1

2
〈W1,W2〉F ,

for any W1, W2 ∈ TRSO(3), where 〈·, ·〉F denotes the Frobenius inner product.
Any rotation R ∈ SO(3) can be identified via the exponential map with a pair

(θ,v) ∈ [0, π] × S2, where S2 denotes the unit sphere in R3. The pair (θ,v) is
referred to as the angle-axis representation of the rotation, where the unit vector v
indicates the axis of rotation and θ represents the angle of rotation (by the right-
hand rule) about the axis. The representation of R in terms of (θ,v) is given by
Rodrigues’s formula. To list it we need the following common notation:

v̂ =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 , (78)

for v̂ ∈ so(3) corresponding to v = (v1, v2, v3) ∈ R3.
Then, the angle-axis representation of a rotation R is:

R = exp(θv̂) = I + sin θ v̂ + (1− cos θ)v̂2, (79)

with v̂ given by (78).
The inverse of the representation (79), θv̂ = logR, is given explicitly by:

θ = acos

(
trR− 1

2

)
, v̂ =

1

2 sin θ
(R−RT ). (80)

Here, exp and log represent the matrix exponential and logarithm, respectively.
We also list here some standard facts about geodesics and the exponential map

on the rotation group. Given two rotation matrices R1, R2 ∈ SO(3), the shortest
path between R1 and R2 is along the geodesic curve Q : [0, 1]→ SO(3) given by:

Q(t) = R1 exp(t log(RT1 R2)). (81)

Note thatQ′(t) = Q(t) log(RT1 R2). From here, one infers easily that the Riemannian
distance on SO(3) between R1 and R2 is

d(R1, R2) = θ12, (82)

where θ12v̂12 = log(RT1 R2).
From (81) one finds explicitly the exponential map at R1:

expR1
: TR1SO(3)→ SO(3), expR1

(R1A) = R1 exp(A),

and its inverse:

exp−1R1
: SO(3)→ TR1SO(3), exp−1R1

(R2) = R1 log(RT1 R2). (83)
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We also note that, in particular, the formulas (79) and (80) can be expressed using
the exponential map at the identity I. Indeed,

R = expI(θv̂), θv̂ = exp−1I R.

Aggregation model on SO(3). We consider now the aggregation model on the
Riemannian manifold SO(3). For the purpose of numerical simulations, similar to
what we did in Sections 3.3 and 4.3 for the sphere and the hyperbolic plane, we
consider the evolution of N rotation matrices Ri(t) on SO(3), using a discrete form
of (1b). The discrete particle system on M = SO(3) (see also (48) and (73)) reads:

dRi
dt

= − 1

N

N∑
j=1
j 6=i

∇M,iK(Ri, Rj), i = 1, . . . , N. (84)

Note that in these considerations we may refer to a rotation matrix as “particle”, and
also use M to denote SO(3) when notations would become cumbersome otherwise.

Given that the interaction potential depends only on d(Ri, Rj), the distance in
SO(3) between Ri and Rj , one has:

∇M,iK(Ri, Rj) = K ′(d(Ri, Rj))∇M,i d(Ri, Rj)

= K ′(d(Ri, Rj))
− exp−1Ri Rj

d(Ri, Rj)
, (85)

where we used the explicit form of the gradient of the distance function in terms of
the exponential map [47].

By (82) and (83), one finds from (84) and (85) the following particle system:

dRi
dt

=
1

N

N∑
j=1
j 6=i

K ′(θij)Ri v̂ij , i = 1, . . . , N, (86)

where θijv̂ij = log(RTi Rj).
We solve numerically the ODE system (86) for the angle-axis representation

θiv̂i = logRi, i = 1, . . . , N , with the 4th order Runge-Kutta method. In Figure
9 we show results for several simulations using N = 100 particles and power-law
potentials. The rotation matrices Ri are plotted in angle-axis representation: the
angles θi are shown on the left and the unit vectors vi are shown on the right plots,
respectively.

For plots in Figure 9(a)-(b) the initial values for θi were drawn randomly in the
interval (0, π/2), while the unit vectors vi were generated in spherical coordinates,
with the polar angles drawn randomly in the interval (π/6, π/2) and the azimuthal
angles equispaced in (0, π/2). For this simulation we used an attractive-repulsive
power-law potential with p = 5 and q = 10 (see (75)). In the figure we show the
states at initial time and at time t = 40. At time t = 40 the configuration has
evolved into an aggregation of four points on SO(3) (see the red stars indicating
four values of θ and four locations on the unit sphere). Note that we sorted the
angles of the final state for a better visualization.

The simulation in Figure 9(c)-(d) is for a purely attractive interaction potential
in power-law form with q = 2 (see (75), but with no repulsion term). The initial
state of N rotation matrices was randomly generated across the entire space SO(3),
in the following sense: the angles θi were drawn randomly in the interval (0, π), and
the polar and the azimuthal angles of vi were drawn randomly in the intervals (0, π)
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and (0, 2π), respectively. In other words, all variables were drawn randomly from
within their full ranges. The final state is an aggregation in one point on SO(3) (see
the red stars indicating one value of θ and one unit vector), corresponding to a full
synchronization of the rotation matrices. Achieving consensus in a network of rigid-
bodies (modelled as a multi-agent system on SO(3)) is a very important problem in
the robotic control community [49, 51]. In future work we plan further investigations
of consensus on SO(3), hoping to provide new insights and perspectives (from a
dynamical systems approach) to this problem.
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Figure 9. Numerical investigations with power-law potentials for
the aggregation model on SO(3). The rotation matrices are plot-
ted in angle-axis representation: the angles are shown on the left
and the unit vectors are shown on the right plot, respectively. The
initial states have been randomly generated (see text for details).
The final states are marked by stars. (a)-(b) p = 5, q = 10. Aggre-
gation in four points on SO(3) (in plot (a) we reordered the angles
of the final state for a better visualization). (c)-(d) q = 2 and no
repulsive term. Aggregation in one point on SO(3). The solution
corresponds to a consensus in which all agents have synchronized
their states.
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In closing, we believe that the aggregation model on general manifolds that has
been proposed in this paper, the general construction of an interaction potential that
leads to constant density equilibria on the sphere and the hyperbolic plane (along
with the analytical considerations that can be made in such cases), as well as the
various numerical illustrations that demonstrated swarming with other interaction
potentials, will have set up a framework for and motivate further research and
developments on self-organization models and their applications.
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[19] J. A. Carrillo, D. Slepčev and L. Wu, Nonlocal-interaction equations on uniformly prox-regular

sets, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 1209–1247.
[20] J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space

and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217–263.

[21] J. A. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field
limit and Wasserstein distances, in Collective Dynamics from Bacteria to Crowds, vol. 553

of CISM Courses and Lect., Springer, Vienna, 2014, 1–46.

http://www.ams.org/mathscinet-getitem?mr=MR960687&return=pdf
http://dx.doi.org/10.1007/978-1-4612-1029-0
http://www.ams.org/mathscinet-getitem?mr=MR2736346&return=pdf
http://dx.doi.org/10.1090/S0002-9939-2010-10541-5
http://www.ams.org/mathscinet-getitem?mr=MR3057324&return=pdf
http://dx.doi.org/10.1137/12086282X
http://dx.doi.org/10.1137/12086282X
http://www.ams.org/mathscinet-getitem?mr=MR2129498&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3067832&return=pdf
http://dx.doi.org/10.1007/s00205-013-0644-6
http://dx.doi.org/10.1007/s00205-013-0644-6
http://www.ams.org/mathscinet-getitem?mr=MR3143991&return=pdf
http://dx.doi.org/10.1016/j.physd.2012.10.002
http://dx.doi.org/10.1016/j.physd.2012.10.002
http://www.ams.org/mathscinet-getitem?mr=MR2788924&return=pdf
http://dx.doi.org/10.1137/100804504
http://www.ams.org/mathscinet-getitem?mr=MR2480108&return=pdf
http://dx.doi.org/10.1088/0951-7715/22/3/009
http://dx.doi.org/10.1088/0951-7715/22/3/009
http://www.ams.org/mathscinet-getitem?mr=MR2328909&return=pdf
http://dx.doi.org/10.1007/s00220-007-0288-1
http://dx.doi.org/10.1007/s00220-007-0288-1
http://www.ams.org/mathscinet-getitem?mr=MR2974185&return=pdf
http://dx.doi.org/10.1142/S0218202511400057
http://dx.doi.org/10.1142/S0218202511400057
http://www.ams.org/mathscinet-getitem?mr=MR2743876&return=pdf
http://dx.doi.org/10.1002/cpa.20334
http://dx.doi.org/10.1002/cpa.20334
http://www.ams.org/mathscinet-getitem?mr=MR2208049&return=pdf
http://dx.doi.org/10.1016/j.jde.2005.07.025
http://dx.doi.org/10.1016/j.jde.2005.07.025
http://www.ams.org/mathscinet-getitem?mr=MR2448940&return=pdf
http://dx.doi.org/10.3934/nhm.2008.3.749
http://dx.doi.org/10.3934/nhm.2008.3.749
http://www.ams.org/mathscinet-getitem?mr=MR2343706&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3356997&return=pdf
http://dx.doi.org/10.1007/s00205-015-0852-3
http://dx.doi.org/10.1007/s00205-015-0852-3
http://www.ams.org/mathscinet-getitem?mr=MR1491098&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2769217&return=pdf
http://dx.doi.org/10.1215/00127094-2010-211
http://dx.doi.org/10.1215/00127094-2010-211
http://www.ams.org/mathscinet-getitem?mr=MR3251743&return=pdf
http://dx.doi.org/10.1017/S0956792514000126
http://www.ams.org/mathscinet-getitem?mr=MR3431251&return=pdf
http://dx.doi.org/10.3934/dcds.2016.36.1209
http://dx.doi.org/10.3934/dcds.2016.36.1209
http://www.ams.org/mathscinet-getitem?mr=MR2209130&return=pdf
http://dx.doi.org/10.1007/s00205-005-0386-1
http://dx.doi.org/10.1007/s00205-005-0386-1
http://www.ams.org/mathscinet-getitem?mr=MR3331178&return=pdf
http://dx.doi.org/10.1007/978-3-7091-1785-9_1
http://dx.doi.org/10.1007/978-3-7091-1785-9_1


SELF-ORGANIZATION ON RIEMANNIAN MANIFOLDS 425

[22] R. Choksi, R. C. Fetecau and I. Topaloglu, On minimizers of interaction functionals with
competing attractive and repulsive potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire,
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