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Abstract

We investigate a model for collective behaviour with intrinsic interactions on Riemannian
manifolds. We establish the well-posedness of measure solutions (defined via mass transport)
on sphere, as well as investigate the mean-field particle approximation. We study the long-time
behaviour of solutions to the model on sphere, where the primary goal is to establish sufficient
conditions for a consensus state to form asymptotically. Well-posedness of solutions and the
formation of consensus are also investigated for other manifolds (e.g., a hypercylinder).

Keywords: swarming on manifolds, intrinsic interactions, measure solutions, particle methods,
asymptotic consensus

1 Introduction

We consider a nonlocal aggregation model on a Riemannian manifold M that consists in the fol-
lowing evolution equation for a population density ρ on M :

∂tρ−∇M · (ρ∇MK ∗ ρ) = 0. (1)

Here, K : M×M → R is an interaction potential, which models social interactions such as attraction
and repulsion, and∇M · and∇M represent the manifold divergence and gradient, respectively. Also,
for a time-dependent measure ρt on M , the convolution K ∗ ρt is given by:

K ∗ ρt(x) =

∫
M
K(x, y) dρt(y).

In (1), we restrict ρt to be a probability measure on M for all t, i.e.,
∫
M dρt = 1 for all t.

There has been extensive research on model (1) in recent years. The model has many applica-
tions, in diverse areas such as swarming in biological groups [37], materials science and granular
media [14], self-assembly of nanoparticles [27], robotics and space missions [28], and opinion forma-
tion [38]. Indeed, the model can capture a wide variety of self-collective or swarm behaviours, such
as aggregations on disks, annuli, rings and soccer balls [29,43,44], making it very attractive for appli-
cations. At the same time, model (1) in Euclidean space (M = Rk) has been investigated thoroughly
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by PDE analysis. A partial list of issues addressed in analysis works include the well-posedness of
the initial-value problem [8,9,13,30], the long-time behaviour of its solutions [7,17–19,33], and the
minimizers for the associated interaction energy [4, 10,16,41].

While model (1) in Euclidean spaces has been well studied in the literature, there have been
far fewer works on the aggregation model posed on arbitrary surfaces or manifolds. In [15, 45],
the authors investigate the well-posedness of the aggregation model (1) on prox-regular or full-
dimensional subsets of Rk when interactions depend on the Euclidean distance in the ambient
space. Specifically, it is assumed there that the interaction potential K(x, y) is of the form K(x, y) =
K(|x − y|), where |x − y| denotes the Euclidean distance in Rk between points x and y on M . A
similar assumption is made on various recent works on collective dynamics on matrix manifolds
(e.g., orthogonal and unitary groups) [25, 26]. We will be referring to such models as models with
extrinsic interactions. Emergent behaviours of swarming models and Fokker–Planck-type dynamics
with extrinsic interactions on surfaces and manifolds have been investigated (both analytically and
numerically) in various papers in recent years; see for instance [2, 22,25,34,35].

In this paper we consider model (1) with an interaction potential of the form K(x, y) =
K(d(x, y)), where d(x, y) is the geodesic distance on M between x and y. In other words, we
consider model (1) with intrinsic interactions. Such model was proposed and investigated recently
in [20], where the authors demonstrate the emergent self-collective behaviour of its solutions on
sphere and hyperbolic plane. In particular, it is shown there that solutions can approach asymp-
totically a diverse set of steady states, that include constant density equilibria, concentrations on
geodesic circles, aggregations on geodesic disks and annular regions, and others. Intrinsic inter-
actions are motivated by applications of the model in engineering (robotics) [21, 28], specifically
when individual agents/robots are restricted by environment or mobility constraints to remain on
a certain manifold. In such applications, efficient swarming must consider inter-individual geodesic
distances, and hence, be modelled by intrinsic interactions [36,42]

We consider weak, measure-valued solutions to (1) defined in the mass transportation sense
[11]. Indeed, equation (1) is in the form of a continuity equation, and in geometric terms it
represents the transport of the measure ρ along the flow on M generated by the tangent vector
field v[ρ] = −∇MK ∗ ρ, which depends on ρ itself [3]. This general framework includes for instance
the case of an interacting particle system and hence it can be used to study particle approximations
and mean-field limits. With this interpretation of solutions, a first key goal of the present paper
is to establish the well-posedness of solutions to model (1) set up on a sphere (Section 3) and on
a hypercylinder (Section 5), the main results being stated in Theorems 3.6 and 5.1, respectively.
These are the first such results for model (1) with intrinsic interactions.

In working with intrinsic interactions we have to deal with the regularity of the distance function,
which is known to be smooth away from cut loci and the diagonal. For this reason we consider
interaction potentials that depend on the squared distance d(x, y)2 between points x and y on M
(to avoid singularities at x = y), and also restrict to subsets of the manifold for which no two points
are in the cut locus of each other (e.g., an open hemisphere). Note that by this restriction any
pair of points on the manifold can be connected by a unique minimizing geodesic. Intuitively, this
avoids situations where two interacting particles could be connected by more than one minimizing
geodesic and thus would not “know” which direction to follow (as for instance, two antipodal points
on a sphere).

A second goal of the paper is to investigate the emergence of asymptotic consensus in solutions
to model (1) with intrinsic interactions on sphere, on hypercylinder and, more generally, on certain
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product manifolds. Consensus (also referred to in the literature as synchronization or rendezvous)
corresponds to an asymptotic state of a delta aggregation in one single point on M . Achieving
consensus in a network of agents is a very important problem in robotic control [40], in particular
when the interactions among agents are intrinsic, as in our paper [36, 42]. Also, such asymptotic
states have been of central importance in the Kuramoto oscillator and related models [24, 25], as
well as in applications of the model to opinion formation [38]. In this paper we prove the formation
of consensus equilibria for the intrinsic model on sphere with attractive potentials, as well as
asymptotic consensus on certain product manifolds in the specific case of a quadratic interaction
potential. To the best of our knowledge, this is the first systematic study of asymptotic behaviour
of intrinsic models.

The summary of the paper is as follows. In Section 2 we present some preliminaries, in particular
the notion of solution, some useful results regarding Wasserstein distances, and the main assumption
on the interaction potential K. Section 3 is concerned with the well-posedness of solutions to model
(1) on sphere (the main result being given in Theorem 3.6), and their stability and mean-field
approximation. In Section 4 we investigate the asymptotic behaviour of solutions to model (1)
on sphere, specifically the formation of consensus equilibria in the continuum and discrete models
(Theorems 4.12 and 4.14). In Section 5 we consider other manifolds (e.g., a hypercylinder) for
which we investigate issues such as well-posedness and consensus formation. Finally, the Appendix
contains some fundamental concepts needed to support the work in the paper, such as general facts
on flows on manifolds and how they apply to an interaction velocity field.

2 Preliminaries and general considerations

Let M be a smooth, complete and connected k-dimensional Riemannian manifold, with intrinsic
distance d. We denote by 〈u, v〉x and ‖u‖x the tangent inner product and norm, respectively, for
u, v ∈ TxM and x ∈ M , where TxM stands for the tangent space of M at x. The tangent bundle
is denoted by TM . We emphasize that throughout this section the manifold M is not necessarily
embedded in Rk+1.

Unless otherwise mentioned, throughout this paper we use T ∈ (0,∞] to denote a generic final
time (usually related to existence of solutions) and U denotes a generic open subset of M .

2.1 Vector fields and flows on manifolds

Consider a time-dependent vector field X on U× [0, a), for some a ∈ (0,∞], that is, X : U× [0, a)→
TM with X(x, t) ∈ TxM for all (x, t) ∈ U × [0, a). We shall often use the Xt for X(·, t).

Given Σ ⊂ U , a flow map generated by (X,Σ) is a function ΨX : Σ× [0, τ)→ U , for some τ 6 a,
that satisfies, for all x ∈ Σ and t ∈ [0, τ),

d

dt
Ψt
X(x) = Xt(Ψ

t
X(x)),

Ψ0
X(x) = x,

(2)

where we used the abbreviation Ψt
X for ΨX(·, t), which we shall do throughout. Furthermore, a

flow map is said to be maximal if its time domain cannot be extended while (2) holds; it is said to
be global if τ = a = ∞ and local otherwise. In the present paper we are interested in flow maps
generated by the velocity field v[ρ] of the interaction equation (see (3) below), with Σ being the
support of the initial measure ρ0. In such case we will omit Σ and simply say that v[ρ], instead of
(v[ρ], supp(ρ0)), generates a flow map.
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The local existence and uniqueness of a flow map follows from standard theory of dynamical
systems on manifolds whenever the set Σ above is compact; see [32, Chapter 9] or [1, Chapter 4]
for instance. We review some of this theory in Appendix A.1. In brief, by working in charts and
using local coordinates, for a vector field that satisfies a Lipschitz property on charts (see Definition
A.1) one can make use of standard ODE theory in Euclidean space Rk to establish the local well-
posedness of flow maps (Theorem A.3). As for Σ being compact, this is required to ensure that the
maximal time of existence of the flow map is strictly positive.

2.2 Notion of solution

As already mentioned, for the sake of generality, and also because of our future considerations on
particle solutions (see Theorem 3.10), we are interested in defining measure solutions to (1). To
this end, denote by P(U) the set of Borel probability measures on the metric space (U , d) and
by C([0, T );P(U)) the set of continuous curves from [0, T ) into P(U) endowed with the narrow
topology. Recall that a sequence (ρn)n>1 ⊂ P(U) converges narrowly to ρ ∈ P(U) if∫

U
φ(x) dρn(x)→

∫
U
φ(x) dρ(x), as n→∞, for all φ ∈ Cb(U),

where Cb(U) is the set of continuous and bounded functions on U .
We denote by Ψ#ρ the push-forward in the mass transportation sense of ρ through a map

Ψ: Σ→ U for some Σ ⊂ U , that is, Ψ#ρ is the probability measure such that for every measurable
function ζ : U → [−∞,∞] with ζ ◦Ψ integrable with respect to ρ, we have∫

U
ζ(x) d(Ψ#ρ)(x) =

∫
Σ
ζ(Ψ(x)) dρ(x).

Also, for any curve (ρt)t∈[0,T ) ⊂ P(U), denote by v[ρ] : U × [0, T ) → TM the velocity vector
field associated to (1), that is,

v[ρ](x, t) = −∇MK ∗ ρt(x), for all (x, t) ∈ U × [0, T ), (3)

where for convenience we used ρt in place of ρ(t), as we shall often do in the following. The
convolution in this context is defined as follows: for h : M ×M → R and ρ ∈ P(U),

h ∗ ρ(x) :=

∫
U
h(x, y) dρ(y).

Recall the notion of solution in the sense of distributions: we say that a curve (ρt)t∈[0,T ) ⊂ P(U)
is a distributional solution to (1) if∫ T

0

∫
U

(∂tφ(x, t) + 〈v[ρ](x, t),∇Mφ(x, t)〉x) dρt(x) dt = 0, for all φ ∈ C∞c (U × (0, T )),

where C∞c (U × (0, T )) is the set of smooth and compactly supported functions on U × (0, T ). For
this definition, we implicitly suppose that∫

S

∫
Q
‖v[ρ](x, t)‖x dρt(x) dt <∞, for all compact sets S ⊂ (0, T ) and Q ⊂ U , (4)

to ensure, by the Cauchy–Schwarz inequality, that the left-hand side in the definition is finite.
A distributional solution can be described in a stronger sense, which is more intuitive and

more geometric, as the push-forward of the initial data through the corresponding flow map [3,
Chapter 8.1]. Indeed, the following result holds:
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Lemma 2.1. Let (ρt)t∈[0,T ) ⊂ P(U) and suppose that v[ρ] generates a flow map Ψv[ρ] defined on
supp(ρ0)× [0, T ) and satisfies (4). Furthermore, assume that ρ satisfies the implicit relation

ρt = Ψt
v[ρ]#ρ0, for all t ∈ [0, T ). (5)

Then, ρ belongs to C([0, T );P(U)) and is a distributional solution to (1).

The proof follows closely [3, Lemma 8.1.6]. For completeness, we provide it in Appendix A.3.
In other words, it suffices to find a curve of the form (5) satisfying (4) to show existence of a
distributional solution to the interaction equation. This motivates the following definition of weak,
or measure, solution (see also [11]):

Definition 2.2 (Notion of solution). We say that (ρt)t∈[0,T ) ⊂ P(U) is a weak solution to (1) if
v[ρ] generates a unique flow map Ψv[ρ] defined on supp(ρ0)× [0, T ) and (5) holds.

From the proof of Lemma 2.1 in Appendix A.3, we see that any weak solution belongs to
C([0, T );P(U)), whether or not it satisfies (4).

2.3 Wasserstein distance

To compare solutions to (1) we will use the intrinsic 1-Wasserstein distance: for all ρ, σ ∈ P(U),

W1(ρ, σ) = inf
π∈Π(ρ,σ)

∫
U×U

d(x, y) dπ(x, y),

where Π(ρ, σ) ⊂ P(U × U) is the set of transport plans between ρ and σ, i.e., the set of elements
in P(U × U) with first and second marginals ρ and σ, respectively.

We write P1(U) the set of probability measures on U with finite first moment and P∞(U) ⊂
P1(U) the set of probability measures on U with compact support; we have that (P1(U),W1) (and
thus (P∞(U),W1)) is a well-defined metric space. We furthermore metrize the space C([0, T );P1(U))
(and thus C([0, T );P∞(U))) with the distance defined by

W1(ρ, σ) = sup
t∈[0,T )

W1(ρt, σt), for all ρ, σ ∈ C([0, T );P1(U)).

We give a preliminary lemma first, analogous to results in [11, Lemmas 3.11–3.13], which con-
siders various Lipschitz properties of W1.

Lemma 2.3. The following four statements hold.

(i) Let Σ ⊂ U . Let furthermore ρ ∈ P1(U) with supp(ρ) ⊂ Σ and Ψ1,Ψ2 : Σ → U be measurable
functions. Then,

W1(Ψ1#ρ,Ψ2#ρ) 6 sup
x∈supp(ρ)

d(Ψ1(x),Ψ2(x)).

(ii) Let a ∈ (0,∞] and let X be a time-dependent vector field on U × [0, a). Let ρ ∈ P1(U)
and suppose that (X, supp(ρ)) generates a flow map ΨX defined on supp(ρ)× [0, τ) for some
τ 6 a. Suppose furthermore that X is bounded on U × [0, τ), i.e., there exists C > 0 such
that ‖X(x, t)‖x∈U < C for all x ∈ U and t ∈ [0, τ). Then,

W1(Ψt
X#ρ,Ψs

X#ρ) 6 C|t− s|, for all t, s ∈ [0, τ).
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(iii) Let Σ ⊂ U and let Ψ: Σ→ U be Lipschitz continuous as a map from the metric space (Σ, d)
into the metric space (U , d); denote by LΨ its Lipschitz constant. Let moreover ρ, σ ∈ P∞(U).
Then,

W1(Ψ#ρ,Ψ#σ) 6 LΨW1(ρ, σ).

Proof. Let us first show (i). Consider the transport plan given by π = (Ψ1,Ψ2)#ρ, where we define
(Ψ1,Ψ2) : Σ→ U × U by

(Ψ1,Ψ2)(x) = (Ψ1(x),Ψ2(x)), for all x ∈ Σ.

Then, π has Ψ1#ρ and Ψ2#ρ as first and second marginals, respectively, and therefore π ∈
Π(Ψ1#ρ,Ψ2#ρ). We get

W1(Ψ1#ρ,Ψ2#ρ) 6
∫
U×U

d(x, y) dπ(x, y) =

∫
supp(ρ)

d(Ψ1(x),Ψ2(x)) dρ(x)

6 sup
x∈supp(ρ)

d(Ψ1(x),Ψ2(x)),

where we used that ρ is a probability measure on U .
Let us now prove (ii). Let t, s ∈ [0, τ). We have, from (i),

W1(Ψt
X#ρ,Ψs

X#ρ) 6 sup
x∈supp(ρ)

d(Ψt
X(x),Ψs

X(x)). (6)

Without loss of generality, assume t > s and with x fixed in supp(ρ) consider the curve b 7→ Ψb
X(x)

on M , with s 6 b 6 t. The length L of this curve, that joins Ψs
X(x) and Ψt

X(x), can be bounded
above using (2) as:

L =

∫ t

s
‖Xb(Ψ

b
X(x))‖ΨbX(x) db 6 C|t− s|. (7)

The conclusion now comes from (7), (6), and the fact that d(Ψt
X(x),Ψs

X(x)) 6 L.
Finally, let us prove (iii). Let π be an optimal transport plan between ρ and σ, so that

supp(π) ⊂ U × U . Then the plan π̄ = (Ψ,Ψ)#π has Ψ#ρ and Ψ#σ as first and second marginals,
respectively, so that π̄ ∈ Π(Ψ#ρ,Ψ#σ). Thus,

W1(Ψ#ρ,Ψ#σ) 6
∫
U×U

d(x, y) dπ̄(x, y)

=

∫
Σ×Σ

d(Ψ(x),Ψ(y)) dπ(x, y)

6 LΨ

∫
Σ×Σ

d(x, y) dπ(x, y) 6 LΨW1(ρ, σ).

Note that Lemma 2.3(ii) shows that if the velocity field v[σ] is bounded for any curve σ on [0, T )
of probability measures, then any weak solution ρ on [0, T ) to the interaction equation starting from
an element in P1(U) is in fact Lipschitz continuous in time, and in particular absolutely continuous
in time. Indeed, in this case,

W1(ρt, ρs) = W1(Ψt
v[ρ]#ρ0,Ψ

s
v[ρ]#ρ0) 6 C|t− s| for all t, s ∈ [0, T ),

where Ψv[ρ] is the unique flow map generated by v[ρ] on the time interval [0, T ) and C is the
constant from Lemma 2.3(ii).
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2.4 Assumption on the interaction potential

We assume that K : M ×M → R depends only on the intrinsic distance d on M . To avoid issues
regarding the differentiability of the distance function on the diagonal {(x, y) ∈ M ×M | x = y},
we take in fact K to depend on the squared distance function instead. Specifically, we make the
following assumption on the interaction potential:

(H) K : M ×M → R has the form

K(x, y) = g(d(x, y)2), for all x, y ∈M, (8)

where g : [0,∞)→ R is differentiable, with locally Lipschitz continuous derivative.

In the following we use the notationKy(x) forK(x, y) and dy(x) for d(x, y). Given the expression
(8) of K, its gradient can be computed as:

∇MKy(x) = −2g′(d(x, y)2) logx y, (9)

where we used the chain rule and the fact that

∇Mdy(x) = − logx y

d(x, y)
, for x 6= y. (10)

Here, logx y denotes the Riemannian logarithm map (i.e., the inverse of the Riemannian exponential
map) on M [39]. Equations (9) and (10) only hold for points y within the injectivity radius of M
at x (or, equivalently, away from the cut locus of x). To ensure that these formulas hold, we shall
therefore restrict in the following to an open subset U of M which is geodesically convex; we remark
that, in particular, this implies that U can be covered by a single chart.

We also note here that the physical interpretation of (1) as an aggregation model is encoded
in (3) and (9). Specifically, by interacting with a point mass at location y, the point mass at
x is driven by a force of magnitude proportional to |g′(d(x, y)2|d(x, y), to move either towards y
(provided g′(d(x, y)2) > 0) or away from y (provided g′(d(x, y)2) < 0). The velocity field at x
computed by (3) takes into account all contributions from interactions with point masses y ∈ M
through the nonlocality induced by the convolution.

3 Intrinsic aggregation model on sphere

In this section we take the Riemannian manifold M to be the k-dimensional unit sphere Sk and
show the well-posedness of model (1) in the case when the dynamics is restricted to a geodesically
convex subset of an open hemisphere. Note that here, by compactness, P1(Sk) = P∞(Sk) = P(Sk).

We equip Sk with the induced metric from Rk+1; in particular, this means that we shall equiv-
alently regard points in Sk and tangent vectors of Sk as vectors in Rk+1, with the property that
〈u, v〉x = u · v for all u, v ∈ TxSk and x ∈ Sk, where u · v stands for the canonical inner product in
Rk+1 of u and v.

3.1 Intrinsic distance

Given x, y ∈ Sk, the Riemannian, or intrinsic, distance between points x, y ∈ Sk is given by:

d(x, y) = θxy ∈ [0, π],
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where θxy = arccos(x·y) represents the angle made by the vectors x and y. Based on the observation
above, to have a well-defined gradient of the distance function, we consider a subset of the sphere
where no two points are in the cut locus of each other. Specifically, fix any ε ∈ (0, π/2) and without
any loss of generality choose the following open and geodesically convex subset:

Dε =
{
x ∈ Sk | d(x,N) <

π

2
− ε
}
, (11)

where N = (0, . . . , 0, 1) represents the North pole of the unit sphere. Note that the maximum
distance on Dε is bounded by π − 2ε < π.

On Dε, which here plays the role of U in the general setting of the previous section, the logarithm
map is given explicitly by

logx y =
θxy

sin(θxy)
(y − cos(θxy)x), for all x, y ∈ Dε, (12)

and by (10),

∇Skdy(x) =
cos(θxy)x− y

sin(θxy)
, for all x, y ∈ Dε with x 6= y. (13)

As d is a distance function, one can check indeed that |∇Skdy(x)| = 1 for all x, y ∈ Dε with x 6= y.
For convenience of notations, set f(θ) := θ/ sin(θ) for θ ∈ [0, π), and hence, for all x, y ∈ Dε,

∇Skd
2
y(x) = 2f(θxy)(cos(θxy)x− y). (14)

Note that f(θ) → ∞ as θ → π, which illustrates quantitatively why we need to restrict to a
geodesically convex subset of Sk: this prevents the gradient of the squared distance from blowing
up by not allowing any points x and y to be in the cut locus of each other (i.e., from being antipodal
and have θxy = π).

As f and f ′ are bounded on [0, π − 2ε], denote:

Cf (ε) := sup
θ∈[0,π−2ε]

f(θ), Lf (ε) := sup
θ∈[0,π−2ε]

f ′(θ).

Both Cf (ε) and Lf (ε) blow up as ε→ 0, which justifies the choice of ε > 0 in the definition of Dε.
Also, since by Assumption (H) the function g′ is locally Lipschitz continuous, denote by Cg′(ε)
and Lg′(ε) the L∞ norm and the Lipschitz constants of g′ on [0, (π − 2ε)2], respectively.

3.2 Vector fields on Dε
Our approach in what follows relies on the fact that Sk is embedded in Rk+1, which allows us to
view vector fields in Dε as vector fields in Rk+1 and in particular, to take the difference of tangent
vectors at different points of Dε. We give here two important lemmas for flows of Lipschitz vector
fields on Dε. We will require that the vector fields satisfy a Lipschitz condition (see (15)) with
respect to the norm of the ambient space Rk+1, denoted by |·|. As shown later in Lemma 3.3, the
vector field associated to the interaction equation satisfies indeed this Lipschitz property.

Lemma 3.1. Let X,Y be two time-dependent vector fields on Dε. Let Σ ⊂ Dε and suppose that
ΨX and ΨY are flow maps defined on Σ × [0, τ), for some τ > 0, generated by (X,Σ) and (Y,Σ),
respectively. Assume furthermore that X is bounded on Dε × [0, τ) and Lipschitz continuous with
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respect to its first variable (uniformly with respect to t ∈ [0, τ)) on Dε × [0, τ), i.e., there exists
LX > 0 such that

|X(x, t)−X(y, t)| 6 LX d(x, y), for all (x, y, t) ∈ Dε ×Dε × [0, τ). (15)

Then, for all p ∈ Σ,

d(Ψt
X(p),Ψt

Y (p)) 6
e(LX+2‖X‖L∞(Dε×[0,τ)))t − 1

LX + 2‖X‖L∞(Dε×[0,τ))
‖X − Y ‖L∞(Dε×[0,τ)), for all t ∈ [0, τ).

Proof. Fix p ∈ Σ and t ∈ [0, τ). We have to estimate the distance d(Ψt
X(p),Ψt

Y (p)) when Ψt
X(p) 6=

Ψt
Y (p) (otherwise the result is trivial). Compute

d

dt
d(Ψt

X(p),Ψt
Y (p)) = ∇Sk dΨtY (p)(Ψ

t
X(p)) ·Xt(Ψ

t
X(p)) +∇Sk dΨtX(p)(Ψ

t
Y (p)) · Yt(Ψt

Y (p))

:= I + II. (16)

Add and subtract
A := ∇Sk dΨtX(p)(Ψ

t
Y (p)) ·Xt(Ψ

t
X(p))

and
B := ∇Sk dΨtX(p)(Ψ

t
Y (p)) ·Xt(Ψ

t
Y (p))

to the right-hand side of (16), which now reads:

I +A−A+B −B + II.

The terms II −B estimate as:

II −B = ∇Sk dΨtX(p)(Ψ
t
Y (p)) · (Yt(Ψt

Y (p))−Xt(Ψ
t
Y (p)))

6 ‖X − Y ‖L∞([0,τ)×Dε), (17)

where we used the Cauchy–Schwarz inequality and the fact that the gradient of the distance has
norm equal to 1. By similar considerations, also estimate:

B −A = ∇Sk dΨtX(p)(Ψ
t
Y (p)) · (Xt(Ψ

t
Y (p))−Xt(Ψ

t
X(p)))

6 |Xt(Ψ
t
Y (p))−Xt(Ψ

t
X(p))|

6 LX d(Ψt
X(p),Ψt

Y (p)), (18)

where for the last inequality we used the Lipschitz condition (15).
Finally, writing θ = d(Ψt

X(p),Ψt
Y (p)) and using (13),

I +A =
(
∇Sk dΨtY (p)(Ψ

t
X(p)) +∇Sk dΨtX(p)(Ψ

t
Y (p))

)
·Xt(Ψ

t
X(p))

=
1

sin θ

(
cos θΨt

X(p)−Ψt
Y (p) + cos θΨt

Y (p)−Ψt
X(p)

)
·Xt(Ψ

t
X(p)). (19)

To estimate (19), write x = Ψt
X(p) and y = Ψt

Y (p); note that θ is the angle between Ox and Oy,
where O is the centre of the sphere; see Figure 1 for an illustration. The vector cos θ x − y at x

9



is tangent to the great circle containing x and y, pointing “away” from y. Analogous comment
for the vector cos θ y − x at y. Consider two orthogonal directions in the plane Oxy: one along
the bisector of the angle xOy and the other perpendicular to it; these directions are indicated by
dotted lines in Figure 1. Also note that θ < π. By symmetry, cos θ x− y and cos θ y − x have the
same component in the bisector direction, and opposite components in the orthogonal direction.
The latter two cancel each other when the two vectors are added. The components in the bisector
direction combine.

O θ

x

y

θ/2

θ/2

cos θx− y

cos θy − x

Figure 1: A great circle on the unit sphere containing points x and y. The vectors cos θ x − y at
x and cos θ y − x at y have the same component in the direction of the bisector of the angle xOy,
and opposite components in the direction orthogonal to the bisector.

By the geometry of the problem, cos θ x−y makes an angle of π
2 − θ

2 with the bisector direction.
Given that | cos θ x− y| = | cos θ y − x| = sin θ, and the considerations above,

| cos θ x− y + cos θ y − x| = 2 sin θ cos

(
π

2
− θ

2

)
= 2 sin θ sin

(
θ

2

)
. (20)

Now return to (19) and estimate using the Cauchy–Schwarz inequality and (20):

1

sin θ

(
cos θΨt

X(p)−Ψt
Y (p) + cos θΨt

Y (p)−Ψt
X(p)

)
·Xt(Ψ

t
X(p)) 6 2‖X‖L∞(Dε×[0,τ) sin

(
θ

2

)
6 2‖X‖L∞(Dε×[0,τ))θ, (21)

where we used for the second inequality that sin
(
θ
2

)
6 θ.

Collecting (17), (18) and (21) we find from (16):

d

dt
d(Ψt

X(p),Ψt
Y (p)) 6 (LX + 2‖X‖L∞(Dε×[0,τ))) d(Ψt

X(p),Ψt
Y (p)) + ‖X − Y ‖L∞(Dε×[0,τ)), (22)

and Gronwall’s lemma gives the desired estimate.
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Lemma 3.2. Let X be a time-dependent vector field on Dε. Let Σ ⊂ Dε and suppose that ΨX is
a flow map defined on Σ × [0, τ), for some τ > 0, generated by (X,Σ). Assume moreover that X
is bounded on Dε × [0, τ) and Lipschitz continuous with respect to its first variable on Dε × [0, τ)
(i.e., it satisfies (15)) with Lipschitz constant LX > 0. Then,

d(Ψt
X(p),Ψt

X(q)) 6 e(LX+2‖X‖L∞(Dε×[0,τ)))td(p, q), for all p, q ∈ Σ and t ∈ [0, τ).

Proof. Fix t ∈ [0, τ) and p, q ∈ Σ and estimate the distance d(Ψt
X(p),Ψt

X(q)) by computing:

d

dt
d(Ψt

X(p),Ψt
X(q)) = ∇Sk dΨtX(q)(Ψ

t
X(p)) ·Xt(Ψ

t
X(p)) +∇Sk dΨtX(p)(Ψ

t
X(q)) ·Xt(Ψ

t
X(q)). (23)

Add and subtract ∇Sk dΨtX(p)(Ψ
t
X(q)) ·Xt(Ψ

t
X(p)) to the right-hand side above. By considerations

similar to those used in the proof of Lemma 3.1 (see the estimates on the term I + A leading to
(21)), one gets:(
∇Sk dΨtX(q)(Ψ

t
X(p)) +∇Sk dΨtX(p)(Ψ

t
X(q))

)
·Xt(Ψ

t
X(p)) 6 2‖X‖L∞(Dε×[0,τ))d(Ψt

X(p),Ψt
X(q)).

Also, by the Cauchy–Schwarz inequality and the Lipschitz condition on X,

∇Sk dΨtX(p)(Ψ
t
X(q)) · (Xt(Ψ

t
X(q))−Xt(Ψ

t
X(p))) 6 LXd(Ψt

X(p),Ψt
X(q)).

Using the two estimates above in (23) one then finds:

d

dt
d(Ψt

X(p),Ψt
X(q)) 6 (LX + 2‖X‖L∞(Dε×[0,τ)))d(Ψt

X(p),Ψt
X(q)),

which by Gronwall’s lemma yields the desired result.

3.3 Well-posedness of solutions

We first show that on sphere, the vector field (3) associated to equation (1) is bounded and satisfies
the Lipschitz condition needed to apply the Lemmas in Section 3.2.

Lemma 3.3. Let K satisfy (H) and let ρ ∈ C([0, T );P(Dε)). Then, the vector field v[ρ] given by
(3) is bounded on Dε× [0, T ) and satisfies the Lipschitz condition (15), that is, there exists L(ε) > 0
such that

|v[ρ](x, t)− v[ρ](y, t)| 6 L(ε)d(x, y), for all (x, y, t) ∈ Dε ×Dε × [0, T ).

More specifically,
‖v[ρ]‖L∞(Dε×[0,T )) 6 2πCg′(ε),

and the Lipschitz constant L(ε) depends only on Cf (ε), Lf (ε), Cg′(ε) and Lg′(ε).

Proof. The boundedness of v[ρ] is immediate. Indeed, for all (x, t) ∈ Dε × [0, T ),

|v[ρ](x, t)| 6
∫
Dε
|∇SkKy(x)| dρt(y) =

∫
Dε
|g′(d(x, y)2)∇Skd

2
y(x)| dρt(y) 6 2πCg′(ε),

where for the last inequality we used the relation |∇Skd
2
y(x)| = 2d(x, y), the bound on g′ and (14)

(note that d(x, y) < π for every x, y ∈ Dε).
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For the Lipschitz condition, let x, y ∈ Dε. By (3) we have

v[ρ](x, t)− v[ρ](y, t) =

∫
Dε

(∇SkKz(x)−∇SkKz(y)) dρt(z). (24)

As noted before, taking the difference of tangent vectors at different points x and y makes sense
here since, in the case of the sphere, tangent vectors can be regarded as vectors in the embedding
space Rk+1. Compute, for all z ∈ Dε, using (14):

∇Skd
2
z(x)−∇Skd

2
z(y) = 2f(θxz) (cos(θxz)x− z)− 2f(θyz) (cos(θyz) y − z) ,

where θxz := d(x, z) and θyz := d(y, z).
Add and subtract 2f(θxz) cos(θxz)y + 2f(θyz) cos(θxz)y in the right-hand side above to get:

∇Skd
2
z(x)−∇Skd

2
z(y)

= 2f(θxz) cos(θxz)(x− y) + 2(f(θxz)− f(θyz)) cos(θxz)y + 2f(θyz)(cos(θxz)− cos(θyz))y

− 2 (f(θxz)− f(θyz)) z.

This yields, for all z ∈ Dε,

|∇Skd
2
z(x)−∇Skd

2
z(y)|

6 2Cf (ε)|x− y|+ 2Lf (ε)|θxz − θyz|+ 2Cf (ε)|θxz − θyz|+ 2Lf (ε)|θxz − θyz|
6 4(Cf (ε) + Lf (ε))d(x, y), (25)

where in the last inequality we used the triangle inequality |θxz−θyz| = |d(x, z)−d(y, z)| 6 d(x, y),
and that the Euclidean distance in Rk+1 is less than or equal to the induced distance on Sk.

For an interaction potential in the form (8), one then gets, for all z ∈ Dε:

|∇SkKz(x)−∇SkKz(y)| = |g′(d(x, z)2)∇Skd
2
z(x)− g′(d(y, z)2)∇Skd

2
z(y)|

6 |g′(θ2
xz)− g′(θ2

yz)||∇Skd
2
z(x)|+ |g′(θ2

yz)||∇Skd
2
z(x)−∇Skd

2
z(y)|

6 2Lg′(ε)|θxz + θyz||θxz − θyz|θxz + 4Cg′(ε)(Cf (ε) + Lf (ε))d(x, y)

6 (4π2Lg′(ε) + 4Cg′(ε)(Cf (ε) + Lf (ε)))d(x, y).

For the first inequality above we added and subtracted g′(θ2
yz)∇Skd

2
z(x) on the first line and then

used triangle inequality. For the second inequality we used (25), the bounds and Lipschitz constants
of g′, and the fact that |∇Skd

2
z(x)| = 2θxz. Finally, for the last inequality we used |θxz−θyz| 6 d(x, y)

by triangle inequality, and that θxz, θyz < π.
Set

L(ε) := 4π2Lg′(ε) + 4Cg′(ε)(Cf (ε) + Lf (ε)).

Then, for all t ∈ [0, T ), by (24) and the estimate above we get:

|v[ρ](x, t)− v[ρ](t, y)| 6 L(ε)d(x, y)

∫
Dε

dρt(z) = L(ε)d(x, y),

where we also used that ρt is a probability measure on Dε.
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Remark 3.4. In Lemma 3.3, the upper bound on ‖v[ρ]‖L∞(Dε×[0,T )) and the Lipschitz constant of
v[ρ] do not depend on the curve ρ. This is important for subsequent considerations, in particular
for the proof of Theorem 3.6, the main result in this section. The lemma also ensures that the
implicit condition (4) holds.

The following lemma is a fundamental step towards the proof of well-posedness; see for instance
[11, Lemma 3.15], and also [12, Theorem 4.1].

Lemma 3.5. Let K satisfy (H) and let ρ, σ ∈ C([0, T );P(Dε)). Then,

‖v[ρ]− v[σ]‖L∞([0,T )×Dε) 6 Λ(ε)W1(ρ, σ), (26)

where Λ(ε) is a constant depending on Cf (ε), Lf (ε), Cg′(ε), and Lg′(ε).

Proof. Let us first show that there exists Λ(ε) > 0 such that

|∇SkKy(x)−∇SkKz(x)| 6 Λ(ε)d(y, z), for all x, y, z ∈ Dε. (27)

Let x, y, z ∈ Dε and write θxy := d(x, y) and θxz := d(x, z). Then, by (14),

|∇Skd
2
y(x)−∇Skd

2
z(x)| = 2|f(θxy)(cos(θxy)x− y)− f(θxz)(cos(θxz)x− z)|

6 2|(f(θxy)− f(θxz))(cos(θxy)x− y)|+ 2|f(θxz)((cos(θxy)− cos(θxz))x|+ 2|f(θxz)(z − y)|
6 4Lf (ε)|θxy − θxz|+ 2Cf (ε)|θxy − θxz|+ 2Cf (ε)|z − y|
6 4(Lf (ε) + Cf (ε))d(y, z), (28)

where we added and subtracted f(θxz)(cos(θxy)x − y) on the first line and then used triangle
inequality, we used the bound and Lipschitz constant of f for the second inequality sign, and
finally, we used |θxy− θxz| 6 d(y, z) by triangle inequality, and the fact that the Euclidean distance
|z − y| is smaller than the spherical distance d(y, z).

Now compute

|∇SkKy(x)−∇SkKz(x)| = |g′(d(x, y)2)∇Skd
2
y(x)− g′(d(x, z)2)∇Skd

2
z(x)|

6 |g′(θ2
xy)− g′(θ2

xz)||∇Skd
2
y(x)|+ |g′(θ2

xz)||∇Skd
2
y(x)−∇Skd

2
z(x)|

6 2Lg′(ε)|θxy + θxz||θxy − θxz|θxy + 4Cg′(ε)(Lf (ε) + Cf (ε))d(y, z)

6 (4π2Lg′(ε) + 4Cg′(ε)(Lf (ε) + Cf (ε)))d(y, z). (29)

In the above, we first added and subtracted g′(θ2
xz)∇Skd

2
y(x) on the first line and used triangle

inequality. For the second inequality we used (28), the bound and Lipschitz constant of g′, and
|∇Skd

2
y(x)| = 2θxy. For the last inequality we used |θxy − θxz| 6 d(y, z) by triangle inequality, and

that θxy, θxz < π.
By setting

Λ(ε) := 4π2Lg′(ε) + 4Cg′(ε)(Lf (ε) + Cf (ε)),

we get (27). Then, for (x, t) ∈ Dε × [0, T ) arbitrary fixed, take πt ∈ Π(ρt, σt) to be an optimal
transport plan between ρt and σt, and estimate:

|v[ρ](x, t)− v[σ](x, t)| =
∣∣∣∣∫
Dε
∇SkKy(x) dρt(y)−

∫
Dε
∇SkKz(x) dσt(z)

∣∣∣∣
13



=

∣∣∣∣∫
Dε×Dε

∇SkKy(x) dπt(y, z)−
∫
Dε×Dε

∇SkKz(x) dπt(y, z)

∣∣∣∣
6
∫
Dε×Dε

|∇SkKy(x)−∇SkKz(x)| dπt(y, z).

Hence, using (29),

|v[ρ](x, t)− v[σ](x, t)| 6 Λ(ε)

∫
Dε×Dε

d(y, z) dπt(y, z) = Λ(ε)W1(ρt, σt) (30)

6 Λ(ε)W1(ρ, σ).

Taking now the supremum in (x, t) ∈ Dε × [0, T ) on the left-hand side above gives the result.

The main result of this section is given by the following theorem. The proof is based on a fixed
point argument, borrowing from the layout and the general technique used by Canizo et al. [11] to
prove the well-posedness of solutions in the Euclidean case.

Theorem 3.6 (Well-posedness on open hemisphere). Suppose that K satisfies (H) and let ρ0 ∈
P(Dε). Then, there exist T > 0 and a unique weak solution among curves in C([0, T );P(Dε)) to
the aggregation model (1) starting from ρ0.

Proof. We first invoke some results included in the Appendix. Specifically, by Lemma A.5 the
interaction velocity field v[σ] (with σ fixed) is locally Lipschitz and hence it satisfies the assumptions
of the local well-posedness result in Theorem A.3. In addition, by Remark A.6, the maximal time
of existence for its flow map does not depend on σ. Consequently, there exists a maximal time
τ > 0 such that the map Γ, given by

Γ(σ)(t) = Ψt
v[σ]#ρ0, for all σ ∈ C([0, τ);P(Dε)) and t ∈ [0, τ), (31)

is well-defined, where Ψv[σ] is the unique flow map generated by (v[σ], supp(ρ0)) and defined on
supp(ρ0)× [0, τ). We will prove that Γ is a map from C([0, τ);P(Dε)) into itself and that it has a
unique fixed point, which directly shows the desired result.

Let us show first that Γ maps C([0, τ);P(Dε)) into itself. To this end, fix σ ∈ C([0, τ);P(Dε)).
By the proof of Theorem A.3 we know that Ψt

v[σ](x) ∈ Dε for all x ∈ supp(ρ0) and t ∈ [0, τ), so that

Γ(σ)(t) is supported in Dε. We have in fact Γ(σ)(t) ∈ P(Dε) for all t ∈ [0, τ) since ρ0 ∈ P(Dε) and
the push-forward conserves mass. Moreover, we get that the map t→ Γ(σ)(t) is continuous due to
Lemmas 3.3 and 2.3(ii). All in all we obtain Γ: (C([0, τ);P(Dε)),W1)→ (C([0, τ);P(Dε)),W1).

We now show that Γ is a contraction if we restrict our final time to some T 6 τ to be determined.
Let ρ, σ ∈ C([0, τ);P(Dε)). Then, for all t ∈ [0, τ),

W1(Ψt
v[ρ]#ρ0,Ψ

t
v[σ]#ρ0) 6 sup

x∈supp(ρ0)
d(Ψt

v[ρ](x),Ψt
v[σ](x))

6 C(ε, t)‖v[ρ]− v[σ]‖L∞([0,τ)×Dε)

6 C(ε, t)Λ(ε)W1(ρ, σ), (32)

where for the first inequality we used Lemma 2.3(i), for the second inequality we used Lemmas 3.3
and 3.1 with

C(ε, t) =
e(L(ε)+4πCg′ (ε))t − 1

L(ε) + 4πCg′(ε)
,
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and for the last inequality we used Lemma 3.5. Since C(ε, t) is increasing in t, with limt→0C(ε, t) =
0 and Λ(ε) is independent of time, we can choose T 6 τ small enough so that

C(ε, t)Λ(ε) < C(ε, T )Λ(ε) < C(ε), for all t ∈ [0, T ),

for some constant C(ε) < 1. Restricting T accordingly, by taking the supremum over [0, T ) in (32)
we find:

W1(Γ(ρ),Γ(σ)) 6 C(ε)W1(ρ, σ),

with C(ε) < 1. This shows that the restriction of Γ to (C([0, T );P(Dε)),W1) is a contraction.
We have thus shown that Γ: (C([0, T );P(Dε)),W1)→ (C([0, T );P(Dε)),W1) has a unique fixed

point, that is, there exists a unique ρ ∈ C([0, T );P(Dε)) such that

ρt = Ψt
v[ρ]#ρ0 for all [0, T ),

which means that ρ is the desired solution.

Remark 3.7. The solution established in Theorem 3.6 can be extended in time as long as its support
remains within the set Dε. In the particular case of purely attractive interactions (g′ > 0), we show
in Proposition 4.1 below that the well-posedness of solutions holds globally in time, i.e., T =∞; in
other words, Dε is an invariant set for the dynamics. Moreover, with further assumptions on the
interaction potential, solutions approach asymptotically a consensus state; see Theorem 4.12.

3.4 Stability and particle solutions

In this section we investigate the stability of solutions to (1) with respect to the initial conditions
and, based on it, we demonstrate the mean-field approximation. The following result is analogous
to [11, Theorem 3.16].

Theorem 3.8 (Stability). Consider an interaction potential K that satisfies (H). Let ρ0, σ0 ∈
P(Dε), and ρ and σ be weak solutions to (1) defined on [0, T ) starting from ρ0 and σ0, respectively.
Then, there exist T ∗ ∈ (0, T ) and an increasing, bounded function r(ε, ·) with r(ε, 0) = 1 such that

W1(ρt, σt) 6 r(ε, t)W1(ρ0, σ0), for all t ∈ [0, T ∗).

Proof. Let Σ = supp(ρ0)∪supp(σ0). By compactness of Σ, Theorem A.3 and Lemma A.5, we know
the existence of unique maximal flow maps Ψ̃v[ρ] and Ψ̃v[σ] generated by (v[ρ],Σ) and (v[σ],Σ),
respectively. Call τρ > 0 and τσ > 0 the respective maximal times of existence, and set T ∗ =
min(τρ, τσ, T ). Fix t ∈ [0, T ∗). Since ρ and σ are weak solutions up to time T , we have, by the
triangle inequality,

W1(ρt, σt) = W1(Ψ̃t
v[ρ]#ρ0, Ψ̃

t
v[σ]#σ0)

6W1(Ψ̃t
v[ρ]#ρ0, Ψ̃

t
v[σ]#ρ0) +W1(Ψ̃t

v[σ]#ρ0, Ψ̃
t
v[σ]#σ0). (33)

By Lemma 3.3, the vector field v[σ] is bounded and Lipschitz continuous with respect to its first
variable, which in turn implies by Lemma 3.2 that the map Ψ̃t

v[σ] is Lipschitz continuous on Dε with

Lipschitz constant e(L(ε)+2‖v[σ]‖L∞ )t, where we write ‖v[σ]‖L∞ for ‖v[σ]‖L∞(Dε×[0,T )) for the rest of
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the proof. Using Lemma 2.3 (parts (i) and (iii)) for the first and second terms in the right-hand
side of (33), we further estimate:

W1(Ψ̃t
v[ρ]#ρ0,Ψ̃

t
v[σ]#ρ0) +W1(Ψ̃t

v[σ]#ρ0, Ψ̃
t
v[σ]#σ0)

6 sup
x∈supp(ρ0)

d(Ψ̃t
v[ρ](x), Ψ̃t

v[σ](x)) + e(L(ε)+2‖v[σ]‖L∞ )tW1(ρ0, σ0). (34)

Also, using estimate (22) for the vector fields v[ρ] and v[σ], and integrating it with an integrating
factor, we find for all x ∈ supp(ρ0),

d(Ψ̃t
v[ρ](x), Ψ̃t

v[σ](x)) 6
∫ t

0
e(L(ε)+2‖v[σ]‖L∞ )(t−s)‖v[ρ](·, s)− v[σ](·, s)‖L∞(Dε) ds

6 Λ(ε)

∫ t

0
e(L(ε)+2‖v[σ]‖L∞ )(t−s)W1(ρs, σs) ds, (35)

where for the second inequality we used (30).
Combine (33), (34) and (35) to find, after multiplying by e−(L(ε)+2‖v[σ]‖L∞ )t:

e−(L(ε)+2‖v[σ]‖L∞ )tW1(ρt, σt) 6 Λ(ε)

∫ t

0
e−(L(ε)+2‖v[σ]‖L∞ )sW1(ρs, σs) ds+W1(ρ0, σ0).

By Gronwall’s lemma the above estimate yields

e−(L(ε)+2‖v[σ]‖L∞ )tW1(ρt, σt) 6 eΛ(ε)tW1(ρ0, σ0).

Finally, use the upper bound for ‖v[σ]‖L∞ established in Lemma 3.3, and set

r(ε, t) := e(Λ(ε)+L(ε)+4πCg′ (ε))t (36)

to arrive at the desired conclusion.

An important application of the stability result is the approximation of a continuum measure
by empirical measures, referred to as mean-field approximation. We investigate this below.

Lemma 3.9. Suppose that K satisfies (H). Take n a positive integer and consider a collection of
masses (mi)

n
i=1 ⊂ (0, 1) such that

∑n
i=1mi = 1, and points (x0

i )
n
i=1 ⊂ Dε. Then, there exists T > 0

and a unique collection of trajectories (xi)
n
i=1 so that xi : [0, T )→ Dε satisfies, for all i ∈ {1, . . . , n}

and t ∈ [0, T ), {
x′i(t) = v[ρn](xi(t), t),

xi(0) = x0
i ,

(37)

where ρn : [0, T )→ P(Dε) is the empirical measure associated to masses mi and trajectories xi, for
i ∈ {1, . . . , n}, i.e.,

ρnt =
n∑
i=1

miδxi(t), for all t ∈ [0, T ). (38)

Furthermore, ρn is the unique weak solution to (1) on [0, T ) with initial data

ρn0 =
n∑
i=1

miδx0i
. (39)

16



Proof. For all i ∈ {1, . . . , n} we can rewrite the first equation in (37) as

x′i(t) = −
n∑
j=1

mi∇SkKxj(t)(xi(t)).

The well-posedness of solutions to (37) thus follows from Theorem A.3 and the local Lipschitz
continuity on charts of x 7→ ∇SkKz(x), uniformly in z ∈ Dε, as discussed in the proof of Lemma A.5.
Since xi, i = 1, . . . , n, satisfies the first-order ODE system (37), xi is continuous. Let φ ∈ Cb(Dε)
and let t ∈ [0, T ) and (tk)k>1 ⊂ [0, T ) be such that tk → t as k → ∞. Then, using that φ is
bounded, ∫

Dε
φ(x) dρntk(x) =

n∑
i=1

miφ(xi(tk))→
n∑
i=1

miφ(xi(t)) =

∫
Dε
φ(x) dρnt (x),

which shows that ρn ∈ C([0, T );P(Dε)). Let Ψt
v[ρn] be the unique flow map generated by v[ρn]

defined on supp(ρn0 ) × [0, T ) and let ζ : Dε → [−∞,∞] be measurable such that ζ ◦ Ψt
v[ρn] is

integrable with respect to ρn0 . Then xi(t) = Ψt
v[ρn](x

0
i ) for all i ∈ {1, . . . , n} and t ∈ [0, T ), and we

get ∫
Dε
ζ(x) d(Ψt

v[ρn]#ρ
n
0 )(x) =

∫
Dε
ζ(Ψt

v[ρn](x)) dρn0 (x) =
n∑
i=1

miζ(Ψt
v[ρn](x

0
i ))

=
n∑
i=1

miζ(xi(t)) =

∫
Dε
ζ(x) dρnt (x),

which proves that
ρnt = Ψt

v[ρn]#ρ
n
0 , for all t ∈ [0, T ).

Thus, ρn is a weak solution to (1) on [0, T ), with initial datum ρn0 . The uniqueness of ρn follows
directly from Theorem 3.6.

Theorem 3.10 (Mean-field limit). Suppose that K satisfies (H). Let ρ0 ∈ P(Dε) and let (ρn0 )n∈N ⊂
P(Dε) be of the form (39) and such that

W1(ρn0 , ρ0)→ 0, as n→∞.

Suppose furthermore that T > 0 is such that there exist a unique weak solution ρ to (1) on [0, T )
starting from ρ0 and a unique weak solution ρn to (1) on [0, T ) starting from ρn0 for all n ∈ N,
which we know is of the form (38). Then, there exists T ∗ ∈ (0, T ) such that

sup
t∈[0,T ∗)

W1(ρnt , ρt)→ 0, as n→∞.

Proof. By Theorem 3.8, there exists a strictly increasing, bounded function rn(ε, ·) : [0, T ∗)→ [0,∞)
for all n ∈ N such that

W1(ρnt , ρt) 6 rn(ε, t)W1(ρn0 , ρ0), for all t ∈ [0, T ∗).
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As one can see from the proof of Theorem 3.8 (see equation (36)), the function rn(ε, ·) is independent
of n, hence we rename it r(ε, ·). By boundedness of r(ε, ·) on [0, T ∗) (call Cr(ε, T

∗) > 0 such a
bound), we get

sup
t∈[0,T ∗)

W1(ρnt , ρt) 6 Cr(ε, T
∗)W1(ρn0 , ρ0)→ 0, as n→∞,

which finishes the proof.

4 Asymptotic behaviour on sphere

In this section we study the asymptotic dynamics of model (1) on sphere Sk when the interaction
potential is purely attractive. As in Section 3 we equip Sk with the metric induced by the canonical
topology of the ambient Euclidean space Rk+1. The aim is to investigate the formation of consensus
(or synchronized) states asymptotically, i.e., when the solution ρt approaches a Dirac mass on sphere
as t→∞.

Throughout this section the interaction potential K is assumed to satisfy Assumption (H) with
g nondecreasing (i.e., g′ > 0), which corresponds to purely attractive interaction forces.

4.1 Global well-posedness and geodesic disks as invariant sets

In consideration of the well-posedness result in Theorem 3.6, a key aspect for investigating the
asymptotic dynamics is whether the solution remains supported on the set Dε, given in (11) for
some ε ∈ (0, π/2), during the whole time evolution. In other words, we want to get global versions
of Theorem 3.6 and Lemma 3.9. We study this below.

Fix ε ∈ (0, π/2) throughout. Note that the set Dε is a geodesic disk of radius π/2 − ε centred
at the North pole of the unit sphere. In general, the geodesic disk on sphere with centre at the
North pole N and radius r > 0 is given by:

Dr = {x ∈ Sk | d(x,N) < r}.

Given that the geodesics on sphere lie on great circles, all disks Dr with 0 < r 6 π/2, and their
closures Dr, are geodesically convex; in particular, so is Dε. We observe that by spherical symmetry,
the results we prove below are easily extended to any centre which is not the North pole. We start
with the continuum model (1).

Proposition 4.1 (Global well-posedness in continuum model). Let K satisfy (H) with g′ > 0.
Let ρ0 ∈ P(Dε) be such that supp(ρ0) ⊂ Dr for some r < π/2 − ε. Then, there exists a unique
global weak solution to the aggregation model (1) in C([0,∞);P(Dε)) that starts from ρ0; moreover,
supp(ρt) ⊂ Dr for all t ∈ [0,∞).

Proof. We will use the global version of the Cauchy-Lipschitz theorem presented in the Appendix;
see Theorem A.4 and also Lemma A.7 for its application to the interaction velocity field. By abuse
of notation, let us write P(Dr) for the set of Borel probability measures on Dε which are supported
within Dr. By Theorem A.4 and Lemma A.7, the map

Γ(σ)(t) = Ψt
v[σ]#ρ0, for all σ ∈ C([0,∞);P(Dr)) and t ∈ [0,∞),

is well-defined, where Ψt
v[σ] is the unique global flow map generated by (v[σ], supp(ρ0)). By

following the same approach as in the proof of Theorem 3.6, we get that Γ is a map from
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(C([0,∞);P(Dr)),W1) into itself. We also get the existence of a time T > 0 and a constant
C ∈ (0, 1) such that the restriction of Γ to (C([0, T );P(Dr)),W1) is a contraction, which means
that there exists a unique ρ ∈ C([0, T );P(Dr)) such that

ρt = Ψt
v[ρ]#ρ0 for all [0, T ).

From the proof of Theorem 3.6 we note that the time T is independent of ρ0. Therefore, we can
iteratively patch solutions together continuously through time to get the existence of a unique weak
solution among curves in C([0,∞);P(Dr)), which concludes the proof.

We now get the analogous result of Proposition 4.1 for the discrete model (37):

Proposition 4.2 (Global well-posedness in discrete model). Let K satisfy (H) with g′ > 0. Take n
to be a positive integer and consider a collection of masses (mi)

n
i=1 ⊂ (0, 1) such that

∑n
i=1mi = 1,

and points (x0
i )
n
i=1 ⊂ Dr for some r < π/2 − ε. Then, there exists a unique global collection of

trajectories (xi)
n
i=1 that satisfies, for all i ∈ {1, . . . , n} and t ∈ [0,∞), xi(t) ∈ Dr andx

′
i(t) = −

n∑
j=1

mi∇SkKxj(t)(xi(t)),

xi(0) = x0
i .

(40)

Proof. The local well-posedness follows as in the proof of Lemma 3.9, while the global extension
follows directly by applying Theorem A.4 and the fact that

logxN · ∇SkKy(x) 6 0 for all x ∈ Dε \Dr and y ∈ Dr,

as can be inferred from the proof of Lemma A.7.

Remark 4.3. In the terminology of dynamical systems, Propositions 4.1 and 4.2 show that any
closed disk in Dε is an invariant set for the aggregation dynamics given by (1) and (40), respectively.

4.2 Asymptotic consensus in the continuum model

We consider the asymptotic behaviour in the continuum model. Specifically, we study the formation
of consensus by investigating the behaviour of an energy functional.

As discussed in [20], model (1) is a gradient flow with respect to an energy functional. For the
model set up on Dε, this energy functional E : P(Dε)→ R is given by:

E[ρ] =
1

2

∫
Dε

∫
Dε
K(x, y) dρ(x) dρ(y), for all ρ ∈ P(Dε). (41)

Because K is assumed to satisfy (H), it is bounded and therefore E is indeed well-defined on P(Dε).
To simplify notation, given a weak solution ρ to (1) defined on [0,∞) which is clear from context,
we shall write t 7→ E(t) the map given by E(t) = E[ρ(t)] for all t ∈ [0,∞) and by v : Dε× [0,∞) the
function v(x, t) = v[ρ](x, t) for all (x, t) ∈ Dε × [0,∞), where we recall that v[ρ] is the interaction
velocity field defined in (3).

First, we would like to show that any global weak solution ρ to (1) starting inside a closed disk
Dr with r < π/2− ε satisfies

lim
t→∞

∫
Dε
|v(x, t)|2 dρt(x) = 0.

To this end, we will apply Barbalat’s lemma [6] which means we need to show that E(t) has a finite
limit as t→∞ and t 7→ E′′(t) is bounded on [0,∞).
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Lemma 4.4. Let K satisfy (H) with g′ > 0, and let ρ0 ∈ P(Dε) be such that supp(ρ0) ⊂ Dr for
some r < π/2− ε. Write ρ ∈ C([0,∞);P(Dε)) the global weak solution to (1) starting from ρ0 from
Proposition 4.1. Then E(t)→ E∞ as t→∞ for some E∞ ∈ R.

Proof. Writing Ψv for the global flow map generated by (v, supp(ρ0)) and using the push-forward
formulation of ρ and the chain rule, one can compute, for all t ∈ [0,∞),

E′(t) =
1

2

d

dt

∫
Dε

∫
Dε
K(Ψt

v(x),Ψt
v(y)) dρ0(x) dρ0(y)

=

∫
Dε
∇SkK ∗ ρt(Ψt

v(x)) · v(Ψt
v(x), t) dρ0(x)

= −
∫
Dε
|v(Ψt

v(x), t)|2 dρ0(x)

= −
∫
Dε
|v(x, t)|2 dρt(x) 6 0, (42)

where for the second equality we used the symmetry of K. Note that the last term in (42) is
well-defined and bounded by Lemma 3.3.

Proposition 4.1 ensures that the global solution ρ satisfies supp(ρt) ⊂ Dr, and since Dr is
compact, the map t 7→ E(t) is bounded below (because K is bounded on compact sets). Moreover,
t 7→ E(t) is nonincreasing by (42) and we thus conclude E(t)→ E∞ as t→∞ for some E∞ ∈ R.

Lemma 4.5. Let K satisfy (H) and r < π/2−ε. Suppose that g′ > 0 and g′ is continuously differ-
entiable on [0, 4r2]. Let ρ0 ∈ P(Dε) be such that supp(ρ0) ⊂ Dr, and write ρ ∈ C([0,∞),P(Dε)) the
global weak solution to (1) starting from ρ0 from Proposition 4.1. Then E′′ is bounded on [0,∞).

Proof. By Proposition 4.1 we know that supp(ρt) ⊂ Dr for all t ∈ [0,∞). We write Ψv for the
global flow map generated by (v, supp(ρ0)), which satisfies Ψt

v(x) ∈ Dr for all x ∈ supp(ρ0) and
t ∈ [0,∞). We know E′′ exists by continuity of g′′ on [0, 4r2], and from the computation in (42) we
have, for all t ∈ [0,∞),

E′′(t) = − d

dt

∫
Dε
|v(Ψt

v(x), t)|2 dρ0(x)

= −2

∫
Dε

d

dt
v(Ψt

v(x), t) · v(Ψt
v(x), t) dρ0(x). (43)

By the definition of v and the formulation of push-forward, we find:

d

dt
v(Ψt

v(x), t) = −
∫
Dε

d

dt
∇SkKΨtv(y)(Ψ

t
v(x)) dρ0(y). (44)

To apply the product rule to compute the integrand above, set the following notations for ∇SkKy(x)
when one of the variables is fixed and the other changes:

uy(x) := ∇SkKy(x), and wx(y) := ∇SkKy(x).

Then, by the product and chain rules, the above integrand becomes

d

dt
∇SkKΨtv(y)(Ψ

t
v(x)) = duΨtv(y)(Ψ

t
v(x))(v(Ψt

v(x), t)) + dwΨtv(x)(Ψ
t
v(y))(v(Ψt

v(y), t)). (45)
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Using the form of the interaction potential given in (H), we have, for all x, y ∈ Dε and α ∈ TxSk,

duy(x)(α) = HessSk Ky(x)α = g′′(d(x, y)2)
〈
∇Skd

2
y(x), α

〉
x
∇Skd

2
y(x) + g′(d(x, y)2) HessSk d

2
y(x)α,

where HessSk stands for the Hessian operator on the manifold Sk. Also, for all β ∈ TySk,

dwx(y)(β) = g′′(d(x, y)2)
〈
∇Skd

2
x(y), β

〉
y
∇Skd

2
y(x)− 2g′(d(x, y)2)d logx(y)(β).

As g′ and g′′ are continuous on [0, 4r2], the maps (x, y) 7→ g′(d(x, y)2) and (x, y) 7→ g′′(d(x, y)2)
are bounded on the compact set Dr × Dr. Furthermore, by smoothness of the manifold Sk, the
map (x, y) 7→ d2

y(x) is smooth on the geodesically convex set Dr ×Dr. This implies that (x, y) 7→
∇Skd

2
y(x), (x, y) 7→ HessSk d

2
y(x) and (x, y) 7→ d logx(y) are bounded on Dr × Dr, from which

we get that (x, y) 7→ duy(x) and (x, y) 7→ dwx(y) are bounded on Dr × Dr. Then, as the map
(x, t) 7→ v(x, t) is bounded on Dr × [0,∞) by Lemma 3.3, we finally obtain, by (43), (44) and (45),
that E′′ is bounded on [0,∞).

We can now apply Barbalat’s lemma:

Proposition 4.6. Let K satisfy (H) and r < π/2 − ε. Suppose that g′ > 0 and g′ is con-
tinuously differentiable on [0, 4r2]. Let ρ0 ∈ P(Dε) be such that supp(ρ0) ⊂ Dr, and consider
ρ ∈ C([0,∞),P(Dε)) the global weak solution to (1) starting from ρ0 from Proposition 4.1. Then

lim
t→∞

∫
Dε
|v(x, t)|2 dρt(x) = 0.

Proof. By Lemmas 4.4 and 4.5 we know that E(t) has a finite limit as t → ∞ and t 7→ E′′(t) is
bounded on [0,∞). From Barbalat’s lemma we then conclude that E′(t)→ 0 as t→∞, which by
(42) leads to the desired result.

From Hölder’s inequality, an immediate consequence of this result is:

lim
t→0

∫
Dε
v(x, t) dρt(x) = 0, (46)

where ρ and v are as in Proposition 4.6.
We now want to conclude the asymptotic limit for the continuum model. For the considerations

that follow it is convenient to use the following notation:

G(x, y) = 2g′(d(x, y)2)
d(x, y)

sin(d(x, y))
, for all x, y ∈ Dε, x 6= y.

We also define G(x, x) = 2g′(0) for all x ∈ Dε, by taking the limit y → x in the above.
Throughout the rest of this section we will make use of the following assumptions on G:

G(x, y) > C, for all x, y ∈ Dε, for some C > 0, (47)

and

G(x1, y1) > G(x2, y2), for all x1, y1, x2, y2 ∈ Dε such that d(x1, y1) > d(x2, y2). (48)
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Note that by (12), given a global weak solution ρ to (1) we have

v(x, t) = −
∫
Dε
G(x, y)(y − (x · y)x) dρt(y), for all (x, t) ∈ Dε × [0,∞). (49)

We set an additional notation and define c : Dε × [0,∞)→ Rd as:

c(x, t) =

∫
Dε
G(x, y)y dρt(y), for all x, y ∈ Dε × [0,∞), (50)

which enables us to rewrite (49) further as

v(x, t) = −c(x, t) + (c(x, t) · x)x. (51)

Remark 4.7. For convenience, we work with the assumptions (47) and (48) on G. We note,
however, that in terms of the interaction function g, for (47) and (48) to be satisfied it is sufficient
to assume that g′ > C/2 and g′ is nondecreasing.

We present now some important technical lemmas which will be needed to prove our main
consensus result given in Theorem 4.12.

Lemma 4.8. Let ρ ∈ P(Dε) be such that supp(ρ) ⊂ Dr for some r < π/2− ε, and assume that G
satisfies (47). Write c(x) =

∫
Dε G(x, y)y dρ(y) for all x ∈ Dε. Then,

|c(x)| > C cos r for all x ∈ Dε,

and
c(x) · z > |c(x)| cos 2r, for any x ∈ Dε and z ∈ Dr.

Proof. Since the support of ρ lies on the closed geodesic disk Dr, we have

y ·N > cos r, for all y ∈ supp(ρ). (52)

Hence, by (47) we have, for all x ∈ Dε,

|c(x)| > c(x) ·N =

∫
Dε
G(x, y)y ·N dρ(y) > C cos r,

proving the first inequality.
To prove the second inequality we fix x ∈ Dε and assume that

∫
Dε G(x, y)y dρ(y) 6= 0, otherwise

the result is trivial. We note that the unit vector c(x)/ |c(x)| lies on the closed geodesic disk Dr.
Indeed, from (52) one gets:

c(x)

|c(x)| ·N =

∫
Dε G(x, y)y ·N dρ(y)

|
∫
Dε G(x, y)y dρ(y)| >

∫
Dε G(x, y) cos r dρ(y)∫
Dε G(x, y) dρ(y)

= cos r.

Hence, the angle between N and c(x)/ |c(x)| is smaller than or equal to r, and therefore c(x)/ |c(x)|
belongs to Dr. Now, take any z ∈ Dr. Since both c(x)/ |c(x)| and z belong to Dr, the angle
between these two vectors is smaller than or equal to 2r, leading to the second inequality.
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Lemma 4.9. Let ρ ∈ P(Dε) be such that supp(ρ) ⊂ Dr for some r < π/2− ε, and assume that G
satisfies (48). Then, for any x1, x2 ∈ Dε, it holds that

c(x1) · x1 + c(x2) · x2 6 c(x1) · x2 + c(x2) · x1, (53)

where c is as in Lemma 4.8.

Proof. Let x1, x2 ∈ Dε. By a direct calculation,

c(x1) · x1 + c(x2) · x2 − c(x1) · x2 − c(x2) · x1

=

∫
Dε
G(x1, y)(y · x1 − y · x2) dρ(y) +

∫
Dε
G(x2, y)(y · x2 − y · x1) dρ(y)

=

∫
Dε

(G(x1, y)−G(x2, y))(y · x1 − y · x2) dρ(y). (54)

If y ∈ Dε is such that d(x1, y) > d(x2, y), then

G(x1, y)−G(x2, y) > 0 and y · x1 − y · x2 6 0,

where we used (48) and the fact that d(x1, y) = arccos(x1 ·y) (and similarly for x2). Also, if y ∈ Dε
is such that d(x1, y) 6 d(x2, y), then

G(x1, y)−G(x2, y) 6 0, and y · x1 − y · x2 > 0.

We conclude that the product

(G(x1, y)−G(x2, y))(y · x1 − y · x2) 6 0 for all y ∈ Dε.

By (54), one then concludes:

c(x1) · x1 + c(x2) · x2 − c(x1) · x2 + c(x2) · x1 6 0.

We finally give a lemma involving the asymptotic behaviour of the map c(x, t) defined in (50).

Lemma 4.10. Let K satisfy (H) and r < π/2 − ε. Suppose that g′ > 0 and g′ is continuously
differentiable on [0, 4r2]. Also assume that G satisfies (47) (see Remark 4.7). Let ρ0 ∈ P(Dε) be
such that supp(ρ0) ⊂ Dr, and consider ρ ∈ C([0,∞);P(Dε)) the global weak solution to (1) starting
from ρ0 from Proposition 4.1. Then

lim
t→∞

∫
Dε

(|c(x, t)| − c(x, t) · x) dρt(x) = 0.

Proof. By Proposition 4.6 and (51) we have:

lim
t→∞

∫
Dε

(|c(x, t)|2 − (c(x, t) · x)2) dρt(x) = 0. (55)

From the second inequality in Lemma 4.8, we infer, for all x ∈ Dε,

|c(x, t)|+ c(x, t) · x > |c(x, t)|(1 + cos 2r).
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Hence, also using the first inequality in Lemma 4.8,∫
Dε

(|c(x, t)|2 − (c(x, t) · x)2) dρt(x)

=

∫
Dε

(|c(x, t)| − c(x, t) · x)(|c(x, t)|+ c(x, t) · x) dρt(x)

> C cos r(1 + cos 2r)

∫
Dε

(|c(x, t)| − c(x, t) · x) dρt(x) > 0.

From the estimate above and (55) we conclude the proof.

We now state and prove an important lemma towards our consensus result.

Lemma 4.11. Let K satisfy (H) and r < π/2 − ε. Suppose that g′ > 0 and g′ is continuously
differentiable on [0, 4r2]. Also assume that G satisfies (47) and (48) (see Remark 4.7). Let ρ0 ∈
P(Dε) be such that supp(ρ0) ⊂ Dr, and write ρ ∈ C([0,∞);P(Dε)) the global weak solution to (1)
starting from ρ0 from Proposition 4.1. Then

lim
t→∞

∫
Dε

∫
Dε

(1− x1 · x2) dρt(x1) dρt(x2) = 0.

Proof. At start we shall suppress all the dependences on t ∈ [0,∞) for clarity. For all x1, x2 ∈ Dε,
subtract (x1 · x2)(c(x1) · x1 + c(x2) · x2) on both sides of (53) to get:

(1− x1 · x2)(c(x1) · x1 + c(x2) · x2)

6 c(x1) · x2 − (c(x1) · x1)(x1 · x2) + c(x2) · x1 − (c(x2) · x2)(x1 · x2).

Integrating the above inequality and passing all terms to the right-hand side:

0 6
∫
Dε

∫
Dε

(c(x1) · x2 − (c(x1) · x1)(x1 · x2)) dρ(x1) dρ(x2)

+

∫
Dε

∫
Dε

(c(x2) · x1 − (c(x2) · x2)(x1 · x2)) dρ(x1) dρ(x2)

−
∫
Dε

∫
Dε

(1− x1 · x2)(c(x1) · x1) dρ(x1) dρ(x2)−
∫
Dε

∫
Dε

(1− x1 · x2)(c(x2) · x2) dρ(x1) dρ(x2).

Now add
∫
Dε

∫
Dε(1− x1 · x2)(|c(x1)|+ |c(x2)|) dρ(x1) dρ(x2) to both sides to get:∫
Dε

∫
Dε

(1− x1 · x2)(|c(x1)|+ |c(x2)|) dρ(x1) dρ(x2)

6
∫
Dε

∫
Dε

(c(x1) · x2 − (c(x1) · x1)(x1 · x2)) dρ(x1) dρ(x2) (:= I1)

+

∫
Dε

∫
Dε

(c(x2) · x1 − (c(x2) · x2)(x1 · x2)) dρ(x1) dρ(x2) (:= I2)

+

∫
Dε

∫
Dε

(1− x1 · x2)(|c(x1)| − c(x1) · x1) dρ(x1) dρ(x2) (:= I3)

+

∫
Dε

∫
Dε

(1− x1 · x2)(|c(x2)| − c(x2) · x2) dρ(x1) dρ(x2) (:= I4).

24



From the first inequality in Lemma 4.8, we have:

0 6 2C cos r

∫
Dε

∫
Dε

(1−x1 ·x2) dρ(x1) dρ(x2) 6
∫
Dε

∫
Dε

(1−x1 ·x2)(|c(x1)|+ |c(x2)|) dρ(x1) dρ(x2).

Combining the above inequalities we get:

0 6 2C cos r

∫
Dε

∫
Dε

(1− x1 · x2) dρ(x1) dρ(x2) 6 I1 + I2 + I3 + I4. (56)

We now show that the each term I1, I2, I3 and I4 converges to 0 as t→∞. Indeed, by restoring
the dependence on t, we have:

I1 =

∫
Dε
x2 ·

(∫
Dε

(c(x1, t)− (c(x1, t) · x1)x1) dρt(x1)

)
dρt(x2).

By (46) and (51) we get limt→∞ I1 = 0, and by a similar argument limt→∞ I2 = 0. For I3 we
estimate (note that |1− x1 · x2| 6 2 and |c(x1)| − c(x1) · x1 > 0):

I3 6 2

∫
Dε

∫
Dε

(|c(x1, t)| − c(x1, t) · x1) dρt(x1) dρt(x2) = 2

∫
Dε

(|c(x1, t)| − c(x1, t) · x1) dρt(x1).

Since I3 > 0 and by Lemma 4.10 the right-hand side of the inequality above approaches 0 at
infinity, we infer limt→∞ I3 = 0. A similar argument yields limt→∞ I4 = 0. Finally, by passing to
the limit t→∞ in (56) we obtain:

0 6 lim
t→∞

2C cos r

∫
Dε

∫
Dε

(1− x1 · x2) dρ(x1) dρ(x2) 6 0,

which leads to the desired result.

We can finally prove the main result of this section:

Theorem 4.12 (Asymptotic consensus in the continuum model). Let K satisfy (H) and r < π/2−
ε. Suppose that g′ > 0 and g′ is continuously differentiable on [0, 4r2]. Also assume that G satisfies
(47) and (48). Let ρ0 ∈ P(Dε) be such that supp(ρ0) ⊂ Dr, and consider ρ ∈ C([0,∞);P(Dε)) the
global weak solution to (1) starting from ρ0 from Proposition 4.1. Then there exists p ∈ Dr such
that W1(ρt, δp)→ 0 as t→∞.

Proof. By Proposition 4.1, for all t ∈ [0,∞) we have that supp(ρt) is a subset of Dr, which is com-
pact, so that Prokhorov’s theorem ensures the existence of ρ∞ ∈ P(Dε) such that supp(ρ∞) ⊂ Dr

and (ρt)t>0 converges narrowly to ρ∞. By compactness of the sphere we further get W1(ρt, ρ∞)→ 0
as t→∞.

Let φ : Dε × Dε → R denote the map (x1, x2) 7→ 1 − x1 · x2, which we observe is continuous
and bounded. We also note that the family (ρt⊗ ρt)t>0 of product measures narrowly converges to
ρ∞ ⊗ ρ∞. By Lemma 4.11 we then have

0 = lim
t→∞

∫
Dε

∫
Dε
φ(x1, x2) dρt(x1) dρt(x2) =

∫
Dε

∫
Dε
φ(x1, x2) dρ∞(x1) dρ∞(x2).

Since φ > 0 we get that φ(x1, x2) = 0 for ρ∞ ⊗ ρ∞-almost all (x1, x2) ∈ Dε × Dε. Suppose,
by contradiction, that there exist x1, x2 ∈ supp(ρ∞) with x1 6= x2. Then, there exists δ > 0
so that Bδ(x1) ∩ Bδ(x2) = ∅ and (ρ∞ ⊗ ρ∞)(Bδ(x1) × Bδ(x2)) > 0. Furthermore, there exists
(x′1, x

′
2) ∈ Bδ(x1)×Bδ(x2) such that φ(x′1, x

′
2) = 0, that is, x′1 · x′2 = 1. Since x′1 and x′2 lie on the

sphere, this implies that x′1 = x′2, which contradicts Bδ(x1) ∩Bδ(x2) = ∅. We infer that supp(ρ∞)
is a singleton, which concludes the proof.
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4.3 Asymptotic consensus in the discrete model

We turn now to the asymptotic behaviour of solutions in the discrete model with purely attractive
interaction potentials. First we want to note that the theory developed in Section 4.2 (e.g., Theorem
4.12) considers weak measure-valued solutions, and in particular it applies to the discrete case as
well. Nevertheless, we prove below a consensus result for the discrete model that assumes weaker
assumptions on the interaction potential.

Fix an integer n > 2 and, without loss of generality, consider n particles of identical masses 1/n
that evolve on Dε according to the discrete model (40), which then reads:x

′
i(t) = − 1

n

n∑
j=1

∇SkKxj(t)(xi(t)),

xi(0) = x0
i .

(57)

In analogy with the continuum model, we remark that the discrete model (57) is a gradient flow
with respect to the discrete energy En : Dεn → R given by:

En(x1, . . . , xn) =
1

n2

∑
16i6j6n

K(xi, xj), for all (x1, . . . , xn) ∈ Dεn. (58)

Indeed, one can reformulate the first line in (57) as

x′i(t) = −n∇iSkEn(x1(t), . . . , xn(t)), (59)

where ∇iSk stands for the manifold gradient with respect to the ith variable. This energy will play
an important role in the considerations below.

We present a technical lemma first.

Lemma 4.13. Let x1, . . . , xn ∈ Dπ/2 be such that

∆ := max
16i,j6n

d(xi, xj) > 0.

By reindexing if necessary, assume that d(x1, x2) = ∆. Then,

logx1 x2 · logx1 xj > 0, for all j ∈ {1, . . . , n}.
Proof. Consider the closed disk D∆(x2) centred at x2 with radius ∆. Then, by definition of ∆ and
the fact that d(x1, x2) = ∆, we have xj ∈ D∆(x2) for all j ∈ {1, . . . , n}.

If n = 2, then the result is trivial; suppose that n > 3. For j ∈ {3, . . . , n} fixed, consider the
minimizing geodesic between x1 and xj . Parametrize this geodesic by x(t), with x(0) = x1 and
x′(0) = logx1 xj ; in particular, x(1) = xj and x(t) 6= x2 for all t ∈ [0, 1]. Then, by the chain rule
and (10) we find

d

dt
d(x(t), x2)2 = ∇Skd

2
x2(x(t)) · x′(t) = −2 logx(t) x2 · x′(t). (60)

Note that by the geodesic convexity of D∆(x2), we have x(t) ∈ D∆(x2) and d(x(t), x2) 6 d(x1, x2)
for all t ∈ [0, 1]. Hence the map t 7→ d(x(t), x2)2 is nonincreasing at t = 0, and by setting t = 0 in
(60) we find

0 >
d

dt

∣∣∣∣
t=0

d(x(t), x2)2 = −2 logx1 x2 · logx1 xj ,

which yields the desired conclusion.
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The following theorem shows the asymptotic convergence towards a consensus/synchronized
state for the intrinsic model on sphere.

Theorem 4.14 (Asymptotic consensus in discrete model). Let K satisfy (H) and r < π/2 − ε.
Assume that g′ has continuous derivative on [0, 4r2] and satisfies g′(s) > Csα for all s ∈ [0, 4r2],
for some C > 0 and α > 0. Let furthermore (x0

i )
n
i=1 ⊂ Dr. Then the unique global solution (xi)

n
i=1

to (57) from Proposition 4.2 is such that d(xi(t), xj(t))→ 0 as t→∞ for every i, j ∈ {1, . . . n}.
Proof. We proceed in two steps.

Step 1. By abuse of notation, denote t 7→ En(t) the map such that En(t) = En(x1(t), . . . , xn(t))
for all t ∈ [0,∞), where we recall that the discrete energy En is given by (58). Writing ρ0 =
1
n

∑n
i=1 δx0i

, we have supp(ρ0) ⊂ Dr, and Proposition 4.1 gives us the existence of a unique global

weak solution ρ to (1) starting from ρ0. From Lemma 3.9, the unique global weak solution ρn

starting from ρ0 from Proposition 4.1 reads:

ρnt =
1

n

n∑
i=1

δxi(t), for all t ∈ [0,∞).

Noting that the discrete energy En(t) = E[ρnt ], where E is the continuum energy (41), we obtain
from Lemmas 4.4 and 4.5 that En(t)→ E∞ as t→∞ for some E∞ ∈ R and the map t 7→ E′′n(t) is
bounded on [0,∞).

By applying Barbalat’s lemma to t 7→ En(t), we then get

E′n(t)→ 0, as t→∞.

Using (59), we compute, for all t ∈ [0,∞),

E′n(t) =
n∑
i=1

∇iSkEn(x1(t), . . . , xn(t)) · x′i(t) = − 1

n

n∑
i=1

|x′i(t)|2 6 0,

which then implies that

x′i(t)→ 0, as t→∞ for all i ∈ {1, . . . , n}. (61)

Step 2. Recall from Proposition 4.2 that xi(t) ∈ Dr for all t ∈ [0,∞) and i ∈ {1, . . . , n}; in
particular, any particles stay within distance 2r at all times. Let ∆: [0,∞)→ [0,∞) be given by

∆(t) = max
16i,j6n

d(xi(t), xj(t)) for all t ∈ [0,∞).

We want to show that ∆(t) → 0 as t → ∞, which will conclude the proof. We will use Lemma
4.13. Reindexing particles at all times if necessary, assume that

d(x1(t), x2(t)) = ∆(t), for all t ∈ [0,∞).

Taking the inner product with logx1(t) x2(t) on both sides of (57) for particle i = 1, we get

x′1 · logx1 x2 =
1

n

n∑
j=1

2g′(d(x1, xj)
2) logx1 xj · logx1 x2
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>
2

n
g′(d(x1, x2)2)| logx1 x2|2, (62)

where we dropped the dependence on t for simplicity, and where for the inequality on the second
line we used Lemma 4.13 to bound from below a sum of nonnegative terms by the second term.

Using the Cauchy–Schwarz inequality |x′1·logx1 x2| 6 |x′1|| logx1 x2| and the fact that | logx1 x2| =
d(x1, x2), from (62) we find

2

n
g′(d(x1, x2)2)d(x1, x2) 6 |x′1|.

Finally, using the bound assumption on g′ we get, for all t ∈ [0,∞),

2

n
Cd(x1, x2)1+2α 6 |x′1|,

where 1 + 2α > 0. And since by (61), x′1(t) approaches 0 as t→∞, so does d(x1(t), x2(t)). Hence

∆(t)→ 0, as t→∞.

Examples. We discuss here some examples of interaction potentials that satisfy the assumptions
in Theorem 4.14.

1. Power-law potentials. The quadratic potential

K(x, y) = d(x, y)2, for g(s) = s,

satisfies g′(s) > Csα for all s ∈ [0,∞) with C = 1 and α = 0, and g is furthermore of class
C2. More generally, for q > 2,

K(x, y) = d(x, y)2q, for g(s) = sq,

satisfies g′(s) > Csα for all s ∈ [0,∞) with C = q and α = q − 1, and is of class C2.

Interaction potentials in power-law form have been one of the main types of potentials investi-
gated in the aggregation literature [4,5,16,18,19]. Despite their simplicity, it was shown that
they can capture a wide variety of “swarm” behaviours, such as aggregations on disks, annuli,
rings, delta concentrations, and others, for both the model with extrinsic interactions [29], as
well as for the intrinsic model investigated in this paper [20].

2. Potential in Lohe sphere model. The potential

K(x, y) = 2 sin2

(
d(x, y)

2

)
, for g(s) = 2 sin2

(√
s

2

)
,

corresponds to the Lohe sphere model studied in various recent papers [23, 26]. Indeed, the
discrete Lohe model on the unit sphere reads:

x′i = Ωixi +
κ

n

n∑
k=1

(xk − (xk · xi)xi), i ∈ {1, . . . , n},

where Ωi is a natural frequency and κ is a coupling strength. As done previously, all particles
xi(t) ∈ Sk for all t ∈ [0,∞) are considered as vectors in Rk+1. Given that on the unit sphere,

28



d(x, y) = arccos(x · y) for all x, y ∈ Sk, from the identity cos θ = 1−2 sin2(θ/2), one can write
the potential as:

K(x, y) = 1− cos d(x, y) = 1− x · y = 1
2 |x− y|2.

Therefore, K can also be regarded as a quadratic potential with respect to the Euclidean
distance in the ambient space Rk+1. The Euclidean gradient of K is given by

−∇Ky(x) = y, for all x, y ∈ Dε,

and projecting it onto the tangent plane to the sphere one gets the manifold gradient of K:

−∇SkKy(x) = y − (x · y)x, for all x, y ∈ Dε,

which is the coupling term in the Lohe sphere model. Compute

g′(s) =
1

2

sin
√
s

2√
s

2

cos

√
s

2
, for all s ∈ [0,∞).

Take an initial particle configuration of particles in a geodesic disk Dr, with r < π/2−ε. The
function g′ verifies

g′(s) >
cos r

2
, for all s ∈ [0, 4r2],

so it satisfies the bound condition of Theorem 4.14 with C = cos(r)/2 and α = 0. Finally, it
can also be checked that g is of class C2.

Remark 4.15. Among the examples above, we note that only the quadratic potential and the Lohe
sphere potential satisfy the assumptions of Theorem 4.12, our continuum result. Indeed, for the
quadratic potential the function g satisfies the sufficient conditions given in Remark 4.7, while for
the Lohe model, a direct calculation shows G(x, y) = 1 for all x, y ∈ Dε. Higher-order power-law
potentials, however, do not satisfy (47) as G is not bounded below by a positive constant in this
case. This illustrates the fact that our discrete result (Theorem 4.14) holds for a wider class of
potentials than our continuum counterpart (Theorem 4.12).

5 Intrinsic aggregation model and consensus on other manifolds

In this section we consider the intrinsic aggregation model and its asymptotic behaviour on other
manifolds, in particular on a hypercylinder.

5.1 Intrinsic aggregation model on cylinder

We show that results similar to those in Section 3 can be obtained for a cylinder in R3, or, more
generally, for a hypercylinder in arbitrary dimension. Here, by a hypercylinder in Rk+1 we mean
the product manifold of a circle (endowed with the induced metric from R2) with Rk−1, canonically
embedded in Rk+1. Similarly as in the case of the sphere, this embedding in Rk+1 allows us to treat
points and tangent vectors of Ck as vectors in Rk+1. For simplicity, we present the calculations for
the cylinder in R3; extending the considerations to a hypercylinder would be immediate.

Consider the wrapping parametrization (cosx, sinx, z) with (x, z) ∈ [0, 2π)×R of a cylinder in
R3. Similarly to the sphere, we restrict our study to a subset of the cylinder where no two points
are in the cut locus of each other. Note that for a point on the cylinder, its cut locus consists
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in the line on the cylinder opposite to it. Specifically, consider the subset Bε of the cylinder that
corresponds, under the wrapping map, to the band (0, π− ε)×R, where 0 < ε < π is fixed, that is,

Bε = {(cosx, sinx, z) | x ∈ (0, π − ε), z ∈ R}.

This subset is contained in an open half-cylinder and hence, the cut locus of each point in it lies
outside the set; see (11) to compare with the sphere case.

The wrapping parametrization is an isometry between the xz-plane and the cylinder. The
metric is the identity matrix, and so is its inverse (as is for the Euclidean plane). Take two generic
points (x, z) and (x̄, z̄) on the band (0, π − ε) × R, corresponding to points P and Q on Bε. The
distance on the cylinder between P and Q is the distance between the two points on the plane:

d(P,Q) =
(
(x− x̄)2 + (z − z̄)2

)1/2
.

A well-posedness result for the intrinsic model (1) on the cylinder would follow as in Section
3, provided analogues to Lemmas 3.1, 3.3 and 3.5 are established for the cylinder (Lemma 3.2
following similarly). We sketch briefly the arguments leading to such analogous lemmas. Using the
formula for surface gradient in coordinates one can compute, for points P = (x, z) and Q = (x̄, z̄)
in the cylinder:

∇C2d2
Q(P ) =

∂

∂x
d2(P,Q) ex +

∂

∂z
d2(P,Q) ez

= 2(x− x̄)ex + 2(z − z̄)ez,

where ex and ez are the tangent vectors along coordinate lines at P , given by:

ex = (− sinx, cosx, 0), and ez = (0, 0, 1).

Also, the logarithm map in coordinates is given by:

logP Q = (x̄− x)ex + (z̄ − z)ez.

Analogue of Lemma 3.1. Consider two time-dependent vector fields X and Y on Bε and let
Σ ⊂ Bε. Let moreover Ψt

X and Ψt
Y be the flow maps defined on Σ× [0, τ), for some τ > 0, generated

by (X,Σ) and (Y,Σ). We also assume that X bounded on Bε× [0, τ) and Lipschitz continuous with
respect to its first variable on Bε× [0, τ) (i.e., it satisfies (15) on Bε×Bε× [0, τ) for some LX > 0).

Fix p ∈ Σ and t ∈ [0, τ); we will be using (x, z) as coordinates for P = Ψt
X(p) and (x̄, z̄) for

Q = Ψt
Y (p). Suppose P 6= Q and compute:

d

dt
d(P,Q) = ∇C2dQ(P ) ·Xt(P ) +∇C2dP (Q) · Yt(Q)

=
1

d(P,Q)

(
((x− x̄)ex + (z − z̄)ez)︸ ︷︷ ︸

:=A

·Xt(P ) + ((x̄− x)ex̄ + (z̄ − z)ez̄)︸ ︷︷ ︸
:=B

·Yt(Q)
)
.

Note that |A| = |B| = d(P,Q). Add and subtract A ·Xt(Q) and B ·Xt(Q) to the term in between
the large brackets in the right-hand side above. Then estimate this term as:

A ·Xt(P ) +B · Yt(Q) = A ·Xt(P )−A ·Xt(Q) +A ·Xt(Q) +B ·Xt(Q)−B ·Xt(Q) +B · Yt(Q)
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6 |A| |Xt(P )−Xt(Q)|︸ ︷︷ ︸
6LX d(P,Q)

+|A+B|‖X‖L∞(Bε×[0,τ)) + |B|‖X − Y ‖L∞(Bε×[0,τ)).

In computing A+B the z-terms cancel and we get

|A+B| = |x− x̄||(− sinx+ sin x̄, cosx− cos x̄, 0)|
6
√

2|x− x̄|2 6
√

2 d(P,Q)2.

Putting the estimates together we find:

d

dt
d(P,Q) 6 (LX +

√
2‖X‖L∞(Bε×[0,τ)))d(P,Q) + ‖X − Y ‖L∞(Bε×[0,τ)),

and Gronwall’s lemma will yield a similar result as in Lemma 3.1.

Analogue of Lemma 3.3. To get a similar Lipschitz property, we consider three generic points
P = (x, z), Q = (x̄, z̄) and R = (x̄, z̄), and estimate:∣∣∇C2d2

R(P )−∇C2d2
R(Q)

∣∣ = 2|(x− x̃)ex + (z − z̃)ez − (x̄− x̃)ex̄ + (z̄ − z̃)ez̄|
6 2(|(x− x̄)ex|+ |(x̄− x̃)(ex − ex̄)|+ |(z − z̄)ez|),

where in the above we added and subtracted (x̄− x̃)ex, used ez = ez̄, and the triangle inequality.
Then use

|ex − ex̄| = |(− sinx+ sin x̄, cosx− cos x̄, 0)| 6
√

2|x− x̄|,
together with |x̄− x̃| 6 π and |ex| = |ez| = 1 to get∣∣∇C2d2

R(P )−∇C2d2
R(Q)

∣∣ 6 2((1 +
√

2π)|x− x̃|+ |z − z̃|)
6 2
√

2(1 +
√

2π)d(P,Q). (63)

For a potential that satisfies (H), one estimates:

|∇C2KR(P )−∇C2KR(Q)| = |g′(d(P,R)2)∇C2 d2
R(P )− g′(d(Q,R)2)∇C2 d2

R(Q)|
6 |g′(d(P,R)2)− g′(d(Q,R)2)||∇C2 d2

R(P )|+ |g′(d(Q,R)2)||∇C2 d2
R(P )−∇C2 d2

R(Q)|
6 2Lg′ |d(P,R)2 − d(Q,R)2|d(P,R) + Cg′ |∇C2 d2

R(P )−∇C2 d2
R(Q)|

6 (2Lg′(d(P,R) + d(Q,R))d(P,R) + Cg′2
√

2(1 +
√

2π))d(P,Q), (64)

where we added and subtracted g′(d(Q,R)2)∇C2 d2
R(P ) on the first line and then used the triangle

inequality, we used the bound and Lipschitz constant of g′ for the second inequality, and triangle
inequality |d(P,R)− d(Q,R)| 6 d(P,Q) and (63) for the last inequality.

There is an important word of caution here, as the cylinder is unbounded and the bounds and
Lipschitz constants of g′ need to be taken on compact sets. We deal with this issue similarly to how
Cañizo et al. [11] have dealt with the unboundedness of the Euclidean space. Namely, we consider
estimates such as (64) only for points in an a priori fixed compact subset of Bε, say of diameter ∆,
in which case, for preciseness, one has to indicate the dependence of the constants on this diameter
(i.e., Lg′(∆) and Cg′(∆)). We also note that, for simplicity of notation, we have not indicated the
dependence on ε of the various constants, as we did for the sphere.
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With this clarification, from (64) one can find the following Lipschitz estimate on a compact
set of diameter ∆:

|∇C2KR(P )−∇C2KR(Q)| 6 L∆d(P,Q), (65)

where
L∆ = 4Lg′(∆)∆2 + Cg′(∆)2

√
2(1 +

√
2π).

Then, similarly to the sphere case, one can use (65) and the analogue of (24) for the cylinder to es-
tablish a Lipschitz estimate as in Lemma 3.3 for the vector field v[ρ] on Bε, for ρ ∈ C([0, T );P∞(Bε))
such that ρt is supported within a compact subset of Bε of diameter ∆ for all t ∈ [0, T ), where the
Lipschitz constant is given by L∆ above.

On the other hand, the boundedness of v[ρ] is immediate. Indeed, for ρ ∈ C([0, T );P∞(Bε))
such that ρt is supported within a compact subset of Bε of diameter ∆ for all t ∈ [0, T ), one has,
for all (x, t) ∈ Bε × [0, T ):

|v[ρ](x, t)| 6
∫
Bε
|g′(d(x, y)2)∇C2d2

y(x)|dρt(y)

6 2∆Cg′(∆). (66)

Analogue of Lemma 3.5. Finally, we show how one can get a Lipschtiz condition of type (26)
on the cylinder. For three points P = (x, z), Q = (x̄, z̄) and R = (x̃, z̃), one finds:∣∣∇C2d2

Q(P )−∇C2d2
R(P )

∣∣ = 2|(x̄− x̃)ex + (z̄ − z̃)ez|
= 2

(
(x̄− x̃)2 + (z̄ − z̃)2

)1/2
= 2 d(Q,R). (67)

Then, for a potential K that satisfies (H), we estimate:

|∇C2KQ(P )−∇C2KR(P )| = |g′(d(P,Q)2)∇C2d2
Q(P )− g′(d(P,R)2)∇C2d2

R(P )|
6 |g′(d(P,Q)2)− g′(d(P,R)2)||∇C2d2

Q(P )|+ |g′(d(P,R)2)||∇C2d2
Q(P )−∇C2d2

R(P )|
6 (4Lg′(∆)∆2 + 2Cg′(∆))d(Q,R), (68)

where we added and subtracted g′(d(P,R)2)∇C2d2
Q(P ) on the first line and then used the triangle

inequality, and for the second inequality we used the bounds and Lipschitz constant of g′, the
triangle inequality |d(P,Q) − d(P,R)| 6 d(Q,R), equation (67), and the a priori assumption that
the three points lie on a set of diameter ∆.

Similar to the proof for the sphere in Lemma 3.5, estimate (68) leads to a Lipschitz condition
like (26) for ρ, σ ∈ C([0, T );P∞(Bε)) such that ρt and σt are supported within a compact subset of
Bε of diameter ∆, with the Lipschitz constant given by:

Λ∆ = 4Lg′(∆)∆2 + 2Cg′(∆).

The considerations above lead to the following well-posedness result on the cylinder.

Theorem 5.1 (Well-posedness on open half-cylinder). Suppose that K satisfies (H) and let ρ0 ∈
P∞(Bε). Then, there exist a time T > 0, a compact set supp(ρ0) ⊂ Q ⊂ Bε, and a unique weak
solution to (1) among all curves in C([0, T );P(Q)) starting from ρ0, where P(Q) denotes the set
of probability measures which are supported within Q.
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Proof. The proof is very similar to that of Theorem 3.6 and we just sketch it here. Because of the
unboundedness of Bε, the proof slightly differs from the case of the sphere; as already mentioned,
we deal with this issue by considering only solutions which stay supported within an a priori fixed
compact set. More specifically, in this proof take zm < zM such that supp(ρ0) lies within the
cylindrical band between z = zm and z = zM , and write Q∆ the compact cylindrical band between
z = 2zm − zM and z = 2zM − zm, whose diameter we denote by ∆.

The idea is to consider a map Γ on C([0, τ);P(Q∆)), analogously defined as in (31), where τ > 0
is the maximal time so that Γ is well-defined, and to show that, if restricted to some time interval
[0, T ) with T 6 τ small enough, Γ is a map from C([0, T );P(Q∆)) into itself and a contraction.

We first show that supp(Γ(σ)(t)) ⊂ Q∆ for all t ∈ [0, T ), for some T 6 τ to be chosen later,
and for all σ ∈ C([0, τ);P(Q∆)). Take such σ and then, given the bound (66) on the velocity field
v[σ] and the bounds on supp(ρ0), note that supp(Γ(σ)(t)) lies within the cylindrical band between
z = 2zm − zM and z = 2zM − zm, i.e., within Q∆, provided t < (zM − zm)/(2∆Cg′(∆)) =: T .
Similarly as in the proof of Theorem 3.6, one then finds that Γ defines a map from the metric space
(C([0, T );P(Q∆)),W1) into itself.

The rest of the proof, that is, showing that Γ is a contraction, follows exactly as for Theorem 3.6
(by eventually restricting T further) using the analogues of Lemmas 3.1, 3.3, 3.5 for the cylinder,
as established above. We leave the details to the reader.

Remark 5.2. Thanks to the considerations above, the results for the sphere of Section 3.4 hold
analogously for the cylinder; in particular, stability and mean-field limit hold true on the cylinder.

5.2 Consensus on product manifolds

In this section we consider the intrinsic aggregation model on product manifolds. Specifically,
given two smooth, complete and connected Riemannian manifolds (M1, g1), (M2, g2), we consider
M = M1×M2 with the product metric g1+g2 [31]. The goal is to infer the formation of consensus on
the product manifold M from aggregation phenomena known on M1 and M2. We denote by U1 and
U2 two generic open, geodesically convex subsets of M1 and M2, respectively, and set U = U1×U2.

The minimizing geodesic γ connecting points (x, y), (x̄, ȳ) ∈ U can be expressed as:

γ(t) = (γ1(t), γ2(t)), for t ∈ [0, 1],

where γ1 and γ2 are the minimizing geodesics connecting x and x̄ on U1, and y and ȳ on U2,
respectively. We consider the product distance between the two points on M to be given by:

d((x, y), (x̄, ȳ)) =
√
d1(x, x̄)2 + d2(y, ȳ)2, (69)

where d1 and d2 are the Riemannian distances on M1 and M2, respectively. Finally, particularly
important for the considerations of this section, from the definition of the product manifold the
Riemannian logarithm on U is given by:

log(x,y)(x̄, ȳ) = (logx x̄, logy ȳ). (70)

Example 5.3. We give below a few examples of common product manifolds.

1. Euclidean space Rk+k̃ = Rk × Rk̃.

2. Cylinder S1 × R, where S1 represents the unit circle with induced metric from R2.
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3. Flat torus S1 × S1, considered as a subset of R4, where S1 has the induced metric from R2.

Consider now our intrinsic aggregation model on a product manifold M with a (purely attrac-
tive) quadratic potential given by:

K(z, z̄) =
1

2
d2(z, z̄), for all z, z̄ ∈M, (71)

i.e., an interaction potential in the form (8), with g(s) = s/2. For this potential,

∇MKz̄(z) = − logz z̄, for all z, z̄ ∈ U .

We first show that with this interaction potential, solutions to the aggregation model on the
product manifold M can be obtained from solutions on its components M1 and M2.

Proposition 5.4 (Well-posedness in continuum product model). Let K be as in (71), and suppose
that there exist unique solutions ρ1 ∈ C([0, T );P1(U1)) and ρ2 ∈ C([0, T );P1(U2)) to model (1) on
U1 and U2, respectively. Then, µ := ρ1 ⊗ ρ2 is the unique weak solution to (1) among curves in
C([0, T );P1(U)).

Proof. For all (x, y) =: z ∈ supp(µ0) = supp(ρ1
0 ⊗ ρ2

0) and t ∈ [0, T ), set

Ψv[µ](z, t) = (Ψv[ρ1](x, t),Ψv[ρ2](y, t)) =: (Ψt
v[ρ1],Ψ

t
v[ρ2])(x, y),

where Ψv[ρ1] and Ψv[ρ2] are the unique flow maps generated by v[ρ1] and v[ρ2] and defined on the
time interval [0, T ), and compute

d

dt
Ψv[µ](z, t) =

(
d

dt
Ψv[ρ1](x, t),

d

dt
Ψv[ρ2](y, t)

)
= (v[ρ1](x, t), v[ρ2](y, t)).

Further, by using the specific form of K in (71), along with (70), we find:

(v[ρ1](x, t), v[ρ2](y, t)) =

(∫
M1

logx x̄ dρ1
t (x̄),

∫
M2

logy ȳ dρ2
t (ȳ)

)
=

∫
M1

∫
M2

(logx x̄, logy ȳ) dρ2
t (ȳ) dρ1

t (x̄)

=

∫
M

logz z̄ dµt(z̄)

= v[µ](z, t).

Hence Ψv[µ] is the unique flow map generated by v[µ] and defined on the time interval [0, T ).
Recalling now that, for all t ∈ [0, T ),

ρ1
t = Ψt

v[ρ1]#ρ
1
0, ρ2

t = Ψt
v[ρ2]#ρ

2
0,

we have

Ψt
v[µ]#µ0 = (Ψt

v[ρ1],Ψ
t
v[ρ2])#(ρ1

0 ⊗ ρ2
0) = (Ψt

v[ρ1]#ρ
1
0)⊗ (Ψt

v[ρ2]#ρ
2
0) = ρ1

t ⊗ ρ2
t = µt,

which ends the proof.
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This result gives us the continuum consensus on product manifolds:

Proposition 5.5 (Asymptotic consensus in continuum product model). Let K be as in (71).
Suppose that there exist unique global solutions ρ1 ∈ C([0,∞);P1(U1)) and ρ2 ∈ C([0,∞);P1(U2))
to model (1) on U1 and U2, respectively, and suppose they reach asymptotic consensus, that is,
there exist p ∈ U1 and q ∈ U2 such that W1(ρ1

t , δp) → 0 and W1(ρ2
t , δq) → 0 as t → ∞. Assume

moreover that there exist t̄ > 0 and compact sets Q1 ⊂ U1 and Q2 ⊂ U2 such that supp(ρ1
t ) ⊂ Q1

and supp(ρ2
t ) ⊂ Q2 for all t ∈ [t̄,∞). Then, the unique global weak solution µ to (1) on U from

Proposition 5.4 satisfies W1(µt, δ(p,q))→ 0 as t→∞.

Proof. Since µ = ρ1 ⊗ ρ2, we get that (µt)t>0 converges narrowly to δp ⊗ δq = δ(p,q). Furthermore,
the compactness of Q1 ×Q2 ensures that in fact W1(µt, δ(p,q))→ 0 as t→∞.

Remark 5.6. In Proposition 5.5, the assumption of support compactness beyond a certain time
allows us to infer consensus on the product manifold in the W1 topology from the W1 consensus on
each component. Indeed, it ensures the convergence of the first moment of the product measure.

We observe that this assumption can be relaxed if consensus in each component is regarded in
the W2 topology instead, that is, in the topology given by the quadratic Wasserstein distance, as
illustrated by the following computation. Given z0 = (x0, y0) ∈ U , the second moment of µt = ρ1

t⊗ρ2
t

with respect to z0 for all t ∈ [0,∞), satisfies∫
U
d(z0, z)

2 dµt(z) =

∫
U1

∫
U2
d((x0, y0), (x, y))2 dρ2

t (y) dρ1
t (x)

=

∫
U1

∫
U2

(d1(x0, x)2 + d2(y0, y)2) dρ2
t (y) dρ1

t (x)

=

∫
U1
d1(x0, x)2 dρ1

t (x) +

∫
U2
d2(y0, y)2 dρ2

t (y).

Then, provided W2(ρ1
t , δp)→ 0 and W2(ρ2

t , δq)→ 0 as t→∞, we get∫
U
d(z0, z)

2 dµt(z)→
∫
U1
d1(x0, x)2 dδp(x) +

∫
U2
d2(y0, y)2 dδq(y)

=

∫
U
d(z0, z)

2 dδ(p,q)(z), as t→∞,

and conclude that W2(µt, δ(p,q))→ 0 as t→∞.
We further note from the computation above that as an alternative to changing the topology of

consensus, the compactness assumption in Proposition 5.5 can also be relaxed by choosing d = d1+d2

as product distance instead of (69).

To be able to consider a wider range of product manifolds (see Remark 5.8), we consider now
the case when M is the real line R, equipped with the canonical topology. The well-posedness and
asymptotic consensus on R with a quadratic attractive potential is well-known in the literature;
well-posedness can be obtained by following the same ideas as in the proof of Proposition 4.1, while
we present the consensus below for completeness.

Lemma 5.7. Consider model (1) on R with quadratic interaction potential, K(x, y) = 1
2 |x − y|2,

and a compactly supported initial measure ρ0. Then, the unique global weak solution ρ starting from
ρ0 reaches asymptotic consensus.
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Proof. For all t ∈ [0,∞), denote by x1(t) and x2(t) the left- and right-end points of the support of
ρt, respectively; we know x1(t) and x2(t) are finite by the same arguments as given in the proof of
Proposition 4.1. Then, using that ∇Ky(x) = x− y for all x, y ∈ R, we find, for all t ∈ [0,∞):

d

dt
|x1 − x2|2(t) = 2

(∫
R

(x− x1(t)) dρt(x)−
∫
R

(x− x2(t)) dρt(x)

)
· (x1(t)− x2(t))

= −2|x1(t)− x2(t)|2,
so that

|x1(t)− x2(t)| = |x1(0)− x2(0)| exp (−t) ,
which yields the conclusion by taking t→ 0.

Note that the asymptotic consensus in Lemma 5.7 is unconditional, in the sense that any initial
configuration with compact support evolves into a consensus state.

Remark 5.8. Using Proposition 5.5 one can infer results on asymptotic convergence to a consen-
sus state for a variety of product manifolds, including those illustrated in Example 5.3. Indeed,
consensus on circle S1 (or Sk in general) is shown in Theorem 4.12, while consensus on R is shown
in Lemma 5.7.

The results above can be applied in the discrete setting. In brief, for n particles zi ∈ U ,
i ∈ {1, . . . , n}, the discrete model with quadratic potential reads:z

′
i(t) =

1

n

n∑
j=1

logzi(t) zj(t),

zi(0) = z0
i .

(72)

By (70), for all i ∈ {1, . . . , n} the dynamics of zi = (xi, yi) starting from z0
i = (x0

i , y
0
i ) ∈ U separate

into dynamics of xi on U1 and of yi on U2, respectively, i.e., (72) is equivalent tox
′
i(t) =

1

n

n∑
j=1

logxi(t) xj(t),

xi(0) = x0
i ,

y
′
i(t) =

1

n

n∑
j=1

logyi(t) yj(t),

yi(0) = y0
i .

(73)

Each of the decoupled systems corresponds to the discrete model with quadratic potential on M1

and M2, respectively. Consequently, we directly have the following theorem ensuring that separate
consensuses on U1 and U2 imply consensus on U :

Proposition 5.9 (Asymptotic consensus in discrete product model). Let K be given by (71), and
consider the discrete systems in (73). Suppose that these systems have unique global solutions
(xi)

n
i=1 and (yi)

n
i=1 in U1 and U2, respectively, which satisfy, for every i, j ∈ {1, . . . , n},
d1(xi(t), xj(t))→ 0 and d2(yi(t), yj(t))→ 0, as t→∞.

Then, the unique global solution (zi)
n
i=1 := ((xi, yi))

n
i=1 to (72), given by Proposition 5.5, verifies,

for every i, j ∈ {1, . . . , n},
d(zi(t), zj(t))→ 0, as t→∞.

Finally, using Proposition 5.9 together with Theorem 4.14 and the discrete version of Lemma
5.7, one can establish asymptotic consensus in the discrete model on product manifolds such as
those in Example 5.3.
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A Appendix

A.1 Flows on manifolds

We summarize here some standard concepts and results on flow maps generated by vector fields on
a smooth, complete and connected k-dimensional Riemannian manifold M with intrinsic distance
d. As in the main body of the paper, T ∈ (0,∞] denotes a generic final time and U a generic open
subset of M .

Well-posedness of flow maps. Local well-posedness of the flow map equation (2) can de estab-
lished in local charts using standard ODE theory. To this end, we introduce here the notion of
Lipschitz continuity and boundedness of a vector field on U .

Definition A.1 (Lipschitz continuity and boundedness on charts). Let X be a vector field on U .
We say that X is locally Lipschitz continuous on charts if for every chart (U,ϕ) of M and compact
set Q ⊂ U ∩ U , there exists Lϕ,Q > 0 such that

‖ϕ∗X(x)− ϕ∗X(y)‖Rk 6 Lϕ,Q ‖ϕ(x)− ϕ(y)‖Rk , for all x, y ∈ Q; (74)

we denote by ‖X‖Lip(ϕ,Q) the smallest such constant. We say that X is locally bounded on charts
if for every chart (U,ϕ) of M and compact set Q ⊂ U ∩ U , there exists Cϕ,Q > 0 such that

‖ϕ∗X(x)‖Rk 6 Cϕ,Q, for all x ∈ Q;

we denote by ‖X‖L∞(ϕ,Q) the smallest such constant.

In the above definition, ϕ∗ stands for the push-forward of ϕ in the differential geometric sense.
Recall the definition: given M1 and M2 two differentiable manifolds, a differentiable function
f : M1 → M2, a point x ∈ M1 and a tangent vector v ∈ TxM1, we call f∗v := df(x)(v) ∈ Tf(x)M2

the push-forward of v through f . In particular, in Definition A.1 we have ϕ∗X(x) ∈ Tϕ(x)Rk ' Rk

and ϕ∗X ◦ ϕ−1 is a vector field on ϕ(U) ⊂ Rk.
Given a chart (U,ϕ) of M containing a point x ∈ M , one has the basis

{
∂
∂ϕ1 (x), . . . , ∂

∂ϕk
(x)
}

of TxM defined by

∂

∂ϕi
(x) = dϕ−1(ϕ(x))(ei), or ei = dϕ(x)

(
∂

∂ϕi
(x)

)
= ϕ∗

∂

∂ϕi
(x),

where, for all i ∈ {1, . . . , k}, ei is the ith vector of the canonical basis of Rk. Also, for

v = v1 ∂

∂ϕ1
(x) + · · ·+ vk

∂

∂ϕk
(x) ∈ TxM,

where (v1, . . . , vk) ∈ Rk, by linearity we get

ϕ∗v = dϕ(x)(v) = v1e1 + · · ·+ vkek.

Remark A.2. It is easy to check that local Lipschitz continuity on charts implies local boundedness
on charts. One can also see that when M = Rk equipped with the only chart (Rk, id), in Definition
A.1 we recover the classical Euclidean notion of a locally Lipschitz continuous vector field.

We also point out that this notion of Lipschitz continuity is consistent with the standard notion
of differentiability of a vector field from differential geometry, which says that a vector field X on
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U is differentiable at x ∈ U if for every chart (U,ϕ) of M with x ∈ U the map ξ 7→ ϕ∗X(ϕ−1(ξ))
is differentiable at ϕ(x) in the standard Euclidean sense. Indeed, note that (74) can be equivalently
reformulated as: for every chart (U,ϕ) of M and compact set R ⊂ ϕ(U ∩U), there exists Lϕ,R > 0
such that ∥∥ϕ∗X(ϕ−1(ξ))− ϕ∗X(ϕ−1(η))

∥∥
Rk 6 Lϕ,R ‖ξ − η‖Rk , for all ξ, η ∈ R.

We now state and prove the Cauchy–Lipschitz theorem on U .

Theorem A.3 (Cauchy–Lipschitz). Let a ∈ (0,∞] and let X be a time-dependent vector field on
U × [0, a). Suppose that the vector fields in {Xt}t∈[0,T ) are locally Lipschitz continuous on charts
and satisfy, for any chart (U,ϕ) of M and compact sets Q ⊂ U ∩ U and S ⊂ [0, a),∫

S

(
‖Xt‖L∞(ϕ,Q) + ‖Xt‖Lip(ϕ,Q)

)
dt <∞. (75)

Then, for every compact subset Σ of U , there exists a unique maximal flow map generated by (X,Σ).

Proof. Take x ∈ U and choose a chart (U,ϕ) of M with x ∈ U . Consider the initial-value problem{
α′(t) = Ξ(α(t), t),

α(0) = ϕ(x),
(76)

where we define Ξ: ϕ(U ∩ U)× [0, a)→ Rk by

Ξ(ξ, t) = ϕ∗(Xt ◦ ϕ−1(ξ)), for all (ξ, t) ∈ ϕ(U ∩ U)× [0, a).

Take R ⊂ ϕ(U ∩U) and S ⊂ [0, a) compact, so that in particular Q := ϕ−1(R) ⊂ U ∩U is compact.
For all ξ, η ∈ R and t ∈ S, our Lipschitz-continuity assumption on Xt yields

‖Ξ(ξ, t)− Ξ(η, t)‖Rk =
∥∥ϕ∗(Xt ◦ ϕ−1(ξ))− ϕ∗(Xt ◦ ϕ−1(η))

∥∥
Rk 6 ‖Xt‖Lip(ϕ,Q) ‖ξ − η‖Rk .

Also, for all ξ ∈ R it holds that

‖Ξ(ξ, t)‖Rk =
∥∥ϕ∗(Xt ◦ ϕ−1(ξ))

∥∥
Rk 6 ‖Xt‖L∞(ϕ,Q) .

Therefore, by (75)we get that Ξ satisfies∫
S

(
‖Ξ(·, t)‖L∞(R) + ‖Ξ(·, t)‖Lip(R)

)
dt 6

∫
S

(
‖Xt‖L∞(ϕ,Q) + ‖Xt‖Lip(ϕ,Q)

)
dt <∞.

By arbitrariness of the compact sets R ⊂ ϕ(U ∩ U) and S ⊂ [0, a) and by the classical Cauchy–
Lipschitz theorem on Rk, this yields the existence of a unique maximal solution αx to (76) defined
on some time interval [0, τx), with τx 6 a, and with values in ϕ(U ∩U). By defining Ψx = ϕ−1 ◦αx,
we see that αx satisfies (76) if and only if{

ϕ∗Ψ
′
x(t) = (ϕ ◦Ψx)′(t) = ϕ∗Xt(Ψx(t)) for all t ∈ [0, τx),

ϕ(Ψx(0)) = ϕ(x).

38



By the bijectivity of ϕ, we get that Ψx is thus the unique maximal solution to the characteristic
equation (2) starting at x.

Let now Σ be a compact subset of U . We are left with showing that τ := infx∈Σ(τx) > 0. By
classical Euclidean Lipschitz theory, we deduce that for all x ∈ U there exists δx > 0 such that
τ̄x := infy∈Bδx (x) τy > 0. Since Σ is compact we know it can be covered by a finite subfamily of
{Bδx(x)}x∈Σ, which we index by {x1, . . . , xn} for some n ∈ N. We thus get τ = mini∈{1,...,n} τ̄xi > 0.
The map Ψ defined by Ψ(x, t) = Ψx(t) for all x ∈ Σ and t ∈ [0, τ) is then the unique maximal flow
map generated by (X,Σ).

From Theorem A.3 we recover the classical Cauchy–Lipschitz theorem for flow maps in Euclidean
space when M = Rk. For completeness, we mention that another important result for flow maps
on manifolds is when U = M itself is compact. The Escape Lemma [32, Chapter 9] states that if
an integral curve of a Lipschitz continuous vector field on a manifold is not global (i.e., not defined
for all t ∈ R), then the image of that curve cannot lie in any compact subset of the manifold.
Consequently, Lipschitz continuous vector fields on compact manifolds defined at all times (i.e.,
a = ∞ above) generate global flows. Another consequence of the Escape Lemma is the following
global version of the Cauchy–Lipschitz theorem, in which we assume that U is geodesically convex.
We recall that then, for all x, y ∈ U , we have

∇Md2
y(x) = −2 logx(y) and ‖logx(y)‖x = d(x, y), (77)

where dy(x) stands for d(x, y), and log stands for the Riemannian logarithm on M . We shall also
use the notation

Dr(p) = {x ∈M | d(x, p) < r}, for any p ∈M and r > 0,

for the open disk in M of centre p and radius r.

Theorem A.4 (Global Cauchy–Lipschitz). Suppose that U is geodesically convex. Under the same
hypotheses as those of Theorem A.3, where Σ is a compact subset of U , suppose moreover that
a =∞ and there exist p ∈ U , r > 0 and R > r so that DR(p) ⊂ U , Σ ⊂ Dr(p) and

〈− logx p,X(x, t)〉x 6 0 for all x ∈ DR(p) \Dr(p) and t ∈ [0,∞). (78)

Then, there exists a unique flow map Ψ generated by (X,Σ) defined on Σ × [0,∞); furthermore,
Ψ(x, t) ∈ Dr(p) for all (x, t) ∈ Σ× [0,∞).

Proof. By Theorem A.3 we know there exists a maximal flow map Ψ generated by (X,Σ) defined
on Σ × [0, τ) for some τ ∈ (0,∞]. Write Ψt(x) = Ψ(x, t) for all (x, t) ∈ Σ × [0, τ). Let x ∈ Σ and
suppose, by contradiction, that there exists τ∗ ∈ (0, τ) such that Ψτ∗(x) ∈ DR(p) \Dr(p). Then,
by time continuity of the flow map, we know there exists τ̄ ∈ (0, τ∗) such that Ψτ̄ (x) ∈ ∂Dr(p) and
Ψt(x) ∈ DR(p) \Dr(p) for all t ∈ [τ̄, τ∗]. Thus, for all t ∈ [τ̄, τ∗], we have

d

dt
d(Ψt(x), p)2 =

〈
∇Md2

p(Ψ
t(x)), X(Ψt(x), t)

〉
Ψt(x)

= 2
〈
− logΨt(x)(p), X(Ψt(x), t)

〉
Ψt(x)

6 0,

and by integrating the above between τ̄ and τ∗ we get

r < d(Ψτ∗(x), p) 6 d(Ψτ̄ (x), p) = r,

which is absurd. We must therefore have Ψt(x) ∈ Dr(p) for all t ∈ [0, τ). By the Escape Lemma,
this implies that τ =∞, which ends the proof.
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A.2 The case of the interaction velocity field

In this section we show that for a fixed curve ρ ∈ C([0, T ),P(U)), the velocity field v[ρ] associated
to the interaction equation (see equation (3)) under Hypothesis (H) satisfies the assumptions of
Theorem A.3, and hence it generates a local flow map. This, in particular, justifies the definition
of the map Γ used in Theorems 3.6 and 5.1. We also show that v[ρ] satisfies the Theorem A.4
whenever K is purely attractive, that is, g′ > 0 in Hypothesis (H).

For a curve ρ ∈ C([0, T ),P(U)) we recall:

v[ρ](x, t) = −
∫
U
∇MKy(x) dρt(y), x ∈ U , t ∈ [0, T ),

where K : M ×M → R is the interaction potential and Ky stands for x 7→ K(x, y). To ensure that
v[ρ] is pointwise well-defined we can restrict to curves ρ ∈ C([0, T ),P1(U)) and assume that there
exist measurable functions α, β : M → [0,∞) such that

‖∇MKy(x)‖x 6 α(x) + β(x)d(x, y), for all x, y ∈M.

Otherwise, one can also restrict to ρ ∈ C([0, T );P∞(U)) and assume that the vector field ∇MKy

is locally bounded on charts for all y ∈ U . In this case, if we further assume that ∇MKy is locally
Lipschitz continuous on charts for all y ∈ U , then Theorem A.3 applies to the vector field v[ρ]
provided the maps y 7→ ‖∇MKy‖L∞(ϕ,Q) and y 7→ ‖∇MKy‖Lip(ϕ,Q) are locally bounded for any

chart (U,ϕ) of M and compact set Q ⊂ U ∩ U .
Indeed, let ρ ∈ C([0, T );P∞(U)), (U,ϕ) be a chart of M , Q ⊂ U ∩U be compact and let Qt ⊂ U

be a compact set containing supp(ρt) such that t 7→ diam(Qt) is nondecreasing. Then, for all
x, y ∈ Q and t ∈ S, where S ⊂ [0, T ) is compact, we have

‖ϕ∗v[ρ](x, t)‖Rk 6
∫
Qt

‖ϕ∗∇MKy(x)‖Rk dρt(y) 6 sup
ȳ∈Qs

‖∇MKȳ‖L∞(ϕ,Q) , (79)

where s = sup(S), and

‖ϕ∗v[ρ](x, t)− ϕ∗v[ρ](y, t)‖Rk 6
∫
Qt

‖ϕ∗∇MKz(x)− ϕ∗∇MKz(y))‖Rk dρt(z)

6 sup
z̄∈Qs

‖∇MKz̄‖Lip(ϕ,Q) ‖ϕ(x)− ϕ(y)‖Rk . (80)

In practice, however, it may not be easy to check whether ∇MK satisfies this uniform Lipschitz
condition because of the push-forward with the chart that needs to be computed. In the particular
case when the potential satisfies (H), as in our paper, the conditions can be checked as follows.

Suppose in the rest of this section that U is geodesically convex. In particular, this implies that
U can be covered by a single chart, which we shall generically denote by (U , ψ); such a chart is for
instance provided by any normal chart. Furthermore, the relations in (77) hold for all x, y ∈ U .
This allows us to treat the nonlocality in the velocity field which takes the form of an integral on
U . The lemma below ensures that under Assumption (H) the Lipschitz theory given in Theorem
A.3 applies to the interaction velocity field v[ρ] as long as ρt is compactly supported for all t.

Lemma A.5. Let K satisfy (H), and let ρ ∈ C([0, T );P∞(U)). Then the velocity fields in
{v[ρ](·, t)}t∈I are locally Lipschitz continuous on charts and satisfy (75), that is, they satisfy the
assumptions of the Cauchy–Lipschitz theorem A.3.
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Proof. By the above discussion, we only need to show that ∇MKz is locally Lipschitz continuous
on charts and the maps z 7→ ‖∇MKz‖L∞(ϕ,Q) and z 7→ ‖∇MKz‖Lip(ϕ,Q) are locally bounded for
any chart (U,ϕ) on M and compact set Q ⊂ U ∩ U . Since U can be covered entirely by a single
chart (U , ψ), we can restrict our computations to (U , ψ). Note furthermore that since M is smooth
we know that the map (x, y) 7→ ∇Md2

y(x) is smooth on U × U .
Let Q ⊂ U be compact. For all x ∈ Q and y ∈ U we get

‖ψ∗∇MKy(x)‖Rk 6 |g′(d(x, y)2)|
∥∥ψ∗∇Md2

y(x)
∥∥
Rk 6 |g′(d(x, y)2)|

∥∥∇Md2
y

∥∥
L∞(ψ,Q)

,

so that by the local boundedness of g′ and of y 7→
∥∥∇Md2

y

∥∥
L∞(ψ,Q)

we get that y 7→ ‖∇MKy‖L∞(ψ,Q)

is locally bounded. Furthermore, for all x, y ∈ Q and z ∈ U we have

‖ψ∗∇MKz(x)− ψ∗∇MKz(y)‖Rk =
∥∥g′(d(x, z)2)ψ∗∇Md2

z(x)− g′(d(y, z)2)ψ∗∇Md2
z(y)

∥∥
Rk

6 |g′(d(x, z)2)|
∥∥ψ∗∇Md2

z(x)− ψ∗∇Md2
z(y)

∥∥
Rk +

∥∥ψ∗∇Md2
z(y)

∥∥
Rk |g

′(d(x, z)2)− g′(d(y, z)2)|
6 |g′(d(x, z)2)|

∥∥∇Md2
z

∥∥
Lip(ψ,Q)

d(x, y) +
∥∥∇Md2

z

∥∥
L∞(ψ,Q)

|g′(d(x, z)2)− g′(d(y, z)2)|.

Hence, by the local Lipschitz continuity of g′ (and thus of r 7→ g′(r2)), and the local boundedness
of g′, z 7→

∥∥∇Md2
z

∥∥
Lip(ψ,Q)

and z 7→
∥∥∇Md2

z

∥∥
L∞(ψ,Q)

, we conclude that z 7→ ‖∇MKz‖Lip(ψ,Q) is

locally bounded, which ends the proof.

Remark A.6. The maximal time of existence of the Cauchy–Lipschitz theorem A.3 for the interac-
tion velocity field v[ρ] does not depend on the curve ρ; this is because the L∞ and Lipschitz bounds
in (79) and (80) do not depend on ρ.

Lemma A.7. Let K satisfy (H) with g′ > 0, and let ρ ∈ C([0,∞);P∞(U)). Let furthermore
Σ ⊂ U be compact and such that Σ ⊂ Dr(p) ⊂ DR(p) ⊂ U for some p ∈ U and r,R > 0 with Dδ(p)
geodesically convex for all δ ∈ [r,R). Then, the pair (v[ρ],Σ) satisfies the assumptions of the global
Cauchy–Lipschitz theorem A.4 provided supp(ρt) ⊂ Dr(p) for all t ∈ [0,∞).

Proof. Thanks to Lemma A.5, we are only left with checking that v[ρ] verifies (78). Suppose that
supp(ρt) ⊂ Dr(p) for all t ∈ [0,∞) and let x ∈ DR(p) \Dr(p). Then, for all t ∈ [0,∞) there holds

〈− logx p, v[ρ](x, t)〉x = 〈logx p,∇MK ∗ ρt(x)〉x
=

∫
Dr(p)

g′(d(x, y)2)
〈
logx p,∇Md2

y(x)
〉
x

dρt(y)

= −2

∫
Dr(p)

g′(d(x, y)2) 〈logx p, logx y〉x dρt(y). (81)

Fix now y ∈ Dr(p) and write γ : [0, 1]→M the unique minimizing geodesic connecting x to y.
For all t ∈ [0, 1], compute

d

dt

∣∣∣∣
t=0

d(γ(t), p)2 =
〈
∇Md2

p(γ(0)), γ′(0)
〉
γ(0)

= −2 〈logx p, logx y〉x .

By smoothness of t 7→ d(γ(t), p)2 (because M is smooth), we must have d
dt

∣∣
t=0

d(γ(t), p)2 6 0.
Indeed, otherwise there would exist τ ∈ (0, 1) such that d(γ(τ), p) > d(γ(0), p) = d(x, p), which
would contradict γ([0, 1]) ⊂ Dd(x,p)(p) and thus the geodesic convexity of Dd(x,p)(p).

Coming back to (81), we get 〈− logx p, v[ρ](x, t)〉x 6 0 for all t ∈ [0,∞), since inside the integral
we have g′(d(x, y)2) > 0 and 〈logx p, logx y〉x > 0 (by the above argument).
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A.3 Solution to the interaction equation

Proof of Lemma 2.1. Let φ ∈ C∞c (U × (0, T )) and, for all x ∈ supp(ρ0), define ζx : [0, T )→ R by

ζx(t) = φ(Ψt
v[ρ](x), t), for all t ∈ [0, T ).

We have that ζx is differentiable for all x ∈ supp(ρ0) with, for all t ∈ [0, T ),

ζ ′x(t) = ∂tφ(Ψt
v[ρ](x), t) +

〈
v[ρ](Ψt

v[ρ](x), t),∇Mφ(Ψt
v[ρ](x), t)

〉
Ψt
v[ρ]

(x)
=: Λt ◦Ψt

v[ρ](x).

Denote by Q ⊂ U and S ⊂ (0, T ) two compact sets such that supp(φ) ⊂ Q × S, and by Lφ the
quantity max(sup |∂tφ|, sup ‖∇Mφ‖), where the supremums are taken over supp(φ)×(0, T ). Writing
s = sup(S) and using (4), we have:∫ T

0

∫
supp(ρ0)

|ζ ′x(t)| dρ0(x) dt =

∫ T

0

∫
supp(ρ0)

∣∣Λt(Ψt
v[ρ](x))

∣∣ dρ0(x) dt =

∫ T

0

∫
U
|Λt(x)|dρt(x)dt

=

∫
S

∫
Q
|∂tφ(x, t) + 〈v[ρ](x),∇Mφ(x, t)〉x |dρt(x) dt

6 Lφ

(
s+

∫
S

∫
Q
‖v[ρ](x, t)‖x dρt(x) dt

)
<∞.

Consider now the calculation above in reverse (just the first two lines), without the absolute value
in the integrand. By Fubini’s theorem and since φ(x, 0) = φ(x, s) = 0 for all x ∈ U , we get∫

S

∫
Q

(
∂tφ(x, t) +

〈
v[ρ](x, t),∇Mφ(x, t)

〉)
dρt(x) dt =

∫ T

0

∫
supp(ρ0)

ζ ′x(t) dρ0(x) dt

=

∫
supp(ρ0)

∫
S
ζ ′x(t) dt dρ0(x) =

∫
supp(ρ0)

(
φ(Ψs

v[ρ](x), s)− φ(x, 0)
)

dρ0(x)

=

∫
U
φ(x, s) dρs(x)−

∫
U
φ(x, 0) dρ0(x) = 0.

This shows that ρ is a distributional solution to (1).
Let us finally prove that in fact ρ ∈ C([0, T );P(U)). Take t ∈ [0, T ) and a sequence (tk)k>1 ⊂

[0, T ) such that tk → t as k →∞. For all φ ∈ Cb(U), as k →∞ we get∫
U
φ(x) dρtk(x) =

∫
supp(ρ0)

φ(Ψtk
v[ρ](x)) dρ0(x)→

∫
supp(ρ0)

φ(Ψt
v[ρ](x)) dρ0(x) =

∫
U
φ(x) dρt(x),

where we used the time continuity of the flow map, that is, Ψtk
v[ρ] → Ψt

v[ρ] pointwise, since it solves

the first order ODE system (2), and Lebesgue’s dominated convergence theorem.
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[5] D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul. Nonlocal interactions by repulsive-
attractive potentials: radial ins/stability. Phys. D, 260:5–25, 2013.
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