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Abstract

We investigate a model for collective behaviour with intrinsic interactions on smooth Rie-
mannian manifolds. For regular interaction potentials, we establish the local well-posedness of
measure-valued solutions defined via optimal mass transport. We also extend our result to the
global well-posedness of solutions for manifolds with nonpositive bounded sectional curvature.
The core concept underlying the proofs is that of Lipschitz continuous vector fields in the sense
of parallel transport.
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chitz continuity
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1 Introduction

This paper is concerned with the following integro-differential equation for the evolution of a pop-
ulation density ρ on a Riemannian manifold M :

∂tρ−∇M · (ρ∇MK ∗ ρ) = 0, (1)

where K : M ×M → R is an interaction (also known as aggregation) potential which models social
interactions such as attraction and repulsion, and ∇M · and ∇M represent the manifold divergence
and gradient, respectively. In (1) the symbol ∗ denotes a measure convolution: for a time-dependent
measure ρt on M and x ∈ M we set

K ∗ ρt(x) =
∫

M
K(x, y) dρt(y).

We restrict our solutions ρ to be probability measures on M at all times:
∫
M dρt = 1 for all t.

Model (1) has numerous applications in swarming and self-organized behaviour in biology [34],
material science [9], robotics [22,28], and social sciences [35]. In such applications, equation (1) can
model interactions between biological organisms such as insects, birds or cells, as well as interactions
between robots or even opinions. Concerning the theory, the mathematical analysis of solutions to
model (1) has focused almost exclusively on the model set up on Euclidean space R

n; we refer in
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this case to [5–8] for the well-posedness of the initial-value problem and to [4, 15,18,19,32] for the
long-time behaviour of solutions.

The goal of the paper is to establish the well-posedness of measure-valued solutions to model
(1) set up on general Riemannian manifolds. There are only very few works on this subject, and
all require that the manifold be embedded in a larger Euclidean space. For instance, in [10,36,38],
the authors investigate the well-posedness of the aggregation model (1) when the interactions are
extrinsic, in the sense that the interaction potential depends on the embedding Euclidean distance
between points. Another class of models considers intrinsic interactions, where the interaction
potential depends on the geodesic distance on M between points. Recent works in this direction
investigate the well-posedness of model (1) with intrinsic interactions on the sphere [20] and on the
special orthogonal group SO(3) [17]. In both [20] and [17], however, certain calculations make use
of the ambient vector spaces of the manifolds, i.e., in R

n and R
3×3, respectively.

This paper presents a fully intrinsic approach to the well-posedness of solutions to (1) on
Riemannian manifolds, which does not require any extrinsic calculations in an ambient vector
space. To this aim we use the concept of Lipschitz continuity of vector fields via parallel transport.
While this is a concept widely used in the literature on optimization on manifolds [12, 16], it is
much less common in the analysis of differential equations on manifolds. Lipschitz continuity by
parallel transport enables us to compare tangent vectors in an intrinsic manner. This approach
fundamentally distinguishes itself from that in [20] and [17], where tangent vectors at different
points on the manifold are compared in the norm of an ambient vector space.

As a further motivation for this paper we also mention various studies on the long-time behaviour
of solutions to (1) on manifolds. An interesting collection of equilibria on the sphere and the
hyperbolic plane for model (1) with intrinsic interactions can be found in [21]. These equilibria
show a very rich pattern formation behaviour (e.g., disks, annuli, rings), similar to what has been
observed in R

n [30,37]. In addition, emergent behaviour has been studied extensively in the related
Lohe-type models with extrinsic interactions on the unit sphere, matrix manifolds and tensor spaces
in [23–25]. In these works the focus is to investigate the formation of consensus solutions, where
the equilibria consist of an aggregation at a single point, rather than the well-posedness of (1) in
the intrinsic setting.

The paper is structured as follows. We first review in Section 2 the concept of parallel transport
on a Riemannian manifold and that of Lipschitz continuity by parallel transport, and present useful
relations in terms of Hessians and flow maps. In Section 3 we give the rigorous notion of solution to
equation (1) which will be used in the well-posedness theory, as well as introduce the 1-Wasserstein
probability space, which determines the regularity of the solutions we seek. Then, in Section 4 we
present our proof of local and global well-posedness for equation (1), starting with the fundamental
lemmas underlying the proof. In this section, our results on the global well-posedness are restricted
to manifolds with nonpositive bounded sectional curvature. Finally, in Section 5 we state two
additional results which can be obtained by simply adapting results already proven for the sphere
in [20]. Appendices A and B give, respectively, basic notions of differential geometry useful to our
purposes, and the proofs to preliminary results stated in the main body of the paper.

Everywhere in this paper, M denotes a manifold satisfying the assumption that follows. We
shall only refer to it in some of the main statements; anywhere else, it will be implicitly assumed.

(M) M is a complete, simply connected, smooth Riemannian manifold of finite dimension n, with
positive injectivity radius. We denote its intrinsic distance by d and sectional curvature by K.
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2 Preliminaries on parallel transport and Lipschitz continuity

In Appendix A we review some basic concepts and terminology from differential geometry that are
relevant to the present work, and also introduce some notation. We invite the reader to look there
whenever unfamiliar with some of the concepts or notation used in the main body of the paper.
In particular, in Appendix A we briefly discuss the logarithm map, normal and totally normal
neighbourhoods, the injectivity radius, geodesics, convex sets, normal charts and the push-forward,
as well as recall some of their properties important to our analysis; we also give a useful relationship
between the Euclidean norm and the intrinsic distance on M .

Anywhere in the paper, for x ∈ M we write 〈·, ·〉x and ‖·‖x the tangent inner product and norm,
respectively, on TxM , the tangent space of M at x. The tangent bundle of M is denoted by TM .

In this section, we present some background on Lipschitz continuity by parallel transport and
its link to Hessians, as well as give the Cauchy–Lipschitz theorem for flow maps on manifolds.

2.1 Lipschitz continuity via parallel transport

Given a curve γ : [0, 1] → M and v ∈ Tγ(0)M , the parallel transport of v along γ is given by the
unique solution X : [0, 1] → TM with X(t) ∈ Tγ(t)M for all t ∈ [0, 1] to the ODE

{
∇γ′(t)X(t) = 0,

X(0) = v,

where ∇γ′X denotes the covariant derivative of X along γ and ∇ is the Levi-Civita connection on
M . We denote this solution by Πγ,tv for all t ∈ [0, 1]. Given t ∈ [0, 1], the map v 7→ Πγ,tv is a
linear isometry from Tγ(0)M to Tγ(t)M , i.e.,

〈Πγ,tv,Πγ,tw〉γ(t) = 〈v,w〉γ(0) , for all v,w ∈ Tγ(0)M.

The situation of interest in this paper is when γ : [0, 1] → M is the unique minimizing geodesic
connecting a point x to a point y. In this case we write Πxy for Πγ,1. It holds that Π−1

xy = Πyx,
which means that taking the parallel transport of a vector v ∈ TxM to TyM and then back to TxM
returns the same vector v.

A vector field on a set U ⊂ M is a function X : U → TM such that X(x) ∈ TxM for all x ∈ U .
Using parallel transport, we can give the following definition of Lipschitz continuous vector fields.
We use in our setup a totally normal neighbourhood of M , as any two points in such a set can be
connected by a unique minimizing geodesic (though not necessarily lying entirely in it).

Definition 2.1 (Lipschitz continuity via parallel transport). Suppose that U is a totally normal
neighbourhood of M and let X be a vector field on U . We say that X is locally Lipschitz continuous
if for all compact sets Q ⊂ U there exists a constant LQ > 0 such that

‖X(x)−ΠyxX(y)‖x 6 LQ d(x, y), for all x, y ∈ Q; (2)

we write ‖X‖Lip(Q) for the smallest such constant. We say that X is (globally) Lipschitz continuous
if there exists L > 0 such that (2.1) holds for all x, y ∈ U by replacing LQ with L; we write ‖X‖Lip(U)

for the smallest such L.

3



We note that a locally Lipschitz continuous vector field X on a totally normal neighbourhood
U is also locally bounded in the sense that for all Q ⊂ U compact there exists a constant CQ > 0
such that ‖X(x)‖x 6 CQ for all x ∈ Q; we denote by ‖X‖L∞(Q) the smallest such constant.

We also note that this definition of Lipschitz continuity is chart-free. The notion of Lipschitz
continuity on charts is the standard concept used to show the well-posedness of flow maps via the
Cauchy–Lipschitz theorem in the theory of dynamical systems on manifolds [20,27]. For complete-
ness, we recall the definition here: a vector field X on an open subset U of M is locally Lipschitz
continuous on charts if for every chart (V, ϕ) of M and compact set Q ⊂ U ∩ V , there exists a
constant Lϕ,Q > 0 such that

‖ϕ∗X(x)− ϕ∗X(y)‖
Rn 6 Lϕ,Q ‖ϕ(x)− ϕ(y)‖

Rn , for all x, y ∈ Q. (3)

The link between local Lipschitz continuity in the sense of Definition 2.1 and that on charts is
given in the following lemma, which, in short, states that Lipschitz continuity in the sense of
parallel transport implies Lipschitz continuity on normal charts.

Lemma 2.2. Let x ∈ M and set δ 6 rconv(x). Suppose that X is a vector field on the geodesic ball
Bδ(x) which is locally Lipschitz continuous. Let moreover (V, ϕ) be a normal chart generated by x.
Then, for any Q ⊂ Bδ(x)∩V compact there exists Lϕ,Q > 0 such that (2.1) holds; furthermore, the
constant Lϕ,Q depends linearly on ‖X‖L∞(Q) and ‖X‖Lip(Q).

Proof. See Appendix B.1.

2.2 Hessians

Given a vector field X on an open subset U of M , a point x ∈ U and a nonzero tangent vector
v ∈ TxM , the derivative of X at x in direction v is given, whenever the limit below exists, by

∇vX(x) =
d

dt

∣∣∣
t=0

Π−1
xγ(t)X(γ(t)) = lim

t→0

Π−1
xγ(t)X(γ(t)) −X(x)

t
, (4)

where γ denotes the geodesic starting at x with velocity v defined at any t small enough for
expx(tv) to exist. When indeed the limit above exists, we have ∇vX(x) ∈ TxM and we say
that X is differentiable at x in direction v. If X is differentiable at x in every direction, the
map ∇X(x) : TxM → TxM is linear and is called the derivative of X at x. If X is differentiable
at all points in U in every direction, then we simply say that X is differentiable and the map
U ∋ x 7→ ∇X(x) is simply referred to as the derivative of X.

For a differentiable function f : U → R such that the vector field ∇f is differentiable at x in
direction v, we write Hessv f(x) for the Hessian of f at x in direction v, defined by

Hessv f(x) = ∇v(∇f)(x).

If ∇f is differentiable at x in every direction, the map Hess f(x) : TxM → TxM is linear and is
referred to as the Hessian operator of f at x. If furthermore ∇f is differentiable at all points in
U in every direction, then we simply say that f has a Hessian and the map U ∋ x 7→ Hess f(x) is
called the Hessian of f . Similar to the Euclidean case, the lemma below links bounded Hessians to
Lipschitz continuity in the parallel transport sense [16]:

4



Lemma 2.3. Let U ⊂ M be a totally normal neighbourhood and let f : U → R have a Hessian.
If the gradient of f is locally Lipschitz continuous, then its Hessian is locally bounded, i.e., for all
Q ⊂ U compact there is CQ > 0 such that

‖Hessv f(x)‖x 6 CQ ‖v‖x , for all x ∈ Q and v ∈ TxM.

If furthermore U is geodesically convex, then the converse is also true.

Proof. See Appendix B.2.

We directly have the following global version of Lemma 2.3:

Lemma 2.4. Let U ⊂ M be a totally normal neighbourhood and let f : U → R have a Hessian. If
the gradient of f is Lipschitz continuous, then its Hessian is bounded, i.e., there is C > 0 such that

‖Hessv f(x)‖x 6 C ‖v‖x , for all x ∈ U and v ∈ TxM.

If furthermore U is geodesically convex, then the converse is also true.

In the optimization literature, the property of a function f defined on a totally normal neigh-
bourhood U ⊂ M to have a Lipschitz continuous gradient, is sometimes referred to as L-smoothness
[1,2,26]. Lemma 2.4 therefore says that L-smoothness and Hessian boundedness are equivalent on
geodesically convex subsets of M (as they are in Euclidean spaces).

2.3 Flow maps and the Cauchy–Lipschitz theorem

A time-dependent vector field on a subset U×[0, T ) of M×[0,∞) is a function X : U×[0, T ) → TM
such that X(·, t) is a vector field on U for all t ∈ [0, T ); we will also use Xt to denote X(·, t). Given
such a time-dependent vector field X and Σ ⊂ U measurable, a flow map generated by (X,Σ) is a
function ΨX : Σ× [0, τ) → U , for some τ 6 T , that for all x ∈ Σ and t ∈ [0, τ) satisfies





d

dt
Ψt

X(x) = Xt(Ψ
t
X(x)),

Ψ0
X(x) = x,

(5)

where we used the abbreviation Ψt
X for ΨX(·, t). A flow map is said to be maximal if its time

domain cannot be extended while (2.3) holds; it is said to be global if τ = T = ∞ and local
otherwise.

The following theorem gives the local well-posedness of flow maps generated by Lipschitz vector
fields in the sense of Definition 2.1.

Theorem 2.5 (Local Cauchy–Lipschitz Theorem). Suppose that U is a totally normal neighbour-
hood of M . Let T ∈ (0,∞] and let X be a time-dependent vector field on U × [0, T ). Suppose that
the vector fields in {Xt}t∈[0,T ) are locally Lipschitz continuous and satisfy, for any compact sets
Q ⊂ U and S ⊂ [0, T ), ∫

S

(
‖Xt‖L∞(Q) + ‖Xt‖Lip(Q)

)
dt < ∞. (6)

Then, for every compact subset Σ of U , there exists a unique maximal flow map generated by (X,Σ).
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Proof. The proof follows very closely that given in [20] of the more classical version of the theorem
for Lipschitz continuous vector fields on charts, with the additional use of Lemma 2.2. For the
details, see Appendix B.3.

Theorem 2.5 gives local well-posedness for flow maps. As given by the theorem below, we have
global well-posedness whenever M is convex and the vector fields in question are globally Lipschitz
on M × [0,∞).

Theorem 2.6 (Global Cauchy–Lipschitz Theorem on Convex Manifold). Assume that M is geode-
scially convex and let X be a time-dependent vector field on M × [0,∞). Suppose that the vector
fields in {Xt}t∈[0,∞) are Lipschitz continuous and for any compact set Q ⊂ M there holds

sup
t∈[0,∞)

(
‖Xt‖L∞(Q) + ‖Xt‖Lip(M)

)
< ∞.

Then, for every compact subset Σ of M , there exists a unique global flow map generated by (X,Σ).

Proof. The proof follows from the Escape Lemma if M is compact and from a classical extension
argument if M is unbounded. We refer the reader to Appendix B.4 for the details.

3 Preliminaries on the interaction equation

For simplicity, as we have already implicitly done in the previous section, we will drop the subindices
M on the differential operators in equation (1). We present in this section the notion of measure-
valued solutions for (1) and the 1-Wasserstein probability space. We only give the minimal tools
we will need for our purpose; for a thorough theory of probability spaces and continuity equations
in Euclidean space, we refer the reader to [3].

3.1 Notion of solution for the interaction equation

For U ⊂ M open, denote by P(U) the set of Borel probability measures on the metric space (U, d)
and by C([0, T );P(U)) the set of continuous curves from [0, T ) into P(U) endowed with the narrow
topology (i.e., the topology dual to the space of continuous bounded functions on U ; see [3]).

If Ψ: Σ → U for some measurable Σ ⊂ U , we denote by Ψ#ρ the push-forward in the mass
transport sense of ρ through Ψ. Equivalently, Ψ#ρ is the probability measure such that for every
measurable function ζ : U → [−∞,∞] with ζ ◦Ψ integrable with respect to ρ, we have

∫

U
ζ(x) d(Ψ#ρ)(x) =

∫

Σ
ζ(Ψ(x)) dρ(x).

For T ∈ (0,∞] and a curve (ρt)t∈[0,T ) ⊂ P(U), we denote by v[ρ] : U× [0, T ) → TM the velocity
vector field associated to (1), that is,

v[ρ](x, t) = −∇K ∗ ρt(x), for all (x, t) ∈ U × [0, T ), (7)

where for convenience we used ρt in place of ρ(t), as we shall often do in the sequel. Whether
v[ρ] is well-defined or not depends on U ; indeed, we shall see that for ∇K to make sense in the
convolution with ρt, the set U should be such that logx y exists for all x, y ∈ U .

We define solutions to (1) in a geometric way, as the push-forward of the initial data through the
corresponding flow map [3, Chapter 8.1]. Specifically, we adopt the following definition as solution
to equation (1):

6



Definition 3.1 (Solution). Given U ⊂ M open, we say that (ρt)t∈[0,T ) ⊂ P(U) is a weak solution
to (1) if (v[ρ], supp(ρ0)) generates a unique flow map Ψv[ρ] defined on supp(ρ0) × [0, T ), and ρt
satisfies the implicit relation

ρt = Ψt
v[ρ]#ρ0, for all t ∈ [0, T ).

It can be shown that solutions in the sense of Definition 3.1 are also weak solutions in the sense
of distributions to equation (1); see [3, Lemma 8.1.6].

3.2 Wasserstein distance

We will use the intrinsic 1-Wasserstein distance to compare solutions to (1). Let U ⊂ M be open.
For ρ, σ ∈ P(U), this distance is defined as:

W1(ρ, σ) = inf
π∈Π(ρ,σ)

∫

U×U
d(x, y) dπ(x, y),

where Π(ρ, σ) ⊂ P(U × U) is the set of transport plans between ρ and σ, i.e., the set of elements
in P(U × U) with first and second marginals ρ and σ, respectively.

Denote by P1(U) the set of probability measures on U with finite first moment and by P∞(U) ⊂
P1(U) the set of probability measures on U with compact support. Both spaces (P1(U),W1) and
(P∞(U),W1)) are well-defined metric spaces. In addition, we metrize the space C([0, T );P1(U))
(and thus C([0, T );P∞(U))) with the distance W 1 defined by

W 1(ρ, σ) = sup
t∈[0,T )

W1(ρt, σt), for all ρ, σ ∈ C([0, T );P1(U)).

Of course, when U is bounded we have P(U) = P1(U) = P∞(U).
The lemma below, used later in the paper, contains various Lipschitz properties involving the

distance W1.

Lemma 3.2. Let U ⊂ M be open.

(i) Let Σ ⊂ U . Let furthermore ρ ∈ P1(U) with supp(ρ) ⊂ Σ and Ψ1,Ψ2 : Σ → U be measurable
functions. Then,

W1(Ψ1#ρ,Ψ2#ρ) 6 sup
x∈supp(ρ)

d(Ψ1(x),Ψ2(x)).

(ii) Let T ∈ (0,∞] and let X be a time-dependent vector field on U × [0, T ). Let ρ ∈ P1(U) and
suppose that (X, supp(ρ)) generates a flow map ΨX defined on supp(ρ)×[0, τ) for some τ 6 T .
Suppose furthermore that X is bounded, i.e., there exists C > 0 such that ‖X(x, t)‖x∈U < C
for all x ∈ U and t ∈ [0, T ). Then,

W1(Ψ
t
X#ρ,Ψs

X#ρ) 6 C|t− s|, for all t, s ∈ [0, τ).

Proof. We refer to [20, Lemma 2.3] for the proof of this result.
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4 Well-posedness of the interaction equation

We study the well-posedness of solutions to (1) with an interaction potential K that satisfies:

(K) K : M ×M → R has the form

K(x, y) = g(d(x, y)2), for all x, y ∈ M, (8)

where g : [0,∞) → R is differentiable.

Because the interaction equation (1) involves the gradient ofK, we are interested in the Lipschitz
continuity of the gradient of the squared distance function d. For all x, y ∈ M define dy(x) = d(x, y);
if x and y have a unique minimizing geodesic linking them, it holds that

logx y = −1
2∇d2y(x). (9)

Similarly, for all x, y ∈ M write Ky(x) = K(x, y), and again if there exists a unique minimizing
geodesic linking x and y the chain rule yields

∇Ky(x) = −2g′(d(x, y)2) logx y. (10)

In other words, equations (4) and (4) only hold for points y away from the cut locus of x. In
particular, they hold for points x, y ∈ M with d(x, y) < inj(M).

Equation (1) can be interpreted as an aggregation model using (3.1) and (4). Indeed, when a
point mass at x interacts with a point mass at y, the mass at x is driven by a force of magnitude
proportional to |g′(d(x, y))2|d(x, y), to move either towards y (provided g′(d(x, y)2) > 0) or away
from y (provided g′(d(x, y)2) < 0). The velocity field at x computed by (3.1) accounts for all
contributions from interactions with point masses y ∈ U through the convolution.

4.1 Fundamental lemmas

We give here several fundamental lemmas which will be at the core of our proof of the well-posedness
of solutions to (1). Note first that, given x, y ∈ M and U ⊂ M a normal neighbourhood of both x
and y, there holds

Πyx logy(x) = − logx(y). (11)

This is immediate from the fact that the parallel transport is an isometry. Indeed, since logy(x) is
tangent to the geodesic joining y and x, the vector Πyx logy(x) is tangent to the geodesic at x and
has length ‖ logy(x)‖y = d(x, y).

We begin with a result on time-dependent vector fields.

Lemma 4.1 (Fundamental Lemma I). Let U be a totally normal neighbourhood of M and let X,Y
be two time-dependent vector fields on U . Let Σ ⊂ U be measurable and suppose that ΨX and ΨY

are flow maps defined on Σ × [0, τ), for some τ > 0, generated by (X,Σ) and (Y,Σ), respectively.
Assume furthermore that X is Lipschitz continuous with respect to its first variable, uniformly with
respect to its second variable, i.e., there exists L > 0 such that

‖Xt(x)−ΠyxXt(y)‖x 6 Ld(x, y), for all (x, y, t) ∈ U × U × [0, T ).

Then, for all x ∈ Σ, there holds

d(Ψt
X(x),Ψt

Y (x)) 6
eLt − 1

L
‖X − Y ‖L∞(U×[0,τ)), for all t ∈ [0, τ).

8



Proof. Let x ∈ Σ and, for a better readability of the following calculations, write p = Ψt
X(x) and

q = Ψt
Y (x); note that p, q ∈ U . We can assume p 6= q or the result is trivial.

Since U is totally normal, the function t 7→ d2(p, q) = d2(Φt
X(x),Φt

Y (x)) is differentiable and,
for all t ∈ [0, τ), we have

1

2

d

dt
d2(p, q) =

1

2

〈
∇d2q(p),Xt(p)

〉
p
+

1

2

〈
∇d2p(q), Yt(q)

〉
q

= −
〈
logp(q),Xt(p)

〉
p
−
〈
logq(p), Yt(q)

〉
q

= −
〈
logp(q),Xt(p)

〉
p
−
〈
Πqp logq(p),ΠqpYt(q)

〉
p
=: I + II ,

(12)

where for the third equality we used that the parallel transport is an isometry.
We add and subtract the quantities

A :=
〈
Πqp logq(p),Xt(p)

〉
p

and B :=
〈
Πqp logq(p),ΠqpXt(q)

〉
p

to the right-hand side of (4.1), which now reads

I −A+A−B +B + II .

The term II +B estimates as

II +B =
〈
Πqp logq(p),ΠqpXt(q)−ΠqpYt(q)

〉
p

6
∥∥Πqp logq(p)

∥∥
p
‖Πqp(Xt − Yt)(q)‖p

=
∥∥logq(p)

∥∥
q
‖Xt(q)− Yt(q)‖q

6 d(p, q) ‖X − Y ‖L∞(U×[0,τ)) ,

where we used again that Πqp is an isometry and that
∥∥logq(p)

∥∥
q
= d(p, q). Also estimate

A−B =
〈
Πqp logq(p),Xt(p)−ΠqpXt(q)

〉
p

6
∥∥Πqp logq(p)

∥∥
p
‖Xt(p)−ΠqpXt(q)‖p

6
∥∥logq(p)

∥∥
q
Ld(p, q)

= Ld(p, q)2,

where we used the Lipschitz continuity of X, the isometric property of Πqp and that
∥∥logq(p)

∥∥
q
=

d(p, q). Finally, by (4.1), we yield

I −A = −
〈
logp(q) + Πqp logq(p),Xt(p)

〉
p
= 0.

Using these estimates in (4.1), we find

1

2

d

dt
d2(p, q) 6 Ld2(p, q) + ‖X − Y ‖L∞(U×[0,τ)) d(p, q),

and after cancelling a d(p, q), we get:

d

dt
d(p, q) 6 Ld(p, q) + ‖X − Y ‖L∞(U×[0,τ)) .

Gronwall’s lemma now gives the desired result.
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We now focus on what restrictions we should further impose on a neighbourhood U for the well-
posedness to hold on U . Given a point z ∈ M , [29, Theorem 6.6.1] gives a bound on the Hessian of
d2z provided the sectional curvature K of M is locally bounded. Specifically, let r < inj(M) so that
the exponential map expz is a diffeomorphism on Br(0) ⊂ TzM . Denote by Br(z) := expz(Br(0))

the geodesic ball centred at z with radius r, and suppose that there exist reals λ 6 0 and 0 6 µ 6 π2

4r2

such that
λ 6 K 6 µ, on Br(z). (13)

Then, by [29, Theorem 6.6.1] it holds that

2
√
µd(x, z) cot(

√
µd(x, z))‖v‖2x 6

〈
Hessv d

2
z(x), v

〉
x
6 2

√
−λd(x, z) coth(

√
−λd(x, z))‖v‖2x, (14)

for all x ∈ Br(z) and v ∈ TxM . Note that the assumption of completeness and simple connectedness
of M in (M) ensures that inj(M) = ∞ whenever K 6 0 everywhere (cf. [29, Corollary 6.9.1], a
consequence of the Cartan–Hadamard theorem).

Let us further introduce some notation used throughout the rest of the paper:

Notation 4.2. Because M is locally compact (since finite-dimensional) and K is continuous, K
is also locally bounded (cf. [33, Remark 2.2]). For any p ∈ M and r > 0, we write λr(p) 6 0
and µr(p) > 0 any lower and upper bounds for K on the set {x ∈ M | d(p, x) < r} (which, by the
terminology set up in Appendix A, is denoted by Br(p) if r 6 rinj(p)).

Lemma 4.3 (Fundamental Lemma II). Let U ⊂ Br/2(p) be open for some p ∈ M and r < inj(M),
and denote λ = λ2r(p) and µ = µ2r(p). Suppose moreover that U satisfies

∆ := diam(U) <
π

2
√
µ
, if µ > 0. (15)

Then, for all z ∈ U , the Hessian Hess d2z is bounded on U by L := 2
√
−λ∆coth(

√
−λ∆).

If moreover U is geodesically convex, we have

‖ logx z −Πyx logy z‖x 6
L
2 d(x, y), for all x, y, z ∈ U. (16)

Proof. The proof is a direct consequence of (4.1). See Appendix B.5 for the details.

Remark 4.4. When λr(p) = µr(p) = 0 for all p ∈ M and r > 0, we recover the trivial result that
L = 2 in Lemma 4.3 (and, in particular, L is independent of the diameter of the subset U), and
(4.3) holds for all x, y, z ∈ M .

Lemma 4.3 states that, for all z, the map x 7→ logx z is Lipschitz continuous in the sense of
parallel transport. On the other hand, the following lemma shows that, for all x, the map z 7→ logx z
is Lipschitz continuous in the classical Euclidean sense.

Lemma 4.5 (Fundamental Lemma III). Let U ⊂ Br(p) be a totally normal neighbourhood for some
p ∈ M and r < inj(M), and write µ = µr(p). We distinguish two cases:

(i) µ = 0. Then,
‖ logx y − logx z‖x 6 d(y, z), for all x, y, z ∈ U. (17)

10



(ii) µ > 0. Take any 0 < ε < π and further assume diam(U) 6 π−ε√
µ . Then,

‖ logx z − logx y‖x 6
π − ε

sin(π − ε)
d(y, z), for all x, y, z ∈ U. (18)

Proof. This follows from [29, Corollary 6.6.1]. We give the details in Appendix B.6.

Remark 4.6. When inj(M) = ∞ and µr(p) = 0 for all p ∈ M and r > 0, i.e., M is globally
nonpositively curved, ((i)) holds for all x, y, z ∈ M .

Remark 4.7. If M is globally nonpositively curved, then the restriction on U in Lemma 4.3 in
order to get a bounded Hessian simplifies into open and bounded. In Lemma 4.5 the restriction on
U simplifies into totally normal neighborhood and bounded.

4.2 Local well-posedness

Let us now turn to the local well-posedness of solutions to Equation (1). We consider an additional
assumption:

(Kloc) K : M ×M → R satisfies (K) with g′ locally Lipschitz continuous.

For ∆ > 0, we write Cg′(∆) and Lg′(∆) for the L∞ norm and the Lipschitz constant of g′ on [0,∆2].

Lemma 4.8. Assume the manifold M and potential K satisfy (M) and (Kloc), and take U ⊂
Br/2(p) open and geodesically convex for some p ∈ M and r < inj(M) such that (4.3) holds (cf.
also Notation 4.2). Let T ∈ (0,∞] and ρ ∈ C([0, T );P(U)). Then the time-dependent vector field
v[ρ] given by (3.1) is bounded and Lipschitz continuous with respect to its first variable, uniformly
with respect to its second variable.

Proof. Write ∆ for diam(U). We have, for all x, y ∈ U ,

‖∇Ky(x)‖x =
∥∥g′(d(x, y)2)∇d2y(x)

∥∥
x
6 2Cg′(∆)∆,

where we used the local bound on g′ and that
∥∥∇d2y(x)

∥∥
x
= 2d(x, y) 6 2∆. Immediately, for all

t ∈ [0, T ), it follows

‖v[ρ](x, t)‖x 6

∫

U
‖∇Ky(x)‖x dρt(y) 6 2Cg′(∆)∆, (19)

which shows that v[ρ] is bounded.
Also, for all x, y, z ∈ U , we get

‖∇Kz(x)−Πyx∇Kz(y))‖x =
∥∥g′(d(x, z)2)∇d2z(x)− g′(d(y, z)2)Πyx∇d2z(y)

∥∥
x

6 |g′(d(x, z)2)|
∥∥∇d2z(x)−Πyx∇d2z(y)

∥∥
x
+
∥∥∇d2z(y)

∥∥
y
|g′(d(x, z)2)− g′(d(y, z)2)|

6 Cg′(∆)Ld(x, y) + 2d(y, z)Lg′(∆)|d(x, z)2 − d(y, z)2|,

where we used the Lipschitz continuity of the vector field ∇d2z (equivalently of the logarithm map)
given by (4.3) and the local bound and Lipschitz continuity of g′. Now use d(y, z) 6 ∆ and

|d(x, z)2 − d(y, z)2| = |d(x, z) − d(y, z)||d(x, z) + d(y, z)| 6 2∆d(x, y),
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to get
‖∇Kz(x)−Πyx∇Kz(y))‖x 6Ld(x, y) for all x, y, z ∈ U,

where
L = Cg′(∆)L+ 4∆2Lg′(∆). (20)

Then, for all t ∈ [0, T ) and x, y ∈ U , we get

‖v[ρ](x, t) −Πyxv[ρ](y, t)‖x 6

∫

U
‖∇Kz(x)−Πyx∇Kz(y))‖x dρt(z)

6Ld(x, y), (21)

which shows that v[ρ] is Lipschitz continuous with respect to its first variable (space), uniformly
with respect to its second (time).

Remark 4.9. The L∞ bound and the Lipschitz constant of v[ρ] in (4.2) and (4.2) do not depend
on the curve ρ. This is important for the proof of Theorem 4.12.

Lemma 4.10. Let M and K satisfy (M) and (Kloc) and U ⊂ Br(p) be a totally normal neighbor-
hood for some p ∈ M and r < inj(M), and write µ = µr(p) (recall Notation 4.2). If µ > 0 assume
that ∆ := diam(U) satisfies ∆ 6

π−ε√
µ for some 0 < ε < π. Let ρ, σ ∈ C([0, T );P(U)). Then, there

exists Λ > 0 so that
‖v[ρ] − v[σ]‖L∞(U×[0,T )) 6 ΛW 1(ρ, σ).

Proof. By Lemma 4.5, we have

‖ logx z − logx y‖x 6 ℓd(y, z) for all x, y, z ∈ U,

where ℓ = π−ε
sin(π−ε) if µ > 0 and ℓ = 1 if µ = 0. Hence, using (4) we find

‖∇d2y(x)−∇d2z(x)‖x 6 2ℓd(y, z), for all x, y, z ∈ U.

Since (Kloc) holds, for all x, y ∈ U compute

‖∇Ky(x)−∇Kz(x)‖x = ‖g′(d(x, y)2)∇d2y(x)− g′(d(x, z)2)∇d2z(x)‖x
6 |g′(d(x, z)2)|‖∇d2y(x)−∇d2z(x)‖x + ‖∇d2y(x)‖x|g′(d(x, y)2)− g′(d(x, z)2)|,

where we added and subtracted g′(d(x, z)2)∇d2y(x) on the first line and used the triangle inequality.
Then, using the bound and Lipschitz constant of g′, the fact that ‖∇d2y(x)‖x = 2d(x, y) and again
the triangle inequality, we find

‖∇Ky(x)−∇Kz(x)‖x 6 2Cg′(∆)ℓ d(y, z) + 2Lg′(∆)|d(x, y) + d(x, z)||d(x, y) − d(x, z)|d(x, y)
6 (2Cg′(∆)ℓ+ 4Lg′(∆)∆2)d(y, z). (22)

Now, for (x, t) ∈ U × [0, T ), take πt ∈ Π(ρt, σt) to be an optimal transport plan between ρt and
σt, and estimate

‖v[ρ](x, t) − v[σ](x, t)‖x =

∥∥∥∥
∫

U
∇Ky(x) dρt(y)−

∫

U
∇Kz(x) dσt(z)

∥∥∥∥
x
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=

∥∥∥∥
∫

U×U
∇Ky(x) dπt(y, z) −

∫

U×U
∇Kz(x) dπt(y, z)

∥∥∥∥
x

6

∫

U×U
‖∇Ky(x)−∇Kz(x)‖x dπt(y, z).

Then, using (4.2) we find

‖v[ρ](x, t) − v[σ](x, t)‖x 6 Λ

∫

U×U
d(y, z) dπt(y, z) = ΛW1(ρt, σt)

6 ΛW 1(ρ, σ), (23)

where
Λ = 2Cg′(∆)ℓ+ 4Lg′(∆)∆2. (24)

Taking the supremum in (x, t) ∈ U × [0, T ) on the left-hand side of (4.2) gives the result.

Remark 4.11. The assumptions on U in Lemma 4.10 are weaker than those in Lemma 4.8.

Theorem 4.12 (Local Well-Posedness). Assume the manifold M and interaction potential K
satisfy (M) and (Kloc), and take U ⊂ Br/2(p) open and geodesically convex for some p ∈ M
and r < inj(M) so that (4.3) holds (cf. Notation 4.2). Let ρ0 ∈ P(U). Then, there exist T > 0 and
a unique weak solution in C([0, T );P(U)) starting from ρ0 to the aggregation equation (1).

Proof. By Lemma 4.8 the velocity field v[σ] (for any fixed continuous curve σ in P(U)) satisfies the
assumptions of Theorem 2.5, so that we can infer that (v[σ], supp(ρ0)) generates a unique maximal
flow Ψv[σ] defined on supp(ρ0) × [0, τ) for some τ ∈ (0,∞]. In addition, since the L∞ bound and
the Lipschitz constant in (4.2) and (4.2) do not depend on the underlying curve (see Remark 4.9),
the maximal time of existence τ of Ψv[σ] does not depend on σ by the Cauchy–Lipschitz theorem
(cf. Theorem 2.5).

We can then define the map Γ by

Γ(σ)(t) = Ψt
v[σ]#ρ0, for all σ ∈ C([0, τ);P(U)) and t ∈ [0, τ).

We will prove that Γ defines a map from C([0, τ);P(U)) into itself and that it has a unique fixed
point. This fixed point is the weak solution of (1) starting at ρ0.

Note first that Γ does indeed map C([0, τ);P(U)) into itself. For σ ∈ C([0, τ);P(U)) fixed, by
definition of a flow map generated by (v[σ], supp(ρ0)), we infer that Ψ

t
v[σ](x) ∈ U for all x ∈ supp(ρ0)

and t ∈ [0, τ). Consequently, Γ(σ)(t) is supported in U and moreover, it is a probability measure
by conservation of mass through the push-forward, so that Γ(σ)(t) ∈ P(U), for all t ∈ [0, τ).
Furthermore, the map t 7→ Γ(σ)(t) is continuous due to the combination of Lemma 3.2(ii) with
Lemma 4.8. We conclude that Γ: (C([0, τ);P(U)),W 1) → (C([0, τ);P(U)),W 1).

To show that Γ is a contraction we will have to restrict the final time to some T 6 τ to be
determined. Let ρ, σ ∈ C([0, τ);P(U)). Then, for all t ∈ [0, τ), we have

W1(Ψ
t
v[ρ]#ρ0,Ψ

t
v[σ]#ρ0) 6 sup

x∈supp(ρ0)
d(Ψt

v[ρ](x),Ψ
t
v[σ](x))

6 C(t)‖v[ρ]− v[σ]‖L∞(U×[0,τ))
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6 C(t)ΛW 1(ρ, σ), (25)

where for the first inequality we used Lemma 3.2(i), for the second inequality we used Lemmas 4.8
and 4.1, with

C(t) =
eL̄t − 1

L̄
,

and for the last inequality we used Lemma 4.10; the Lipschitz constants L̄ and Λ depend on diam(U)
and are defined in (4.2) and (4.2). Since t 7→ C(t) is increasing, with limt→0C(t) = 0 and Λ is
independent of time, we can choose T 6 τ (only depending on L̄ and Λ) small enough so that

C(t)Λ < C(T )Λ <C, for all t ∈ [0, T ),

for some constant C < 1. Restricting T accordingly, by taking the supremum over [0, T ) in (4.2)
we find

W 1(Γ(ρ),Γ(σ)) 6CW 1(ρ, σ),

with C < 1. This shows that the restriction of Γ to (C([0, T );P(U)),W 1) is a contraction.
We have thus shown that Γ: (C([0, T );P(U)),W 1) → (C([0, T );P(U)),W 1) has a unique fixed

point, that is, there exists a unique ρ ∈ C([0, T );P(U)) such that

ρt = Ψt
v[ρ]#ρ0 for all t ∈ [0, T );

this fixed point ρ is the desired solution.

Remark 4.13. In Theorem 4.12, one could choose U = Br/2(p) as long as this geodesic ball is
convex and r < inj(M), that is, as long as r < min(inj(M), 2 conv(M)) = 2 conv(M) (where the
equality comes from the fact that 2conv(M) 6 inj(M) [11, Proposition IX.6.1]).

4.3 Global well-posedness when M is nonpositively curved

We establish here the global well-posedness for (1) when M is nonpositively curved. Recall that in
this case inj(M) = ∞; in fact, we have that the exponential map is a diffeomorphism from TxM to
M for all x ∈ M (see [29, Corollary 6.9.1]). In particular, this implies that the velocity field (3.1)
is well-defined for all ρ ∈ C([0,∞);P∞(M)) and M is geodesically convex.

We shall focus on the case when M is nonpositively curved with bounded curvature. We thus
consider the following hypothesis, for some λ 6 0:

(M)λ M satisfies (M) and its curvature K is so that λ 6 K 6 0 everywhere on M .

We wish to adapt Lemmas 4.8 and 4.10 globally when M satisfies (M)λ for some λ 6 0. If M is
compact, then this is straightforward. Indeed, in this setting Lemmas 4.8 and 4.10 apply directly
when replacing U with M and T with ∞ (cf. also Remark 4.7), and the following lemmas hold:

Lemma 4.14. Assume there exists λ 6 0 such that M satisfies (M)λ. Suppose M is compact and
K satisfies (Kloc). Let ρ ∈ C([0,∞);P(M)). Then the time-dependent vector field v[ρ] given by
(3.1) is bounded and Lipschitz continuous with respect to its first variable, uniformly with respect
to its second variable.

Lemma 4.15. Assume K 6 0. Suppose M satisfies (M) and is compact and suppose K satisfies
(Kloc). Let furthermore ρ, σ ∈ C([0,∞);P(M)). Then, there exists Λ > 0 so that

‖v[ρ] − v[σ]‖L∞(M×[0,∞)) 6 ΛW 1(ρ, σ).
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When M is unbounded, Lemmas 4.8 and 4.10 do not adapt this easily. Consider in this case
the following hypothesis on K, for some λ 6 0:

(Kglob)λ K : M ×M → R satisfies (K) with g such that, for some constant Ag′ > 0,

∣∣g′(r2)r − g′(s2)s
∣∣ 6 Ag′ |r − s| , for all r, s > 0.

When λ < 0, it further holds that

∣∣g′(r2)
∣∣ r 6 Ag′ , for all r > 0.

With this notation, (Kglob)0 refers to the first bound only in (Kglob)λ.
The first bound in (Kglob)λ means that the function r 7→ g′(r2)r is globally Lipschitz contin-

uous; it implies in particular that g′ is globally bounded by Ag′ . The second bound in (Kglob)λ,
in case λ < 0, means that r 7→ g′(r2)r is globally bounded; it also says that g′(r) must decrease at
least as fast as 1/

√
r as r → ∞.

The Lipschitz condition in (Kglob)λ is consistent with the classical Cauchy–Lipschitz theory in
Euclidean space. Indeed, in this case this Lipschitz condition is enough to get the global Lipschitz
continuity of the velocity field (and the local boundedness that follows from it) in order to obtain
global well-posedness of the flow maps (cf. Theorem 2.6). When the space is negatively curved,
the Lipschitz condition in (Kglob)λ is not sufficient anymore to get the global Lipschitz continuity
of the velocity field. This stems from (4.3), where the Lispchitz constant depends on the distance
between the points considered (as opposed to the flat case discussed in Remark 4.4)—the global
upper bound condition in (Kglob)λ helps counterbalance this effect. All this can be seen in details
in the proof of Lemma 4.17 below.

Remark 4.16. One can check that the Lipschitz condition in (Kglob)λ implies

∣∣g′(r2)− g′(s2)
∣∣ s 6 2Ag′ |r − s| , for all r, s > 0.

Lemma 4.17. Assume there exists λ 6 0 such that M satisfies (M)λ. Suppose M is unbounded
and K satisfies (Kglob)λ. Let ρ ∈ C([0,∞);P∞(M)). Then the time-dependent vector field v[ρ]
given by (3.1) is locally bounded and globally Lipschitz continuous with respect to its first variable,
uniformly with respect to its second variable.

Proof. We follow closely the proof of Lemma 4.8. Let U ⊂ M be bounded, open and convex with
∆ = diam(U). We have, for all x, y ∈ U ,

‖∇Ky(x)‖x =
∥∥g′(d(x, y)2)∇d2y(x)

∥∥
x
6 2Ag′∆,

which yields the local boundedness of v[ρ](·, t), uniformly with respect to t ∈ [0,∞). (Note that in
case λ < 0, this bound on v[ρ](·, t) is actually global thanks to the second condition in (Kglob)λ.)

For all x, y, z ∈ U , we get

‖∇Kz(x)−Πyx∇Kz(y))‖x =
∥∥g′(d(x, z)2)∇d2z(x)− g′(d(y, z)2)Πyx∇d2z(y)

∥∥
x

6 |g′(d(x, z)2)|
∥∥∇d2z(x)−Πyx∇d2z(y)

∥∥
x
+
∥∥∇d2z(y)

∥∥
y
|g′(d(x, z)2)− g′(d(y, z)2)|

6 |g′(∆2)|L(∆) d(x, y) + 4Ag′ |d(x, z) − d(y, z)|
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6 (|g′(∆2)|L(∆) + 4Ag′) d(x, y),

where for the first inequality we added and subtracted g′(d(x, z)2)Πyx∇d2z(y) and used the trian-
gle inequality; we then used the Lipschitz continuity of the vector field ∇d2z given by (4.3) with
L(∆) := 2

√
−λ∆coth(

√
−λ∆), the fact that

∥∥∇d2z(y)
∥∥
y
= 2d(y, z) and Remark 4.16 for the second

inequality, and the reverse triangle inequality on d for the third inequality. We notice that if λ = 0,
then L(∆) = 2 and so |g′(∆2)|L(∆) 6 2Ag′ . If λ < 0, we have

g′(∆2)L(∆) = 2g′(∆2)
√
−λ∆coth(

√
−λ∆)

6

{
2g′(∆2) coth(1) if ∆ 6

1√
−λ

2g′(∆2)
√
−λ∆coth(1) if ∆ > 1√

−λ

6

{
2Ag′ coth(1) if ∆ 6

1√
−λ

2Ag′
√
−λ coth(1) if ∆ > 1√

−λ

6 2Ag′ coth(1)max(1,
√
−λ),

where for the first inequality we used that r coth(r) and coth(r) are bounded by coth(1), respectively
for r 6 1 and for r > 1, and for the second inequality we used the second bound condition in
(Kglob)λ. Thus, because coth(1)max(1,

√
−λ) > 1, in either case λ = 0 or λ < 0 we get

g′(∆2)L(∆) 6 2Ag′ coth(1)max(1,
√
−λ).

Since the right-hand side above is independent of U , and U is any bounded, open, convex subset
of M , we deduce that for all x, y, z ∈ M we have

‖∇Kz(x)−Πyx∇Kz(y))‖x 6 2Ag′(coth(1)max(1,
√
−λ) + 2) d(x, y),

Then we conclude the proof, with Lipschitz constant L = 2Ag′(coth(1)max(1,
√
−λ) + 2).

Lemma 4.18. Assume K 6 0. Suppose M satisfies (M) and is unbounded and suppose K satisfies
(Kglob)0. Let furthermore ρ, σ ∈ C([0,∞);P∞(M)). Then, there exists Λ > 0 so that

‖v[ρ] − v[σ]‖L∞(M×[0,∞)) 6 ΛW 1(ρ, σ).

Proof. We follow closely the proof of Lemma 4.10. By Lemma 4.5 and Remark 4.6, recall that

‖∇d2y(x)−∇d2z(x)‖x 6 2d(y, z), for all x, y, z ∈ M. (26)

For all x, y, z ∈ M compute

‖∇Ky(x)−∇Kz(x)‖x = ‖g′(d(x, y)2)∇d2y(x)− g′(d(x, z)2)∇d2z(x)‖x
6 |g′(d(x, z)2)|‖∇d2y(x)−∇d2z(x)‖x + ‖∇d2y(x)‖x|g′(d(x, y)2)− g′(d(x, z)2)|

6 2Ag′ d(y, z) + 4Ag′ |d(x, y)− d(x, z)|
6 6Ag′ d(y, z),

where for the first inequality we added and subtracted g′(d(x, y)2)∇d2z(x) and used triangle in-
equality; we then used (4.3), the fact that

∥∥∇d2y(x)
∥∥ = 2d(x, y) and Remark 4.16 for the second

inequality, and the reverse triangle inequality on d for the third inequality. Following the proof of
Lemma 4.10, we conclude with Λ = 6Ag′ .
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In addition to global well-posedness, the following theorem shows that the support of the global
solution is contained in an increasing geodesic ball centred around the initial data.

Theorem 4.19 (Global Well-Posedness on Nonpositively Curved Manifold). Assume that there
exists λ 6 0 such that M satisfies (M)λ. Suppose either that M is compact and K satisfies (Kloc),
or that M is unbounded and K satisfies (Kglob)λ. Let ρ0 ∈ P∞(M). Then, there exists a unique
weak solution in C([0,∞);P∞(M)) starting from ρ0 to the aggregation equation (1). Moreover,
there exist a nondecreasing function R : [0,∞) → R and a point p ∈ supp(ρ0) such that

supp(ρt) ⊂ BR(t)(p), for all t > 0.

Proof. By Lemma 4.14 (if M is compact) or Lemma 4.17 (if M is unbounded), since M is convex,
the velocity field v[σ] (for any fixed continuous curve σ in P∞(M)) satisfies the assumptions of
the global Cauchy-Lipschitz theorem (cf. Theorem 2.6), so that we can infer that (v[σ], supp(ρ0))
generates a unique global flow defined on supp(ρ0)× [0,∞).

Following the same steps as in the proof of Theorem 4.12, using Lemmas 4.14 and 4.15 (in case
M is compact) or Lemmas 4.17 and 4.18 (in case M is unbounded) in place of Lemmas 4.8 and 4.10,
respectively, yields the well-posedness by observing that the constantsL and Λ are now independent
of supp(ρ0) and its diameter, which allows us to apply an iterative argument indefinitely and
obtain a unique solution in C([0,∞);P∞(M)). If M is unbounded, the boundedness of the support
of the solution and the existence of a nondecreasing ball containing it follows from the iterative
construction of the global flow map in the proof of Theorem 2.6; if M is compact, this is trivial.

5 Additional results

We give here two additional results which can be derived by following very closely the global well-
posedness and stability theory established for the model on the sphere in [20]. For this reason, we
do not give the proofs here and refer the reader to [20, Proposition 4.1] (global well-posedness for
attractive potentials) and [20, Theorem 3.8] (stability of solutions) should they wish to see details.

Following [20], we give the following definition of purely attractive potential: given x ∈ M , we
say that K is purely attractive at x if for all normal neighbourhood U of x and y ∈ U we have

〈∇Ky(x), logx y〉x 6 0.

Consider now the hypothesis below on K:

(Katt) K : M ×M → R satisfies (Kloc) with g such that

g′(r2) > 0 for all r < inj(M).

By (4), the nonnegativity condition in (Katt) means that K is purely attractive.

Theorem 5.1 (Global Well-Posedness for Attractive Potential). Let M and K satisfy (M) and
(Katt), and let U ⊂ Br/2(p) for some p ∈ M and r < inj(M) be open and geodesically convex and
such that (4.3) holds. Let moreover ρ0 ∈ P(U) and R > 0 be such that supp(ρ0) ⊂ BR(p) ⊂ U .
Then, there exists a unique weak solution ρ in C([0,∞);P(U)) starting from ρ0 to the aggregation
equation (1); furthermore, supp(ρt) ⊂BR(p) for all t > 0.
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Theorem 5.2 (Stability). Let ρ0, σ0 ∈ P∞(M). Let furthermore ρ and σ be weak solutions to (1)
defined on some time interval [0, T ) starting from ρ0 and σ0, respectively, as derived in Theorems
4.12, 4.19 or 5.1. Then,

W1(ρt, σt) 6 e(L+Λ)tW1(ρ0, σ0) for all t ∈ [0, T ),

where L and Λ are the constants given in the proofs of Lemmas 4.8 and 4.10 in the local, compact
and purely attractive cases and of Lemmas 4.17 and 4.18 in the global and unbounded case.

We note that when M and K verify (M)λ and (Kglob)λ for some λ 6 0, and M is unbounded
(i.e., we are in the global and unbounded case and the constant L is given in the proof of Lemma
4.17), the above theorem illustrates the fact that the larger (in magnitude) the lower bound λ on
K is, the faster solutions may spread apart in time.

A Appendix: basic concepts and terminology from differential geometry

All the concepts discussed here are standard and can be found in any graduate differential geometry
book. We refer the reader for example to [11,13,31].

Logarithm map and normal neighbourhoods. Given x ∈ M , there exists G ⊂ TxM open with
0 ∈ G such that the exponential map expx : G → U := expx(G) restricted to G is a diffeomorphism.
The inverse of expx is the logarithm map at x (on U), denoted by logx : U → G. We have that
x ∈ U and U is an open subset of M . We call any such U a normal neighbourhood of x—conversely,
any x ∈ U has a normal neighbourhood. A subset of M is said to be a totally normal neighbourhood
if it is a normal neighbourhood of each of its points.

If r > 0 is such that expx defines a diffeomorphism on the open ball Br(0) ⊂ TxM , then
Br(x) := expx(Br(0)) is open and is called the open geodesic ball centred at x of radius r; by the
previous paragraph, Br(x) is by definition a normal neighbourhood of x. Also, it coincides with the
metric ball centred at x with radius r, that is, with the set {y ∈ M | d(x, y) < r}. The largest such
radius r is called the injectivity radius at x and is denoted rinj(x). The infimum over all y ∈ M of
rinj(y) is referred to as the injectivity radius of M , which we denote by inj(M).

Geodesics and convexity. By definition of the exponential map, any point y in a normal neigh-
bourhood of another point x can be connected to x via a unique minimizing geodesic γxy : [0, 1] →
M , which satisfies, for all t ∈ [0, 1],

γxy(t) = expx(t logx y).

This formula indicates that expx transforms the straight line t 7→ t logx(y) in TxM into the geodesic
connecting x and y.

A (geodesically) convex subset of M is a subset in which each pair of points can be connected
by a unique minimizing geodesic which lies entirely within it—when open, it is thus a particular
case of a totally normal neighbourhood that minimizing geodesics cannot exit. We say that M is
(geodesically) convex if it is a geodesically convex subset of itself. Note that a geodesic ball is not
necessarily convex. Nevertheless, given any x ∈ M , it is a fact that x has a convex geodesic ball
as a neighbourhood; we refer to the radius of the largest such ball as the convexity radius at x,
denoted rconv(x). The infimum over all y ∈ M of rconv(y) is referred to as the convexity radius of
M , which we denote by conv(M).
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Normal charts. Let x ∈ M and U be a normal neighbourhood of x. We can construct a chart
in a canonical way. Indeed, let {E1(x), . . . , En(x)} be an orthonormal basis of TxM and define
E : TxM → R

n by

E(v) = (v1, . . . , vn), for all v = v1E1(x) + · · ·+ vnEn(x) ∈ TxM, (27)

i.e., E(v) gives the vector in R
n whose coordinates are the coordinates of v in {E1(x), . . . , En(x)}.

Then, define the map ϕ : U → R
n by

ϕ(y) = E ◦ logx(y) for all y ∈ U ;

note that ϕ(x) = 0. The pair (U,ϕ) induces a local chart of M containing x. Any chart thus
constructed is referred to as a normal chart (generated by x).

Push-forward and coordinates. Given a differentiable function f : M → R
n, a point x ∈ M

and v ∈ TxM , we call f∗v := df(x)(v) ∈ R
n the push-forward of v through f . Given any chart

(V, ϕ) of M containing some x, y ∈ M , we write

{
∂

∂ϕ1
(y), . . . ,

∂

∂ϕn
(y)

}

for the basis of TyM defined by

∂

∂ϕi
(y) = dϕ−1(ϕ(y))(ei), that is, ei = dϕ(y)

(
∂

∂ϕi
(y)

)
= ϕ∗

∂

∂ϕi
(y),

where, for all i ∈ {1, . . . , n}, ei is the ith vector of the canonical basis of Rn. For all v ∈ TyM there
exist v1, . . . , vn ∈ R such that

v = v1
∂

∂ϕ1
(y) + · · ·+ vn

∂

∂ϕn
(y).

Then, by linearity,

ϕ∗v = dϕ(y)(v) = v1dϕ(y)

(
∂

∂ϕ1
(y)

)
+ · · ·+vndϕ(y)

(
∂

∂ϕn
(y)

)
= v1e1+ · · ·+vnen = (v1, . . . , vn).

Hence ϕ∗v gives the vector in Rn whose coordinates are those of v in
(
∂/∂ϕ1(y), . . . , ∂/∂ϕn(y)

)
.

Euclidean norm and instrinsic distance. We give now useful relations between norms in R
n

and intrinsic distances on M . Let (V, ϕ) be a chart of M and let Q ⊂ V be compact. Then there
exist cϕ,Q, Cϕ,Q > 0 so that

cϕ,Q ‖ϕ∗v‖Rn 6 ‖v‖x 6 Cϕ,Q ‖ϕ∗v‖Rn , for all x ∈ Q and v ∈ TxM. (28)

If furthermore ϕ(U) ⊂ R
n is convex, then there exists Lϕ,Q > 0 so that

d(x, y) 6 Lϕ,Q ‖ϕ(x) − ϕ(y)‖
Rn , for all x, y ∈ Q. (29)

We now prove these relations. Let us first show (A). Define

Tϕ = {(x, v) ∈ Q× TM | v ∈ TxM, ‖ϕ∗v‖Rn = 1},
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which is compact as well. Then, because (x, v) 7→ ‖v‖x is continuous on Tϕ and we have ‖v‖x > 0
for all (x, v) ∈ Tϕ, there exist cϕ,Q, Cϕ,Q > 0 such that

cϕ,Q 6 ‖v‖x 6 Cϕ,Q, for all (x, v) ∈ Tϕ.

Fix now (x, v) ∈ Q× TM with v ∈ TxM and ‖ϕ∗v‖Rn 6= 0. Using the inequality above we get

‖v‖x = ‖ϕ∗v‖Rn

∥∥∥∥
v

‖ϕ∗v‖Rn

∥∥∥∥
x

6 Cϕ,Q ‖ϕ∗v‖Rn , (30)

and similarly for the side with cϕ,Q. Also, trivially, if ‖ϕ∗v‖Rn = 0, then the same inequalities hold,
proving (A).

Let us now turn to (A). Define

Rϕ,Q = {ξ ∈ R
n | ∃ (x, y, t) ∈ Q×Q× [0, 1], ξ = (1− t)ϕ(x) + tϕ(y)},

which we note is compact. Let x, y ∈ Q and define γ by

γ(t) = ϕ−1((1− t)ϕ(x) + tϕ(y)), for all t ∈ [0, 1],

so that in particular, the composition ϕ ◦ γ is the (Euclidean) geodesic from ϕ(x) to ϕ(y). Since
ϕ(V ) is convex we deduce that Rϕ,Q ⊂ ϕ(V ) and so γ([0, 1]) ⊂ ϕ−1(Rϕ,Q) ⊂ U . Since ϕ−1(Rϕ,Q)
is furthermore compact, using (A) and setting Lϕ,Q = Cϕ,ϕ−1(Rϕ,Q) yields

d(x, y) 6

∫ 1

0

∥∥γ′(t)
∥∥
γ(t)

dt 6 Lϕ,Q

∫ 1

0

∥∥ϕ∗γ
′(t)
∥∥
Rn dt

= Lϕ,Q

∫ 1

0

∥∥(ϕ ◦ γ)′(t)
∥∥
Rn dt = Lϕ,Q ‖ϕ(x) − ϕ(y)‖

Rn .

B Appendix: proofs of preliminary results

B.1 Proof of Lemma 2.2

Let us first show the following lemma, which is also going to be useful in Appendix B.2.

Lemma B.1. Let U ⊂ M be open and geodesically convex, and let further X be a differentiable
vector field on U . Then,

‖X(x)−ΠyxX(y)‖2x 6

∫ 1

0

∥∥∇γ′(t)X(γ(t))
∥∥2
γ(t)

dt, for all x, y ∈ U,

where γ : [0, 1] → M is the minimizing geodesic joining x to y. (Refer to (2.2) for the definition of
the above integrand.)

Proof. Take two points x, y ∈ U and the unique minimizing geodesic γ : [0, 1] → M joining the
two points; in particular, γ([0, 1]) ⊂ U for all t ∈ [0, 1]. Consider an orthonormal parallel frame
t 7→ {e1(t), e2(t), . . . , en(t)} along γ. From

X(γ(t)) =
n∑

i=1

〈X(γ(t)), ei(t)〉γ(t)ei(t), for all t ∈ [0, 1],
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using that the parallel transport is a linear operator, we get:

ΠyxX(γ(1)) =

n∑

i=1

〈X(γ(1)), ei(1)〉γ(1)Πyxei(1) =

n∑

i=1

〈X(γ(1)), ei(1)〉γ(1)ei(0).

Consequently,

‖X(x)−ΠyxX(y)‖2x =

n∑

i=1

(
〈X(γ(1)), ei(1)〉γ(1) − 〈X(γ(0)), ei(0)〉γ(0)

)2
. (31)

Using the compatibility of the connection with the metric [13,14] we obtain

d

dt
〈X(γ(t)), ei(t)〉γ(t) = 〈∇γ′(t)X(γ(t)), ei(t)〉γ(t) + 〈X(γ(t)),∇γ′(t)ei(t)〉γ(t)

= 〈∇γ′(t)X(γ(t)), ei(t)〉γ(t),

where for the second equality we used ∇γ′(t)ei(t) = 0, for all t ∈ [0, 1]. By integrating the equation
above from 0 to 1 and using it in (B.1) we find

‖X(x)−ΠyxX(y)‖2x =
n∑

i=1

(∫ 1

0
〈∇γ′(t)X(γ(t)), ei(t)〉γ(t) dt

)2

6

∫ 1

0

n∑

i=1

〈∇γ′(t)X(γ(t)), ei(t)〉2γ(t) dt

=

∫ 1

0
‖∇γ′(t)X(γ(t))‖2γ(t) dt,

where for the second line we used Jensen’s inequality, and for the third we used the fact that
{ei(t)}ni=1 is an orthonormal basis of Tγ(t)M .

Let us now turn to the proof of Lemma 2.2. Take Q ⊂ Bδ(x) ∩ V compact and let y, z ∈ Q.
We write Gϕ(y) for the metric tensor associated with 〈·, ·〉y in the basis {∂/∂ϕ1(y), . . . , ∂/∂ϕn(y)}.
For all i, j ∈ {1, . . . , n} we denote by pi(y, z) and fij(y, z) the ith coordinates in this basis of
X(y)−ΠzyX(z) and ∂/∂ϕj(y)−Πzy∂/∂ϕ

j(z), respectively.
For all i ∈ {1, . . . , n} we have

|pi(y, z)| =
∣∣∣∣∣

〈
X(y) −ΠzyX(z), Gϕ(y)

−1 ∂

∂ϕi
(y)

〉

y

∣∣∣∣∣

6 ‖X(y)−ΠzyX(z)‖y
∥∥∥∥Gϕ(y)

−1 ∂

∂ϕi
(y)

∥∥∥∥
y

6 Pϕ ‖X‖Lip(Q) d(y, z),

where Pϕ = supi∈{1,...,n}
∥∥G−1

ϕ (·)∂/∂ϕi(·)
∥∥
L∞(Q)

, which is finite since ∂/∂ϕi for all i ∈ {1, . . . , n}
and Gϕ are continuous over the compact set Q; note that Pϕ is independent of y and z.

Similarly, for all i, j ∈ {1, . . . , n}, we have

|fij(y, z)| 6 PϕFϕd(y, z),
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where Fϕ = supi∈{1,...,n}
∥∥∂/∂ϕi

∥∥
Lip(Q)

, which is finite since ∂/∂ϕi as a vector field on Bδ(x) is

Lipschitz continuous for all i ∈ {1, . . . , n}. Indeed, by Lemma B.1, for all i ∈ {1, . . . , n} there holds

∥∥∥∥
∂

∂ϕi
(y)−Πzy

∂

∂ϕi
(z)

∥∥∥∥
2

y

6

∫ 1

0

∥∥∥∥∇γ′(t)
∂

∂ϕi
(γ(t))

∥∥∥∥
2

γ(t)

dt, for all y, z ∈ Bδ(x),

where γ : [0, 1] → M is the unique minimizing geodesic linking y to z. Decomposing ∇γ′(t)
∂

∂ϕi (γ(t))
using Christoffel symbols and using that the terms involved are continuous, hence locally bounded,
one can bound the integrand in the right-hand side by L ‖γ′(t)‖γ(t), with L > 0 constant. Then,

by rescaling γ to be constant-speed (i.e., so that ‖γ′(t)‖γ(t) = d(y, z) for all t ∈ [0, 1]), we get the
desired Lipschitz continuity:

∥∥∥∥
∂

∂ϕi
(y)−Πzy

∂

∂ϕi
(z)

∥∥∥∥
2

y

6 L

∫ 1

0

∥∥γ′(t)
∥∥2
γ(t)

dt = Ld(y, z)2, for all y, z ∈ Bδ(x).

Now, write (x1(y), . . . , xn(y)) = ϕ∗X(y) ∈ R
n, so that

X(y) = x1(y)
∂

∂ϕ1
(y) + · · ·+ xn(y)

∂

∂ϕn
(y),

and analogously for z (cf. Appendix A). By linearity of the parallel transport from z to y, we have

n∑

i=1

pi(y, z)
∂

∂ϕi
(y) = X(y)−ΠzyX(z) =

n∑

i=1

xi(y)
∂

∂ϕi
(y)−

n∑

i=1

xi(z)Πzy
∂

∂ϕi
(z)

=
n∑

i=1

(xi(y)− xi(z))
∂

∂ϕi
(y) +

n∑

i=1

xi(z)

(
∂

∂ϕi
(y)−Πzy

∂

∂ϕi
(z)

)

=

n∑

i=1

(xi(y)− xi(z))
∂

∂ϕi
(y) +

n∑

i=1

n∑

j=1

xj(z)fij(y, z)
∂

∂ϕi
(y),

which yields, for all i ∈ {1, . . . , n},

pi(y, z) = xi(y)− xi(z) +
n∑

j=1

xj(z)fij(y, z).

Thus, for all i ∈ {1, . . . , n},

|xi(y)− xi(z)| 6 |pi(y, z)|+
n∑

j=1

|xj(z)||fij(y, z)| 6 Pϕ(‖X‖Lip(Q) + nPϕFϕ ‖X‖L∞(Q))d(y, z).

To conclude the proof we use (A). Indeed, by definition of normal chart, we have ϕ(Bδ(x)) =
ϕ(expx(Bδ(0)) = E(logx(expx(Bδ(0)))) = E(Bδ(0)) ∼= Bδ(0), which is a convex subset of R

n,
where E is given in (A).
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B.2 Proof of Lemma 2.3

Assume first that ∇f is locally Lipschitz continuous. Let Q ⊂ U be compact, take any x ∈ Q and
v ∈ TxM and write γ for the constant-speed geodesic with γ(0) = x and γ′(0) = v. In particular,
d(γ(t), x) = t‖v‖x for all t > 0 such that γ(t) is defined, and for τ > 0 small enough we have
γ(t) ∈ Q̃ for all t < τ for some Q̃ compact satisfying Q ⊂ Q̃ ⊂ U . By local Lipschitz continuity of
∇f we thus have, for all t < τ ,

‖Π−1
xγ(t)∇f(γ(t))−∇f(x)‖x 6 LQ̃ d(γ(t), x) = LQ̃ t‖v‖x. (32)

By (2.2) and the definition of the Hessian, we have

Hessv f(x) = ∇v(∇f)(x) = lim
t→0

Π−1
xγ(t)∇f(γ(t))−∇f(x)

t
,

and using (B.2) we find
‖Hessv f(x)‖x 6 L

Q̃
‖v‖x.

The Hessian operator Hess f(x) is therefore bounded. By arbitrariness of Q and x ∈ Q, we conclude
that Hess f is locally bounded.

To prove the converse, suppose that U is convex and that the Hessian of f is locally bounded.
Let Q ⊂ U be compact; because U is open and convex, there exists a compact, geodesically convex
set Q̃ with Q ⊂ Q̃ ⊂ U . Furthermore, take two points x, y ∈ Q and the constant-speed geodesic
γ : [0, 1] → M joining the two points; in particular, ‖γ′(t)‖γ(t) = d(x, y) and γ([0, 1]) ⊂ Q̃ for all
t ∈ [0, 1]. By Lemma B.1 applied to the vector field ∇f we get

‖∇f(x)−Πyx∇f(y)‖2x 6

∫ 1

0
‖Hessγ′(t) f(γ(t))‖2γ(t) dt.

By the local boundedness of Hess f and the fact that γ is constant-speed we further get

‖∇f(x)−Πyx∇f(y)‖2x 6 C2
Q̃
d(x, y)2,

for some C
Q̃
> 0, which, by arbitrariness of Q and x, y ∈ Q, ends the proof.

B.3 Proof of Theorem 2.5

Take x ∈ U and let δ 6 rconv(x) be such that Bδ(x) ⊂ U . Let (Bδ(x), ϕ) be a normal chart
generated by x, and consider the initial-value problem

{
α′(t) = Ξ(α(t), t),

α(0) = ϕ(x),
(33)

where we define Ξ: ϕ(Bδ(x))× [0, T ) → R
n by

Ξ(ξ, t) = ϕ∗Xt(ϕ
−1(ξ)), for all (ξ, t) ∈ ϕ(Bδ(x))× [0, T ).

Take R ⊂ ϕ(Bδ(x)) = Bδ(0) and S ⊂ [0, T ) compact, so that in particular Q := ϕ−1(R) ⊂ Bδ(x)
is compact. For all ξ, η ∈ R and t ∈ S, our Lipschitz-continuity assumption on Xt yields

‖Ξ(ξ, t)− Ξ(η, t)‖
Rn =

∥∥ϕ∗Xt(ϕ
−1(ξ))− ϕ∗Xt(ϕ

−1(η))
∥∥
Rn
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6 (A ‖Xt‖L∞(Q) +B ‖Xt‖Lip(Q)) ‖ξ − η‖
Rn ,

for some constants A,B > 0 coming from Lemma 2.2. Also, for all ξ ∈ R it holds that

‖Ξ(ξ, t)‖
Rn =

∥∥ϕ∗Xt(ϕ
−1(ξ))

∥∥
Rn 6 C ‖Xt‖L∞(Q) ,

where C > 0 comes from (A). Therefore, by (2.5) we get that Ξ satisfies

∫

S

(
‖Ξ(·, t)‖L∞(R) + ‖Ξ(·, t)‖Lip(R)

)
dt 6

∫

S

(
(A+ C) ‖Xt‖L∞(Q) +B ‖Xt‖Lip(Q)

)
dt < ∞.

By arbitrariness of the compact sets R ⊂ ϕ(Bδ(x)) and S ⊂ [0, T ) and by the classical Cauchy–
Lipschitz theorem on R

n (see for instance [3, Lemma 8.1.4]), this yields the existence of a unique
maximal solution αx to (B.3) defined on some time interval [0, τx), with τx 6 T , and with values
in ϕ(Bδ(x)). By defining ϕx = ϕ−1 ◦ αx, we see that αx satisfies (B.3) if and only if

{
ϕ∗ϕ′

x(t) = (ϕ ◦ ϕx)
′(t) = ϕ∗Xt(ϕx(t)) for all t ∈ [0, τx),

ϕ(ϕx(0)) = ϕ(x).

By the bijectivity of ϕ, we get that ϕx is thus the unique maximal solution to the characteristic
equation starting at x.

Let now Σ be a compact subset of U . We are left with showing that τ := infx∈Σ(τx) > 0. By
classical Euclidean Lipschitz theory, we deduce that for all x ∈ U there exists δx > 0 such that
τ̄x := infy∈Bδx (x)

τy > 0. Since Σ is compact we know it can be covered by a finite subfamily of
{Bδx(x)}x∈Σ, which we index by {x1, . . . , xn} for some n ∈ N. We thus get τ = mini∈{1,...,n} τ̄xi

> 0.
The map Ψ defined by Ψ(x, t) = ϕx(t) for all x ∈ Σ and t ∈ [0, τ) is then the unique maximal flow
map generated by (X,Σ).

B.4 Proof of Theorem 2.6

We distinguish two cases: M is compact, and M is unbounded.
The first case is direct by the Escape Lemma (cf. [31, Exercise 4.10] for instance), which states

that local solutions cannot be contained in any compact subset of M . The local Cauchy–Lipschitz
theorem (cf. Theorem 2.5) together with a contradiction argument suffices then to end this case.

Suppose now that M is unbounded. First note that the bound assumption on the Lipschitz
constants of our vector fields implies that there exists C > 0 such that for any U ⊂ M we have

sup
t∈[0,∞)

‖Xt‖L∞(U) 6 C(1 + diam(U)). (34)

Let Σ ⊂ M be compact and U be bounded and open and such that Σ ⊂ U . Since M is convex
we know U is a totally normal neighborhood. Denote by X̃ the restriction of X to U × [0,∞). By
the local Cauchy–Lipschitz theorem (cf. Theorem 2.5), there exists a unique maximal flow map
generated by (X̃,Σ) associated with some maximal time of existence τ > 0. Recalling the proof
of Theorem 2.5 and the classical Cauchy–Lipschitz theorem in Euclidean setting, we know there
exists a constant α > 0 such that

τ > αmin

(
dist(Σ, ∂U)

supt∈[0,∞) ‖Xt‖L∞(U)

,
1

supt∈[0,∞) ‖Xt‖Lip(M)

)
,
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where ∂U is the boundary of U . By (B.4) we then have

τ > αmin

(
dist(Σ, ∂U)

C(1 + diam(U))
,

1

supt∈[0,∞) ‖Xt‖Lip(M)

)
.

Because M is unbounded, we see that we can always choose U a posteriori so that dist(Σ,∂U)
1+diam(U) > 1.

Overall, this makes our lower bound on the maximal time of existence independent of Σ and U .
Applying a simple iterative argument extends our restricted local flow map to a unique global one,
thus showing the desired result.

B.5 Proof of Lemma 4.3

The proof follows from (4.1). Indeed, we can apply (4.1) since the bounds on the diameter of U
ensure that, given z ∈ U , the geodesic ball Br(z) contains U and is contained in the set {x ∈
M | d(p, x) < 2r}, where the sectional curvature is bounded below by λ and above by µ, so that
(4.1) holds on Br(z). Thus, (4.1) yields

∥∥Hessv d2z(x)
∥∥
x
6 2

√
−λd(x, z) coth(

√
−λd(x, z))‖v‖x 6 L‖v‖x,

for all x, z ∈ U ⊂ Br(z), where we used that the function s 7→ s coth(s) is nondecreasing and the
fact that the left-hand side in (4.1) is nonnegative (when µ > 0, use

√
µd(x, z) 6

√
µ∆ 6

π
2 ).

Hence the Hessian Hess d2z is bounded by L on U .
If U is now convex, then (4.3) follows directly from Lemma 2.4 and (4).

B.6 Proof of Lemma 4.5

For completeness, let us give the statement of [29, Corollary 6.6.1], which lies at the core of the
proof of Lemma 4.5. Given a differentiable function f : M1 → M2 between two smooth Riemannian
manifolds M1 and M2, we write Dxf : TxM1 → Tf(x)M2 for the differential map of f at x.

Lemma B.2. Let p ∈ M and r < inj(M). Let there be a minimizing geodesic connecting two
distinct points x and y in Br(p), with velocity u at the point x. Write µ = µr(p), and suppose that
‖u‖x 6

π√
µ in case µ > 0, and let w ∈ TxM be so that 〈w, u〉x = 0. Then,

‖w‖x
sµ(‖u‖x)
‖u‖x

6 ‖Du expx(w)‖y , (35)

where sµ is defined, for all a > 0, by

sµ(a) =

{
sin(a

√
µ)√

µ if µ > 0,

a if µ = 0.

Let us now prove Lemma 4.5. The case µ = 0 is stated in [29, Corollary 6.9.1]. We give its
proof here for completeness. Fix x, y ∈ U with x 6= y. Because U is a totally normal neighborhood
there exists only one minimizing geodesic linking x to y with velocity logx y at the origin, and
the exponential map expx is a diffeomorphism from TxM to U . Then, we can let v ∈ TyM and
apply Lemma B.2 with w = Dy logx(v) and u = logx y. Note that since logx : M → TxM , we have
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Dy logx(v) ∈ Tlogx yTxM ∼= TxM . Also, up to a rotation, we can assume 〈logx y,Dy logx(v)〉x = 0.
By (B.2), we then get

‖w‖x 6 ‖Dlogx y expx(w)‖y = ‖Dlogx y expx(Dy logx(v))‖y = ‖v‖y ,

where for the last equality we used expx ◦ logx is the identity map on U . We give the obtained
result as:

‖Dy logx(v)‖x 6 ‖v‖y, for all x, y ∈ M,v ∈ TyM. (36)

Now fix x, y, z ∈ U , and denote by γ the constant-speed geodesic between y and z. Then,

logx z − logx y =

∫ 1

0

d

dt
logx γ(t) dt

=

∫ 1

0
Dγ(t) logx(γ

′(t)) dt. (37)

By applying (B.6) in the integral above for y = γ(t) and v = γ′(t), we get from (B.6):

‖ logx z − logx y‖x 6

∫ 1

0
‖Dγ(t) logx(γ

′(t))‖
x
dt

6

∫ 1

0
‖γ′(t)‖γ(t) dt, (38)

which leads to ((i)) given that ‖γ′(t)‖ = d(y, z) for all t ∈ [0, 1].
Let us turn to the proof for the case µ > 0, which is again based on Lemma B.2. Fix x, y ∈ U

with x 6= y. Similar to the µ = 0 case, there exists only one minimizing geodesic joining x and
y with velocity logx y at x, and the exponential map expx is a diffeomorphism from TxM to U .
By the assumption on the diameter of U we have d(x, y) 6 π−ε√

µ < π√
µ , and hence we can then let

v ∈ TyM and apply (B.2) for w = Dy logx(v) and u = logx y, to get

‖w‖x 6

√
µ‖ logx y‖x

sin(
√
µ‖ logx y‖x)

‖Dlogx y expx(w)‖y =

√
µ‖ logx y‖x

sin(
√
µ‖ logx y‖x)

‖v‖y ,

and hence,

‖Dy logx(v)‖x 6

√
µ‖ logx y‖

sin(
√
µ‖ logx y‖)

‖v‖y.

Since the function τ 7→ τ
sin τ is nondecreasing on [0, π − ε], we get from above that

‖Dy logx(v)‖x 6
π − ε

sin(π − ε)
‖v‖y , for all x, y ∈ U, and v ∈ TyM. (39)

Now fix x, y, z ∈ U and take γ the constant-speed geodesic between y and z. Restarting from (B.6),
equation (B.6) yields (see also (B.6))

‖ logx z − logx y‖x 6
π − ε

sin(π − ε)

∫ 1

0
‖γ′(t)‖γ(t) dt.

The Lipschitz estimate ((ii)) now follows from above, using that ‖γ′(t)‖ = d(y, z) for all t ∈ [0, 1].
Note that the Lipschitz constant approaches ∞ as ε → 0.
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