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Abstract. Modulation theories, as used to describe the propagation of wavetrains, often possess
a natural limitation in their tendency to finite-time breakdown via a wavenumber shock that occurs
with the crossing of characteristics. For the geophysical example of linear wave propagation in
an inviscid, density-stratified fluid, we demonstrate that the asymptotic corrections to modulation
theory are sufficient for short-time regularization of the wavebreaking singularity. Computations
show that the shock development is pre-empted by the emergence of spatial oscillations. In the
asymptotic limit, these oscillations display a self-similar collapse of scale both in space and in time.
Finally, an envelope analysis following a characteristic demonstrates that these new correction terms
act locally as second-order wave dispersion.
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1. Introduction. Modulation theory, as presented in Whitham [41], is one of
several closely related asymptotic methods that can be applied to dispersive wave
systems. The theory describes the time evolution of slowly-varying wavetrains –
specifically, waveforms characterized by near-periodicity in both space and time. At
the core of the theory are familiar principles of conservation of phase and wave ac-
tion [3, 5] that are mathematically expressed as systems of hyperbolic conservation
laws involving the physical wave parameters (i.e. wavenumber, frequency, amplitude,
background inhomogeneities, etc.) [38]. Modulation theory generalizes the amplitude
equation method for quasi-monochromatic wavepackets [25] to incorporate order one
changes in wavenumber and frequency. However, as a strongly nonlinear theory, it is
also the case that many modulation theories possess a natural limitation in their ten-
dency to finite-time breakdown via a wavenumber shock that occurs with the crossing
of characteristics [10, 21]. This article explores a particular example where asymptotic
corrections that introduce dispersion into the modulation theory can significantly alter
the steepening process that precedes the shock singularity.

The canonical example of the crossing of characteristics is the inviscid Burgers
equation. It is also a common starting point for understanding the idea of regulariza-
tion, whereby additional terms can defer, or suppress the development of a singularity.
This is the thesis behind the original Burgers equation [15], where weak viscous dissi-
pation saturates the wave steepening by the formation of front-like spatial structures.
In non-dissipative systems, regularization can occur with the appearance of spatial
oscillations arising from the radiation of dispersive waves [17]. The Korteweg-deVries
equation provides a basic illustration for such dispersive regularization [19]. For a
modulation theory based upon an underlying PDE dynamics, it is a reasonable expec-
tation that regularization terms might derive from the natural asymptotic corrections.
In this paper, we demonstrate a systematic derivation of asymptotic corrections to a
modulation theory for a dispersive wave system.

This article is an asymptotic study of the modulation theory applied to the specific
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geophysical example of linear wave propagation in an inviscid, density-stratified fluid.
Our choice of the Boussinesq system is motivated by the goal of understanding the
breakdown of stratospheric waves [9, 27]. As an asymptotic analysis, the choice of
modulation theory is particularly appropriate for atmospheric gravity waves, as the
vertical variations in profiles of density stratification and horizontal wind shear from
surface to stratosphere, while often significant, are typically slowly-varying [7, 11].
The modulation theory for the fully nonlinear Boussinesq equations was established
in works by Bretherton [4, 5] and Grimshaw [11]. The important fluid dynamical effect
with the inclusion of nonlinearity is the interaction of the waves with the mean flow.
However, our early attempts to understand the breakdowns of the fully nonlinear
Boussinesq by an extension of modulation theory revealed two challenges: first, to
develop a systematic asymptotic derivation of the corrections to modulation theory in
the setting of a PDE system; and second, to interpret the large number of correction
terms for their impact on the wave propagation.

As an initial step, we embarked upon a restricted analysis that focussed only
on the linear corrections. As discussed in Whitham, the derivation of correction
terms to modulation theory is trivial for scalar wave PDEs, however the vector-based
treatment here is developed for future application to the nonlinear problem. This
adaptation to the vector PDE system, while classical in approach, does not seem
to exist within the modulation theory literature. Nonlinear corrections have been
considered by Tabaei and Akylas [34], but the linear dispersive corrections were limited
to quasi-monochromatic effects. In this article we develop, within the linear context,
a methodology for fully addressing the case of strong modulations. In particular, we
confirm that the full dispersive corrections are sufficient, at least for short times, to
regularize the singular wavebreaking — and with a self-similar dynamics that differs
from more familiar dispersive paradigms, like the KdV equation. The continuation of
this analysis as applied to the nonlinear Boussinesq system is discussed in the closing
section.

This analysis of modulation theory begins with the concrete illustration of a mod-
ulated wavetrain evolving towards a wavenumber shock. It is then shown numerically
that our corrected version of modulation theory gives short-time regularization past
the leading-order singularity time. In Section 3, a systematic multiple-scale derivation
of modulation theory is developed for producing these next-order correction terms.
After verifying computationally that next-order accuracy has indeed been achieved
with the correction terms, it is shown, by direct comparison with the PDE solution,
that the the shock development is pre-empted by the emergence of short-scale spatial
oscillations (Section 4). A series of computations towards the asymptotic limit reveal
that this oscillatory spatial structure displays a self-similar collapse of scale both in
space and in time. Furthermore, the initial onset of short-scales do not invalidate
the long-wave assumption under which modulation theory rests. As a generalization
to quasi-monochromatic wavepackets, in Section 5, an envelope analysis following a
characteristic verifies that these corrected modulation equations act locally as second-
order wave dispersion.

2. Shock Regularization of an Inertia Gravity Wavetrain. A modulated
wavetrain is the generalization of a Fourier wave that allows the wavevector and
amplitude to be slowly-varying on scales much longer that the wavelength. Such
wavetrains naturally occur from wave radiation from a localized source as the generic
long-time outcome of group velocity kinematics [37]. Modulations can also be caused
by long-scale changes of the background medium [2, 3]. In this Section, we introduce
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the linear equations for a two-dimensional, inviscid and Bousssinesq fluid, and then
present a concrete application of modulation theory to an inertia gravity wavetrain.

Under the Boussinesq assumption, the density effects are incorporated as a buoy-
ancy acceleration in the vertical momentum equation, while the flow velocity is taken
to be non-divergent [23, 35]. In two dimensions (x, z), the linearized fluid equations
can be written as

ηt + ū ηx + bx = 0 (2.1a)

bt + ū bx − N2 ψx = 0 (2.1b)

ψxx + ψzz − η = 0 (2.1c)

where η(x, z, t) denotes vorticity, and b(x, z, t) is the buoyancy disturbance. Incom-
pressibility is imposed through the streamfunction ψ(x, z, t) relation to the horizontal
wind, u = ψz, and vertical motion, w = −ψx. The two environmental parameters
are: ū, a horizontal mean flow; and N , the Brunt-Väisälä frequency that is associated
with a stable (light over heavy) background of density stratification. For a uniformly
stratified fluid, we take N to be constant and by rescaling time, we can assume N = 1.
We also simplify by assuming a uniform mean flow, and by changing to a co-moving
frame, we can take ū = 0. We remark that the above treatment of the mean flow is not
permissible in the nonlinear case because of mean flow coupling [33, 34]. The result-
ing constant coefficient problem (2.1) now permits an exact gravity wave dispersion
relation

ω2 =
k2

k2 +m2
(2.2)

for wavevector, ~k = (k,m)T , and frequency, ω. As vertical propagation is our primary
concern, we take k to be constant, and consider only modulations of the vertical
wavenumber m. Hence, our wavetrains are an exact Fourier mode in the horizontal,
so that all fields of (2.1) have the form b(x, z, t)→ b(z, t) eikx, etc.

The evolution of (2.1) for a modulated (in z) wave experiencing a wavenumber
shock is illustrated by the oscillatory fields in Figures 2.1a-c (thin solid curves). The
modulations in the initial wavetrain (Figure 2.1a) are evident from the non-uniform
wavelength and the (slight) bulges in the amplitude. However, the precise details of
this initial condition are deferred to the end of this section, after we have defined
suitable modulation variables. The field shown is buoyancy, b(z, t), at times t =
0, 120, 130 that illustrate the initial wave, onset of the shock, and just beyond the
modulation theory shock time. The solution has been computed by spectral FFT
according to the dispersion relation

ω = − k√
k2 +m2

; c =
∂ω

∂m
= −mω

3

k2
(2.3)

as derived from (2.1), with ū = 0 and N = 1. The negative square root branch for
(2.3) gives positive group velocity, so that modulated features drift to the right. In this
example, the initial wave has sections of longer and shorter waves. The longer waves,
which have the faster group velocity, tend towards overrunning the shorter waves.
This is accompanied by a localized increase in the wave amplitude (Figure 2.1b,c) –
and is the qualitative description of a wavenumber shock. As the underlying equation
(2.1) is linear, this shock does not correspond to any true singular behavior of the
PDE.
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Modulation theory assumes wavetrain properties vary on a long spatial scale,
ζ = εz, and evolve on a slow time scale τ = εt, where ε is small [5]. For a linear
system, the modulations are sinusoidal [39] and the wavetrain is completely specified
by the time evolution of the wavenumber, m(ζ, τ), and the real-valued amplitude,
A(ζ, τ). This evolution is governed by two principles: conservation of waves and
conservation of wave action (F = A2/ω). Mathematically, these can be expressed as
the pair of hyperbolic wave equations

mτ + ωζ = 0 (2.4a)

Fτ + (cF)ζ = 0 (2.4b)

where c(m) = ∂ω/∂m denotes the linear group velocity [41]. The significance of
the group velocity explicitly arises as the characteristic speed for both of the above
quasi-linear equations [38]. For a homogeneous fluid (ω = ω(m) only, with ū and N
constant), it follows from (2.4a) that the group velocity satisfies the kinematic law

cτ + c cζ = 0 (2.5)

which is the inviscid Burgers equation. In this case, we have an exact formula for the
wavebreaking time of modulation theory

τb = − 1

min
ζ

cζ(ζ, 0)
(2.6)

as determined by the initial conditions. Lastly, note that the wavenumber equation
(2.4a) is decoupled from the wave action equation (2.4b).

The example of Figure 2.1 is a periodic wavetrain with 24 oscillations on the
periodic domain −24π ≤ z ≤ 24π, and ε = 1/24 is small. The initial wavenumber
has a sinusoidal modulation m(ζ, 0) = 1 + (1/3) sin ζ, as defined on the long scale
−π ≤ ζ ≤ π. The amplitude of the wave envelope, A(ζ, 0), is indicated in both upper
and lower envelopes in the initial condition (Figure 2.1a), and is chosen to make the
wave action initially uniform, F(ζ, 0) = −1. The initial group velocity, as calculated
with (2.3), appears in the lower plot of Figure 2.1a. For this initial condition, the
breaking time from (2.6) for modulation theory is τb ≈ 5.24, which for ε = 1/24,
corresponds to tb ≈ 125.75. Just prior to the wavebreaking time t = 120 < tb, the
wave amplitude A(ζ, τ) and group velocity c(ζ, τ), as evolved from the modulation
equations (2.4 with 2.3), are shown as the lower envelope and the group velocity
plot (light dashed curves, Figure 2.1b). The near-singular group velocity curve shows
the distinctive pre-break steepening, and coincides with a near-cusp singularity in
the amplitude. The upper envelope (dark solid curve, Figure 2.1b), however, better
follows the oscillations of the wavetrain — this is the amplitude predicted by our
dispersion-corrected modulation theory (Section 3). Finally, Figure 2.1c establishes
that the corrected theory (dark solid curves) not only can regularize the singularity
of modulation theory, but also continues to give very good agreement for the wave
envelope past the wavebreak time (t = 130 > tb) . Oscillations that appear as part
of the shock regularization are apparent in both the amplitude and group velocity;
these are further investigated in Section 4.

3. Derivation of The Modulation Equations. Several general discussions of
higher-order extensions for modulation theory appear in the early literature [22, 2, 40],
yet do not seem to have found use in applications. Here, we adopt the perspective
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Fig. 2.1. Three times in the evolution of a wavetrain with a wavenumber shock: (a) t = 0
initial condition, (b) t = 120 onset of the shock, and (c) t = 130 just past the leading-order shock
time, tb ≈ 125.75 (τb ≈ 5.24). The top plot of each panel (a-c) shows the oscillatory buoyancy
field (thin solid) from (2.1). The amplitude envelopes (top plots, a-c) and group velocity (bottom
plots, a-c) are as predicted by modulation theory (light dashed), and the dispersion-corrected theory
(dark solid). Note the near-singular steepening of the group velocity with the shock onset, and the
appearance of dispersive oscillations afterwards.
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illustrated in Whitham ([41], chap 15.5) whereby the dispersion relation includes
next-order corrections from (slow) gradients of the wave parameters. In particular,
we devise an approach that includes only spatial gradients, so that the first-order in
time nature of the modulation theory is preserved.

We consider a sinusoidal wavetrain solution to (2.1 with N = 1 and ū = 0) that
contains just a single wavenumber in the x-direction, bη

ψ

 = Re
{
a(z, t) eiφ(z,t) eikx

}
(3.1)

and with spatial modulations only in the z-direction. Both the phase φ and vector
amplitude a are taken to be real-valued. The generalized wavenumber and frequency
are defined by the phase gradients

m(ζ, τ) ≡ φz ; ω(ζ, τ) ≡ −φt (3.2)

that, with the vector amplitude a(ζ, τ), are assumed to depend on the slow variables
ζ = εz and τ = εt. Equality of the mixed partials in terms of the slow scales gives the
first of the conservation laws (2.4a).

Substitution of the wavetrain ansatz (3.1) into the linear Boussinesq system (2.1)
gives a slow-scale equation for the vector amplitude a(ζ, τ)

[M+ εL1 + ε2L2]a = 0, (3.3)

with the matrix operators

M =

 k −ω 0
−ω 0 − k

0 − k − k (k2 +m2)

 , (3.4)

L1 = i

 0 − ∂τ 0
− ∂τ 0 0

0 0 k (2m∂ζ +mζ)

 , (3.5)

L2 =

 0 0 0
0 0 0
0 0 k ∂2

ζ

 (3.6)

and ∂τ and ∂ζ denote derivatives on the slow-scales. Note that the equation for
the streamfunction inversion (2.1c) has been multiplied by ik to give a symmetric
leading order matrix M. Without modulations, the exact plane wave solutions are
the homogeneous solutions to MaN = 0, for which the zero determinant condition

ω2 =
k2

k2 +m2
≡ Ω(m)2 (3.7)

recovers the gravity wave dispersion relation (2.3), with the nullvector

aN =

 1
k/ω
−ω/k

 . (3.8)



DISPERSIVE CORRECTIONS TO A MODULATION THEORY 7

We now use Ω(m) to denote the linear dispersion relation (3.7), to distinguish from
the corrected frequency, ω, which has the former as the leading-order. We likewise
identify the group velocity

c = c(m,ω) =
∂ω

∂m
= −mω

3

k2
(3.9)

as distinguished from its leading-order

C = c(m,Ω) = −mΩ3

k2
. (3.10)

Note that the sign for the square root branch of the dispersion relation (3.7) is implicit
in the above definitions of group velocity.

To go beyond modulation theory, we anticipate an adjustment of the frequency,
ω, through the introduction of an O(ε2) correction to the leading-order operator M.
A regularizing correction R now appears in the modified matrix

MR =

 k −ω 0
−ω 0 − k

0 − k − k (k2 +m2 + ε2R)


=

 k −ω 0
−ω 0 − k

0 − k − k3/ω2


(3.11)

where the second form derives from the assumption of the new zero-determinant
condition

ω2 =
k2

k2 +m2 + ε2R
. (3.12)

The above choice for the regularizing correction is advantageous as it leaves the nul-
lvector (3.8) unchanged, and exact (up to the known asymptotic accuracy of ω via
R). The slow-scale equation (3.3) becomes

[MR + εL1 + ε2L2R]a = 0, (3.13)

where the regularization term is added back into the O(ε2) operator

L2R =

 0 0 0
0 0 0
0 0 k (∂2

ζ +R)

 . (3.14)

Upon introducing a perturbation expansion of the vector amplitude a, the regularizing
term, R, will be determined by a solvability condition at O(ε2). Overall, the following
presentation of modulation theory is structured in the fashion of a linear WKB calcu-
lation [2, 24]. The singular (matrix) condition yielding ω serves as the eikonal relation,
and the solvability condition for a provides the transport equation [1]. The regular-
ization strategy is similar in spirit to the method of Poincaré-Lindstedt, whereby
the frequency imbedded in the leading-order operator is expanded to have deferred
corrections [18].

The first term in the perturbation expansion for the vector amplitude

a = A(ζ, τ) aN + εa1 + ε2 a2 + . . . , (3.15)
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has the direction of the nullvector (3.8), but is arbitrary up to a slowly-varying, real-
valued amplitude A(ζ, τ). Note that the nullvector (3.8) also contains slow-variations
and ε-dependence through ω(ζ, τ) (3.12). The O(ε) terms in the slow-scale equation
(3.13) give

MR a1 + L1(AaN ) = 0 (3.16)

which the correction a1 must satisfy. As MR is a (symmetric) singular matrix, exis-
tence of a1 requires the solvability condition

(aN )TL1(AaN ) = 0 (3.17)

and results in the scalar transport equation for the amplitude A(ζ, τ)

∂τ

(
k

ω
A

)
+
k

ω
∂τA− ω {2m∂ζ +mζ}

(ω
k
A
)

= 0. (3.18)

By inspection, A is seen to be an integrating factor for this expression (since k is a
constant), allowing a conservation law form(

A2

ω

)
τ

−
(
mω3

k2

A2

ω

)
ζ

= 0. (3.19)

Upon the identification of the group velocity (3.9), this recovers the second equation
(2.4b) for the wave action F = A2/ω,

Continuing to next order in the perturbation requires an explicit representation
of a1. A closed form expression for a particular solution is

a1p = −i


0

1

ω

(
k

ω
A

)
τ

1

k
Aτ

 (3.20)

for which a derivation is included in the Appendix. However, it proves useful to adjust
with a specific choice of homogeneous contribution

a1 = a1p +
i

2

(
A

ω

)
τ

aN = −i



−1

2

(
A

ω

)
τ

k

2ω

(
A

ω

)
τ

1

k
Aτ +

ω

2k

(
A

ω

)
τ


(3.21)

that anticipates simplification in the calculation of the regularizing term R. The O(ε2)
terms in the slow-scale equation (3.13) are

MR a2 + L1(a1) + L2R(AaN ) = 0 , (3.22)

from which the solvability condition for the existence of a2

(aN )T {L1(a1) + L2R(AaN )} = 0 (3.23)
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determines R. Highlights in this calculation are deferred to the Appendix. Partic-
ularly noteworthy is that the choice of homogenous contribution in (3.21) causes all
Aττ terms to identically cancel. Our final expression for the regularizing term

R(m,ω,A) ∼ 3

4k2

1

ωA
(2m∂ζ +mζ)

{
ω2(2m∂ζ +mζ)(ωA)

}
+

m

2k2
(mωωζ)ζ +

1

4k2
(mωζ)

2 − (ωA)ζζ
ωA

(3.24)

is a form that contains only spatial ζ-gradients.
In summary, our statement of an equation set for a corrected modulation theory

remains that of conservation of phase (2.4a) and wave action (2.4b)

mτ + ωζ = 0 ; Fτ + (cF)ζ = 0 (3.25)

but the flux terms are now modified by our extended notion of the frequency depen-
dence (3.12). Because of the multiple-scale nature of the representation (3.1), only
the next-order corrections to the phase (via wavenumber m) are necessary to achieve
an additional order of accuracy in the physical fields (b, η, ψ). Hence, the only change
necessary is the regularization term in the frequency ω via the dispersion relation
(3.12)

A2 = Ω(m)F (3.26)

ω2 =
k2

k2 +m2 + ε2R(m,Ω(m), A)
(3.27)

c = C(m) = −mΩ3

k2
(3.28)

where the same square root branch is taken for both ω and Ω. With the addition
of the correction term to the dispersion relation, the wavenumber equation is now
weakly coupled to the wave action, F .

4. Numerical Results: Asymptotic Accuracy and a Collapse of Scale.
We investigate numerically the corrected version of the modulation system (3.25)
which is completed with the additional relations (3.26-3.28), and the linear frequency
Ω (3.7). The numerical method used is standard, with the spatial derivatives com-
puted pseudo-spectrally and the time-stepping done using 4th-order Runge-Kutta. To
study the impact of the correction terms, with the following computations, we

1. validate the next-order asymptotic accuracy,
2. illustrate the scale collapse of the regularization in the weak dispersion limit,
3. quantify a self-similarity in the structure of the dispersive oscillations.

In our numerical experiments we consider the following initial condition for (3.25):

m(ζ, 0) = m0 + ∆m sin ζ (4.1a)

F (ζ, 0) = −1, (4.1b)

where m0 and ∆m are constants and −π ≤ ζ ≤ +π. In particular, we have chosen
two sets of values for the constants k, m0 and ∆m:

run1 : k = 1/2, m0 = 1, ∆m = 1/3,
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Fig. 4.1. Plot of normalized group velocity (kC) as a function of wavenumber (m/k) as obtained
from (2.3).

run2 : k = 2, m0 = 1, ∆m = 1/5.
These two runs are distinguished by having wavenumbers that span two distinct
regimes of the group velocity curve. The dispersion relation for stratified waves has a
group velocity maximum as a function of vertical wavenumber. A plot of normalized
group velocity kC(m) versus wavenumber m/k as given by (2.3) is shown in Fig-
ure 4.1. The squares on the group velocity curve correspond to the lowest and highest
values of m/k for the initial condition run1. In this case, the longer waves are faster,
and will overtake the shorter waves – this is the example shown in Figure 2.1. The
circles on the curve of Figure 4.1 correspond to the reverse situation where run2 has
a wavebreaking that occurs with the shorter waves doing the overtaking.

4.1. Asymptotic Accuracy. We confirm the accuracy of the asymptotics by
comparing solutions computed from the modulation theories against those of the
original Boussinesq system (2.1) with decreasing values of ε (1/24, 1/48, 1/96, 1/192).
The leading-order and the regularized modulation equations are expected to yield
errors in the primitive variables of order O(ε) and O(ε2), respectively.

The errors between the exact system and the modulation equations are computed
in the following way. From the modulation system data, m(ζ, τ) and F(ζ, τ), we
extract the amplitude A =

√
ΩF and the phase φ(z, t) =

∫
mdz + φ0. Using this

amplitude and phase we then reconstruct the primitive variables η and b using (3.1)
and the expansion (3.15). The constant of integration, φ0, is obtained by a fit of
the reconstructed variables η and b against the corresponding variables from the full
Boussinesq system. Both the L1- and the L2-norms of the errors in η and b were
checked for asymptotic scaling in ε.

First, we compute the error norms in η at a time (τ = 2.5), about halfway to the
wavebreaking time, well before large gradients appear. The L2-errors in η from the
leading-order (circles) and regularized (triangles) modulation system with the initial
condition run1 are shown in Figure 4.2. The log-log slopes are consistent with O(ε)
and O(ε2) asymptotic errors. Similar scaling agreement was verified for the L1-error,
and using the buoyancy field, b. Lastly, the squares in Figure 4.2 show the L2-errors
just prior to the wavebreaking time (τ = 5) when the multiple-scale assumptions are
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being undermined with the emergence of short scales. Despite that the asymptotic
error rate has deteriorated, it still shows errors converging to zero as approximately
O(ε0.75). This gives quantitative evidence that the corrected modulation theory is
maintaining some predictive ability up to the onset of the wavebreaking event.
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Fig. 4.2. Log-log plot of the L2-errors in η for the leading-order and first-order correction mod-
ulation equations with initial data corresponding to run1. The leading-order system forms a shock
at τb ≈ 5.24. Computed solutions at τ = 2.5 confirm the leading-order, O(ε), and corrected, O(ε2),
error scalings. At τ = 5 (shortly before τb), the regularized system exhibits a weaker convergence of
approximately O(ε0.75).

4.2. Collapse of Scale. Our computations of the corrected modulation theory
demonstrate the appearance of oscillations preceding the leading-order wavebreaking
time. These oscillations, typical of those seen in dispersive systems [17], are shown
here to display a self-similar collapse to small-scale spatial structure in the ε→ 0 limit.
Figure 4.3a shows a sequence of close-ups of the wave action, F(ζ, τ), in the vicinity of
the wavebreaking from the initial condition run1, but where the ε is halved beginning
from ε = 1/24. For each value of ε, these profiles correspond to times τ1(ε) < τb,
defined as the time of first appearance of an oscillation in F (double zero of Fζ , as
evident in Figure 4.3b). Having so synchronized the spatial profiles, the self-similar
nature is revealed by the near-superposition that can be achieved (Figure 4.4a) by a
rescaling of the graphs of Fζ (Figure 4.3b). The identical horizontal transformations
applied to mζ reinforces the self-similarity of the oscillatory structure (Figure 4.4b).
This self-similarity is more evident in the derivative field plots, where the effects of
long-scale features are lessened. In fact, the superimposition of the m curves is less
satisfying — consistent with the observation that the long scale is more strongly
apparent on m than F . Nonetheless, there is very good alignment in the locations of
the bumps in both curves.

The log-plots of Figure 4.5 reveal clear scaling relationships in this small-ε limit.
The best fit lines give ε → 0 scalings for the amplitude growth seen in the curves of
Figure 4.3

|min F| ≈ O(ε−0.51) ; |min Fζ | ≈ O(ε−1.3) ; |max mζ | ≈ O(ε−0.46) . (4.2)
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Fig. 4.3. Vicinity of the emerging oscillations in run1, showing (a) F and (b) Fζ at the
synchronization times τ1(ε), where all curves of Fζ have a double zero. The plots correspond to:
ε = 1/24 (solid), ε = 1/48 (dotted), ε = 1/96 (dash-dotted), ε = 1/192 (dashed).
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Fig. 4.4. Rescaled graphs of (a) Fζ and (b) mζ from Figure 4.3. The scaling landmarks in
Fζ are ζ0 (circle) and ζm (square), while for mζ is the location of the maximum of mζ (diamond).
The reference axes are set by ε = 1/24. The dispersive waves appear on the leading edge (right) of
the wavebreaking zone.

In addition, both time and space scales (circles and squares of Figure 4.5b) display
the self-similar scalings

∆ζ(ε) ≈ O(ε0.7) ; τb − τ1(ε) ≈ O(ε0.66) . (4.3)

The space scaling, defined by ∆ζ = ζ0(ε) − ζm(ε), is based on two landmarks: ζ0,
the zero of Fζ corresponding to the minimum of F ; and ζm, the location of the
minimum of Fζ . The time scaling is based upon the synchronization times τ1(ε) ≈
{4.48, 4.75, 4.93, 5.04}; so as ε decreases, the emergence of waves is occurring on a
contracting timescale preceding the breaktime τb ≈ 5.24.

In the absence of a theory for this self-similar collapse of scale, we performed
computations with the KdV equation indicating that power law scalings are also a
feature of its weak dispersion limit. In our KdV tests (not shown), it was noted
that the scaling exponents were not universal, but indicated steeper collapse rates
for later synchronization times. However we know of no theory for this particular
collapse in KdV. But to convince ourselves that a similar collapse was occurring in
the corrected modulation system, a second set of scalings were calculated for an earlier
time τ0(ε) < τ1(ε), when the first oscillation of m appears. These results, also included
in the log-plots of Figure 4.5b (triangles), give the time and space scales

∆ζ(ε) ≈ O(ε0.66) ; τb − τ0(ε) ≈ O(ε0.62), (4.4)
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where the time scaling is based upon the synchronization times τ0(ε) ≈ {4.16, 4.54,
4.78, 4.94}. As expected, both scalings (4.4) at τ0(ε) are seen to be less steep than
(4.3) at the later times τ1(ε).
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Fig. 4.5. Log-plots of amplitudes, space and time scales for run1: (a) amplitude scales (4.2)
synchronized to time τ1(ε), (b) space and time scales (4.3, 4.4) at times τ0(ε) and τ1(ε).

The results obtained for run2 are similar and we present them briefly. Figure 4.6
shows the rescaled graphs of Fζ and mζ synchronized at τ1(ε), and for the same
sequence of ε. The degree of superposition matches that seen in Figure 4.4 for the
computation of run1. Common to both run1 and run2, the wavebreaking involves
fast waves overtaking slow waves from left to right, yet these cases differ in that the
dispersive oscillations appear ahead of the breaking event in run1, and trail in run2.

Finally, it is noted that the corrected modulation computations are inherently
limited by a linear instability at the high wavenumber end of the spectrum. We
have established that this instability only affects scales of O(ε), which is beyond
that assumed in the slowly-varying derivation. The computations shown here are
spectrally limited below the critical wavenumber. As preliminary computations with
nonlinearity indicate the disappearance of this instability, we are optimistic that this
annoyance might prove to be an irrelevant detail.
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Fig. 4.6. Rescaled graphs of (a) Fζ and (b) mζ at the synchronization time τ1(ε) for run2.
Curve labels are as in Figure 4.4. The scaling landmarks for Fζ (circle and square) are defined as
in run1, and for mζ is the location of the minimum (diamond). Note that the dispersive waves now
appear on the trailing edge (left) of the wavebreaking zone.

5. Dispersion Along a Characteristic. It is a standard result from multiple-
scale analysis that the complex envelope of a quasi-monochromatic wavepacket evolves
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according to a Schrödinger PDE having the form

Ψt + ω′Ψz − i ε
ω′′

2
Ψzz + · · · = 0 . (5.1)

The constant coefficients are wavenumber derivatives of the linear dispersion relation
ω(m) evaluated at the carrier wavenumber; specifically, the second-order dispersion
of the wavepacket is set by ω′′ [25]. In this section, we demonstrate that a similar
principle is true of the modulation theory for a Boussinesq internal gravity wavetrain,
when following a characteristic.

Following [34], the derivation begins by combining the modulation variables (as
defined in Section 3) into a complex-valued amplitude, Ψ = Aeiφ. It is emphasized
that unlike (3.1), Ψ is a scalar quantity. The partial derivatives of Ψ(z, t) are

Ψt = −i ω(ζ, τ) Ψ + εAτ (ζ, τ) eiφ

Ψz = im(ζ, τ) Ψ + εAζ(ζ, τ) eiφ
(5.2)

and involve only slowly-varying quantities. Multiplying the wave action law (3.19) by
the complex phase eiφ gives the rearrangement

ε {Aτ + cAζ} eiφ +
ω

2

{(
1

ω

)
τ

+

(
c

ω

)
ζ

}
Ψ = 0 . (5.3)

The partial derivative expressions (5.2) are used to eliminate the A-derivatives in
favor of slow Ψ-derivatives. A dispersion relation identity (6.3) simplifies the last
term. Regrouping then gives a reformulation of modulation theory (2.4a, 3.12, 3.19)
in the form of an envelope equation

Ψτ +

{
c

2
Ψζ +

( c
2

Ψ
)
ζ

}
+
i

ε
(ω − cm) Ψ = O(ε2) (5.4)

where strong nonlinearity is implied by

m(ζ, τ) = Im

(
εΨζ

Ψ

)
(5.5)

through the m-dependence of ω and c.
With the aim of removing the fast phase, we consider an envelope representation

following a leading-order characteristic. As determined by the inviscid Burgers equa-
tion (2.5), the characteristics are straight lines along which both c and m are constant
(2.4a). Consider then, the representation

Ψ = Ψ̃(ζ − C0τ, τ) e(i/ε)(m0ζ−Ω0τ) (5.6)

for a moving envelope Ψ̃(ζ −C0τ, τ) riding on a carrier wave having the wavenumber
m0 with Ω0 = Ω(m0). This produces a local-envelope equation

Ψ̃τ +

{
c− C0

2
Ψ̃ζ̃ +

(
c− C0

2
Ψ̃

)
ζ̃

}
+ i

(
ω − Ω0

ε
− c (m−m0)

ε

)
Ψ̃ = O(ε2) (5.7)

where the spatial variable ζ̃ = ζ − C0τ follows the group velocity characteristic for
the wavenumber m0. Thus, within an O(ε) vicinity of this central characteristic line,
ζ̃ = 0, the fast phase is nullified (ω ∼ Ω0,m ∼ m0).
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To understand the impact of adding the O(ε2) regularization term, note that the
largest contribution occurs within the ω/ε factor of (5.7), and contributes at O(ε). The
effect can be approximated by the linearization of the corrected dispersion relation
(3.12)

ω ∼ Ω− ε2

2

ω3

k2
R (5.8)

where it remains to re-express the correction R (3.24) in a form that emphasizes its
dependence on the gradients of Ψ. A sketch of this final calculation is included in the
Appendix, and results in the O(ε)-corrected local-envelope equation

Ψ̃τ +

{
∆c

2
Ψ̃ζ̃ +

(
∆c

2
Ψ̃

)
ζ̃

}
+

{
i

(
∆ω

ε
− ε γ

)
− 1

2
C ′(m−m0)Ω

(
1

Ω

)
ζ̃

}
Ψ̃

− i ε
Ω

2

(
C ′

Ω
Ψ̃ζ̃

)
ζ̃

= O(ε2) (5.9)

where the phase and group velocity coefficients (relative to the central characteristic
values) are

∆c = (C − C0)− C ′(m−m0) +O(ε2) (5.10a)

∆ω = (Ω− Ω0)− C(m−m0) +
C ′(m−m0)2

2
+O(ε3) . (5.10b)

The asymptotic errors in (5.10) apply in the vicinity of the central characteristic
(m−m0 = O(ε), etc.). The only significant addition is the last term of (5.9), which is
clearly an analog of the second-order dispersion term in (5.1). Moreover, in a quasi-
monochromatic sense, this term will reduce exactly to the Schrödinger form (5.1), as
the dispersion-related coefficients assume the values from the central characteristic
(m0,Ω0, C0).

Specifically, if we now globally apply the quasi-monochromatic assumption

φ = m0z + φ̃(ζ, τ),

the modulated wavenumber is then

m = m0 + εφ̃ζ(ζ, τ) = m0 + εm̃(ζ, τ) .

Due to this further restriction to small variations, whenever a derivative acts on a
modulated variable, it returns an O(ε) quantity. This makes all terms in (5.9) of
O(ε2) or higher, except for a contribution involving Ψ̃ζ̃ζ̃ . The amplitude equation
then reduces to the form (5.1). This re-affirms the quasi-monochromatic analysis for
gravity waves of Sutherland [33] and Tabaei and Akylas [34]. It is noteworthy that
the sign of the dispersion term in (5.9) is controlled by C ′ – this is precisely the
distinguishing ingredient in the leading versus trailing oscillations seen in run1 and
run2 (Figures 4.4, 4.6).

Of the remaining corrections, those appearing in (5.10) compensate for the diver-
gence of the neighboring characteristics with ζ̃ 6= 0, and γ is the extra phase term
from (6.5). Thus, from this analysis, despite the seeming confusion of terms that arise
in the regularization (3.24), we confirm that the only new wave dynamics included
is that of second-order dispersion. Finally, we note that the derivative forms of the
correction terms preserve the structure of the envelope equation (5.9) so that both
mass and momentum are locally conserved [25].
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6. Closing Remarks. The first motivation for this work was to develop a sys-
tematic perturbation approach for developing modulation theory for the PDE system
for a stratified gravity wave. While presented for this specific example, the under-
lying principles are transferable to many other contexts involving modulated waves
[26]. The linear example considered here could have been written as a scalar PDE, but
we retained the vector nature of the methodology, since such a reduction is typically
unavailable for nonlinear systems.

There are two common perspectives for deriving a modulation theory: one is
based on variational principles, and the other on multiple-scale analysis. These are
understood to be equivalent to leading-order [40]; however, we chose the multiple-scale
expansion approach for its ease in representing higher-order corrections of the physical
fields (3.15) in terms of the leading-order modulation quantities. As a further guiding
principle, our perturbation strategy preserves the underlying physical concepts of
conservation of waves and wave action; and hence, subsequent corrections explicitly
respect the first-order in time nature of modulation theory. An important technical
detail is our use of the homogeneous contribution (3.21) to effect a natural elimination
of higher-order time (τ) derivatives, as our choice of normal form [14].

Having obtained an explicit representation of the next-order correction, our sec-
ond goal was to understand the associated wave physics. Despite the seeming com-
plexity of the correction term, the effects could be attributed to familiar dynamics
from the linear dispersion relation. In the case, of nonlinear gravity waves, we expect
an unwieldy number of correction terms, and we believed that an understanding of
linear propagation alone was an exercise worthy of study.

The present work also provides some insight into an under-addressed issue that
is the breakdown of modulated wavetrains. Wave propagation is generically a re-
versible process, but breakdowns associated with turbulence and mixing is a known
mechanism by which gravity waves can irreversibly transport momentum and energy
[30]. Therefore, it is equally of interest to understand the failure modes of modulated
wave dynamics. To this end, Grimshaw has analyzed the phenomenon of critical level
absorption that occurs with the inclusion of weak viscous dissipation [12, 13]. For
quasi-monochromatic wavetrains, Sutherland has carried out regime studies that un-
tangle a variety of the known instability mechanisms; two types worthy of note being
overturning [31] and convective instability [32].

As a byproduct of this analysis, we have demonstrated numerically that the correc-
tions are sufficient to give short-time regularization of the wavebreaking singularity of
modulation theory, and capture well the onset of the dispersive oscillations. The mod-
ulation theory here is founded upon the assumption that the wavetrain is described
locally as a simple sinusoid in space – however, as is well-known from integrable exam-
ples, the crossing of the characteristics is associated with the onset of more complex
spatial structure [6, 19, 20]. It is therefore a bit surprising that our corrections, while
showing the expected degradation of asymptotic accuracy (Figure 4.2), capture rea-
sonable well the qualitative behavior to time just past the wavebreaking time. One
explanation might lie in the fact that the observed exponents of the scale collapse in
space are less than one, and hence the wavescale of the dispersive oscillations is still
asymptotically longer than the short-scale wavelength – thereby weakly maintaining
the slowly-varying assumption.

Looking ahead to the nonlinear Boussinesq equations, the most significant effect
is the interaction of the waves with the meanflow. The modulation theory for this
fully nonlinear case was established in works by Bretherton [4, 5] and Grimshaw [11].
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The extension of these theories to next-order perturbations demand the vector anal-
ysis developed here, and a strategy for eliminating higher-order time derivatives that
would violate the first-order in time nature of the leading-order modulation theory.
In addition, the regularizing corrections would also seem to involve an interaction
through second-harmonic waves.

The breakdown of stratified gravity waves featured strongly in a 1978 tank ex-
periment by Plumb and McEwan [29], that was designed as a dynamical analog for
an important stratospheric process known as the quasi-biennial oscillation (QBO)
[16, 28, 8]. Recently, Wedi and Smolarkewicz [36] have simulated this experiment
numerically, and among their findings, have revealed fine details of the phase of the
oscillation in which there occurs a turbulent breakdown of an inertia gravity wavetrain.
Their computational observations suggest that viscous dissipation and critical level
absorption are mechanisms secondary to instabilities from nonlinear flow interactions.
It is this line of research that motivates our specific efforts to refine modulation theory
applied to atmospheric gravity waves — this paper representing the first inclusion of
dispersive corrections.

Appendix.

Derivation of the particular solution (3.20). The nullvector relation MR aN = 0
is an identity and can be differentiated with respect to ω. The resulting product rule
is also an identity over (ζ, τ), and likewise

i

2

{
Aτ +

∂

∂τ
A

}(
MR

∂aN
∂ω

+
∂MR

∂ω
aN

)
= 0 .

Expanding the operations and simplifying gives

iMR

(
1

2
Aτ

∂aN
∂ω

+
1

2

(
A
∂aN
∂ω

)
τ

)
+
i

2

(
∂MR

∂ω
(AaN )τ +

(
∂MR

∂ω
AaN

)
τ

)
= 0

where ∂/∂τ = ωτ ∂/∂ω offers some rearrangements. Finally, using the transport
equation (3.18), the last two terms are equivalent to L1(AaN ), so that by construction

a1p = i

(
1

2
Aτ

∂aN
∂ω

+
1

2

(
A
∂aN
∂ω

)
τ

)
(6.1)

gives the particular solution to (3.16) shown as (3.20).

Derivation of the regularization term (3.24). Direct substitution of (3.5, 3.8, 3.14,
3.21) into the solvability condition (3.23) results in

−k
2

(
1

ω

)
τ

(
A

ω

)
τ

− ω

k
(2m∂ζ +mζ)

(
Aτ +

ω

2

(
A

ω

)
τ

)
+
ω

k
(ωA)ζζ +

ω2

k
AR = 0 ,

where the Aττ terms have identically cancelled by virtue of our choice of homogeneous
contribution in a1. Elimination of Aτ -terms using the transport relation (3.18), yields

R =
3

4k2

1

ωA
(2m∂ζ +mζ)

{
ω2(2m∂ζ +mζ)(ωA)

}
− m

2

(
1

ω

)
τζ

+
k2

4ω2

(
1

ω

)
τ

(
1

ω

)
τ

− (ωA)ζζ
ωA

.

(6.2)



18 R. C. FETECAU AND D. J. MURAKI

Lastly, an implicit τ -derivative of the dispersion relation (3.12) leads to the exact
expression (

1

ω

)
τ

= −mω
k2

ωζ + ε2
ω

2k2
Rτ = c

(
1

ω

)
ζ

+ ε2
ω

2k2
Rτ (6.3)

where only the leading-order part is kept in our final equation for R (3.24).
Derivation of the frequency correction (5.8). The integrating factor step that

obtains (3.19) is based upon the transport identity

ω

k
(2m∂ζ +mζ)

(ω
k
A
)

= −
( c
ω

)
Aζ −

( c
ω
A
)
ζ

(6.4)

which holds for all A. Applying this identity twice on the first term of (6.2) allows
the following re-organization of terms

ω3

k2
R =

ω

A

{(
3c2

ω2
− ω2

k2

)
Aζ

}
ζ

+ 2γ

∼ ω

A

{(
C ′

Ω

)
Aζ

}
ζ

+ 2γ . (6.5)

Where the 2γ subsumes all of the A-independent terms

2γ =
3

4

{( c
ω

)( c
ω

)
ζζ

+

(
c

ω

( c
ω

)
ζ

)
ζ

}
+
c

2

(
1

ω

)
τζ

+
ω

4

(
1

ω

)
τ

(
1

ω

)
τ

− ω2ωζζ
k2

, (6.6)

and the simplification to (6.5) occurs via a derivative of the leading-order group ve-
locity (3.10),

C ′(m) =
dC

dm
=

3C2

Ω
− Ω3

k2
. (6.7)

Lastly, the (moving) complex envelope Ψ̃ is introduced into (6.5) by replacing the
gradients of A using (5.2) and (5.6)

Aζe
iΦ =

(
Ψ̃ζ̃ − i

m−m0

ε
Ψ̃

)
ei/ε(m0ζ−Ω0τ) (6.8)

which is an O(1) operator local to the central characteristic (where m−m0 = O(ε)),
and leads to the final form of the envelope equation (5.9, 5.10) shown in Section 5.
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