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Abstract

We extend the aggregation model from [1] by adding a field of vision to individuals and by

including a second species. The two species, assumed to have a predator-prey relationship, have

dynamics governed by nonlocal kinetic equations that include advection and turning. The latter

is the main mechanism for aggregation and orientation, which results from interactions among

individuals of the same species as well as predator-prey relationships. We illustrate numerically

a diverse set of predator-prey behaviours that can be captured by this model. We show that a

prey’s escape outcome depends on the social interactions between its group members, the prey’s

field of vision and the sophistication of the predator’s hunting strategies.
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1 Introduction

In recent years many mathematical models have been introduced in an attempt to describe collective
behaviour in animal groups. Such biological aggregations are ubiquitous in nature, for instance
flocks of birds [2], swarms of insects (mosquitoes, bees, locusts) [3], schools of fish [4], herds of
ungulates and even crowds of humans. Research on models of animal group behaviour has been
driven by pure scientific interest, as well as by their applications. For example, the fishing industry
can benefit from more knowledge about fish behaviour [5]. Also, understanding swarming and
flocking in nature can help improve robot communication [6] or coordination among autonomous
vehicles [7]. Applications reach even seemingly unrelated disciplines such as social sciences and
economics [8, Parts I and II].

More complex systems are those that involve multiple types of groups and interactions, such
as intra-species competition for resources or inter-species predator-prey relationships. Regarding
the latter, both predators and prey develop group strategies that, respectively, make the chase
and escape more efficient. Some examples of multiple group behaviours are dolphins confining fish
into a bait ball [9], wolves chasing white-tailed deer [10] and Eleonora’s falcons’ high diving speed
technique to capture a bird in a flock [11].

∗Department of Mathematics, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada,
email: {van,jmeskas}@sfu.ca

1



There are two main classes of mathematical models that are used to describe animal groups.
The first is of Lagrangian type, which are particle-based models that consist of interaction rules
governing the evolution of individuals as they interact with their neighbours [12]. Frequently, such
models are expressed in terms of large systems of ordinary differential equations [13, 14]. This
formulation captures, to reasonable precision, many real biological aggregations, but it does not
allow for rigorous analysis and becomes computationally expensive for a large number of individuals.

The second class of models uses an Eulerian approach, where the problem is formulated as
an evolution equation for the population density field. In many instances, such Eulerian models
originate in fact from particle-based models, in the limit when the number of particles approaches
infinity [15, 16, 17]. The dynamics in an Eulerian model is governed by a partial differential equation
(PDE), which typically is nonlinear and nonlocal. PDE aggregation models can be further classified
into kinetic/mesoscopic [18] and continuum/macroscopic [19, 20, 21]. Interest on both kinetic and
continuum models for aggregation has grown very fast lately, either separately, or in connection,
where corresponding hydrodynamic limits of kinetic models have been established and studied
[15, 16, 22].

In this paper we consider the nonlocal kinetic model introduced and studied in [1], which
represents the extension to two-dimensions of the hyperbolic model from [23, 24, 25]. The distinctive
feature of these models is that they consider turning as the main mechanism for aggregation and
self-collective behaviour. Individuals turn to respond to signals perceived from their neighbours.
The models take into account all social interactions (attraction, repulsion, alignment) which exist
among individuals in a group, interactions which are incorporated, via nonlocal terms, into the
turning rates. They are zonal models, where responses to neighbours are modelled by interaction
potentials (kernels) which delineate zones of repulsion, alignment and attraction acting at short,
intermediate, and long ranges, respectively.

The present research extends the model from [1] in several directions: i) adds a field of vision
to individuals, and ii) includes a second species and considers predator-prey interactions. Adding
a field of vision produces a more realistic reaction behaviour of individuals since they cannot see
behind themselves. Limited vision (or more general, sensorial perception) has been considered in
other aggregation models [12, 26, 27, 28], and it was shown to be an essential feature, with important
effects on the collective behaviour of the group. The addition of a predator gives another layer of
complexity because biological aggregates do not live in isolation from other species and are subject
to predation. Both extensions are added in consistency with the overall setup of the model from
[1]. The field of vision is included via an additional kernel that truncates the contribution of the
existing interaction kernels. The predator dynamics is modelled with a kinetic equation similar in
form to the equation from [1], except that now turning of both prey and predator individuals results
from interactions among individuals of the same species, as well as predator-prey relationships.

The literature on mathematical models for predator-prey interactions is vast and has a long his-
tory. Most of these models consist of a coupled system of ordinary differential equations describing
the time evolution of the prey and predator densities. Typically, the models assume that, in the
absence of the other species, the two densities have their own growth and death rates, while the
interactions are included in terms that model the functional responses of one species with respect to
the other. Such models are referred to as Kolmogorov-type equations. A recent book by Brauer and
Castillo-Chavez [29] (Chapters 4-6) presents and discusses several models in this category, starting
with the celebrated Lotka-Volterra model (1925). The models of this sort have become increasingly
sophisticated over the years, with various forms of functional responses being studied [30]. Various
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extra features have been considered too, such as harvesting and stocking [31], or dormant predators
[32]. The analysis of these models mostly involve techniques from dynamical systems and bifur-
cation theory, where stability of fixed points or limit cycles is investigated, possibly in terms of a
bifurcation parameter.

Spatial dependence in predator-prey dynamics is typically included via diffusion terms [33],
and literature on such reaction-diffusion systems is also extensive (see [34] for a review). Much
less represented are models of hyperbolic type. There exist a few hyperbolic predator-prey models
which incorporate advection and reaction/competition terms, but studies on these models are
limited to investigations of the traveling wave solutions [35, 36]. A major shortcoming of these
PDE models is that they focus on how the predator-prey interactions affect the population sizes,
but omit to consider basic predator-prey relationships such as predators’ hunting techniques or
prey’s avoidance strategies. The nonlocal turning rates in our model consider such interactions
between prey and predator, as well as interactions among individuals of the same group. For a
better illustration of the role of turning in predator-prey interactions, we do not consider birth/death
terms in this model. We want to emphasize in this work the formation of the biological groups
and the hunting/escaping strategies rather than the long time behaviour of a predator-prey system
where birth and death processes play a major role. Birth and death terms, as in [37] for instance,
could be easily incorporated into our model and a full investigation of such an enhanced model is
planned for future work.

The paper is organized as follows. Section 2 starts by presenting the aggregation model from
[1], and then introduces the predator-prey model investigated in this article. Section 3 describes
the numerical method used to generate the numerical results. Section 4 illustrates numerically a
diverse set of predator-prey behaviours that can be captured with our model. As these animal
behaviours depend on the sophistication of the predator, we present several cases: a stationary
predator, a moving predator that does not respond to its surroundings, and a predator that turns
and chases the prey.

2 Model description

In this section we first introduce the model from [1] and discuss its modelling assumptions, then
present the two extensions which this paper is concerned with: adding a field of vision/blind zone,
and including intra- and inter-species interactions.

2.1 Aggregation model from [1]

The model introduced in [1] is given by the following integro-differential equation

∂tu+ γ~eφ · ∇~xu = −λ(~x, φ)u+

∫ π

−π
T (~x, φ′, φ)u(~x, φ′, t)dφ′, (1)

where u is the population density of individuals at spatial location ~x = (x, y) and oriented in
direction φ ∈ (−π, π], measured from the positive x-axis. The individuals are moving in the
direction ~eφ = (cosφ, sinφ) with constant speed γ. The functions λ(~x, φ) and T (~x, φ′, φ) model
the turning rates of individuals and are dependent on the individuals’ attraction, repulsion and
alignment with each other. The function λ(~x, φ) represents the rate at which individuals in state
(~x, φ) turn, and T (~x, φ′, φ) describes the rate at which an individual located at ~x reorients itself
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from φ′ to φ, due to interaction with neighbours. The modelling and the precise forms of the
turning rates are presented later in this section.

In summary, the left-hand-side represents advection at constant velocity γ, and the right-hand-
side contains loss and gain terms due to turning and changes of direction. There is an important
consistency relation between the gain and loss terms, which ultimately assures conservation of mass.
Namely, λ(~x, φ), the turning rate from direction φ to any other direction, should be obtained by
integrating T (~x, φ, φ′), the turning rate from direction φ to φ′, over all possible new directions φ′:

λ(~x, φ) =

∫ π

−π
T (~x, φ, φ′) dφ′. (2)

Numerical simulations in [1] showed very rich dynamics and collective behaviour of solutions
to model (1). Starting from random initial conditions, the following group formations in two
dimensions were obtained: i) swarms (aggregation into a group, with no preferred direction of
motion), and ii) parallel/ translational motion in a certain preferred direction with either uniform
spatial density or aggregation into groups.

We present briefly below the modelling assumptions on the inter-individual interactions, and
provide expressions for the turning rates λ(~x, φ) and T (~x, φ′, φ). For more details, the reader can
consult [1].

Factors of influence. The model depicts an individual’s decision to continue moving in its
current direction or to turn based on its neighbours. We assume that the only two factors that
influence turning are the distance from neighbours and the neighbours’ orientation. Each factor is
modelled mathematically by interaction kernels.

i. Distance kernels. Each individual is assumed to be surrounded by zones of repulsion, align-
ment, and attraction acting at short, intermediate and long ranges, respectively (see Figure 1(a)).
These zones are modelled with distance kernels Kd

j :

Kd
j (~x) =

1

Aj
e
−
(√

x2+y2−dj
)2
/m2

j , j = r, al, a, (3)

where j = r, al, a, stands for repulsion, alignment, or attraction, respectively, dj represents the
radius and mj the thickness of the respective influence zone (see Figure 1(a)). The Aj ’s are
normalizing constants that make the spatial integral of each kernel equal 1. These constants are
given by:

Aj = πmj

(
mje

−d2j/m2
j +
√
πdj (1 + erf (dj/mj))

)
. (4)

Figure 1(b) shows the attraction kernel Kd
a . Note that the three interaction zones may overlap.

ii. Orientation kernels. We discuss first the attractive orientation kernel. Suppose a decision
making individual located at ~x is heading in direction φ and senses a neighbour located at ~s, within
its attraction zone — see Figure 2(a). The relative location ~s−~x makes an angle ψ with the positive
x axis. Due to attraction, the reference individual makes a decision to turn in order to approach its
neighbour at ~s. The larger the difference |φ− ψ|, the higher the likelihood of the decision making
individual to turn. These considerations are included in the following attraction kernel 1 Ko

a:

Ko
a (~s; ~x, φ) =

1

2π
(− cos (φ− ψ) + 1) . (5)

1Superscripts d and o in the interaction kernels refer to distance and orientation (angle), respectively. Subscripts
r, al, a stand for repulsion, alignment and attraction, respectively.
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Figure 1: (a) Zones of repulsion, alignment and attraction. The radius and thickness of each zone is
determined by dj and mj , respectively, where j = r, al, a. (b) Generic contour plot of the attractive
distance kernel Kd

a .

Note that Ko
a is smallest when φ and ψ are the same (~x is already moving towards ~s, hence no need

to turn), and largest when φ and ψ are an angle of π away from each other (~s is directly behind
~x). Referring again to Figure 2(a), ~x is more likely to turn because of the attractive influences of
~s′ compared to ~s. The 1

2π factor renormalizes the kernel so it integrates to 1.
Very similar considerations can be made regarding the change of orientation due to repulsion.

The repulsion kernel, Ko
r has the expression:

Ko
r (~s; ~x, φ) =

1

2π
(cos (φ− ψ) + 1) . (6)

Compared to (5), (6) has change of sign in front of the cosine term, which reverses the likelihood
of turning.

Finally, regarding the alignment orientation kernel, we refer to Figure 2(b). The decision making
individual is located at ~x and is moving in direction φ. A neighbour ~s located in its alignment range
moves in direction θ. The larger the relative orientation |φ − θ|, the higher the likelihood of the
reference individual to turn to align with its neighbour. Similar to previous considerations, this is
encoded in the following function:

Ko
al (θ, φ) =

1

2π
(− cos (φ− θ) + 1) . (7)

The six kernels from Equations (3), (5), (6) and (7) are the building blocks for both turning
rate functions λ and T . The development of these two functions are discussed below.

Turning rate λ(~x, φ). The turning rate λ(~x, φ) is assumed to take contributions from all three
social interactions:

λ(~x, φ) = λa(~x, φ) + λr(~x, φ) + λal(~x, φ), (8)

where each component λj (j = r, al, a) is defined in terms of the distance and orientation kernels
introduced above.
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(a) (b)

Figure 2: Change of orientation due to interaction with neighbours. The decision making individual
is located at ~x and is moving in direction φ. (a) Attraction. The reference individual at ~x is more
likely to turn due to its interaction with ~s′ than with ~s, as |φ− ψ′| > |φ− ψ|. (b) Alignment. The
individual at ~x is more likely to turn due to its interaction with ~s than with ~s′, as |φ− θ| > |φ− θ′|.

The attraction turning rate λa is given by the expression:

λa(~x, φ) = qa

∫
R2

∫ π

−π
Kd
a(~x− ~s)Ko

a(~s; ~x, φ)u(~s, θ, t)dθd~s, (9)

where qa is a constant that represents the strength of attraction. The integral in the right-hand-side
is taken over ~s and θ, which accounts for all neighbours’ positions and directions, respectively.

The other two components of λ are defined similarly:

λr(~x, φ) = qr

∫
R2

∫ π

−π
Kd
r (~x− ~s)Ko

r (~s; ~x, φ)u(~s, θ, t)dθd~s, (10)

λal(~x, φ) = qal

∫
R2

∫ π

−π
Kd
al(~x− ~s)Ko

al(θ, φ)u(~s, θ, t)dθd~s, (11)

where qr and qal are strengths of repulsion and alignment, respectively.

Reorientation term T (~x, φ′, φ). The reorientation term T (~x, φ′, φ) describes the rate at which an
individual located at ~x reorients itself from φ′ to φ due to influences of its neighbours — see Figure
3(a). Similar to λ, this term also takes contributions from attraction, repulsion and alignment
interactions:

T (~x, φ′, φ) = Ta(~x, φ
′, φ) + Tr(~x, φ

′, φ) + Tal(~x, φ
′, φ). (12)

The contribution from attraction is taken to be:

Ta(~x, φ
′, φ) = qa

∫
R2

∫ π

−π
Kd
a(~x− ~s)Ko

a(~s; ~x, φ′)wa(φ
′ − φ, φ′ − ψ)u(~s, θ, t)dθd~s, (13)

where qa and the interaction kernels are the same as before, and wa is a turning probability function
that gives the probability of turning from φ′ to φ due to attractive interactions with the neighbour
located at ~s.
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(a) (b)

a

Figure 3: (a) The decision making individual at ~x moving in direction φ′ has a probability of turning
to direction φ based on its interaction with the neighbour located at ~s that moves in direction θ.
(b) Visual aide for function gσa : the decision making individual at ~x moving in direction φ′ has a
probability to turn (due to attraction) to a direction near φ, with maximum turning possibility of
ka and with uncertainty σa.

Similarly Tr and Tal from Equation (12) are defined by

Tr(~x, φ
′, φ) = qr

∫
R2

∫ π

−π
Kd
r (~x− ~s)Ko

r (~s; ~x, φ′)wr(φ
′ − φ, φ′ − ψ)u(~s, θ, t)dθd~s, (14)

Tal(~x, φ
′, φ) = qal

∫
R2

∫ π

−π
Kd
al(~x− ~s)Ko

al(θ;φ
′)wal(φ

′ − φ, φ′ − θ)u(~s, θ, t)dθd~s, (15)

where wr and wal are probability functions which characterize the turning from direction φ′ to φ
due to repulsive and alignment interactions with neighbours, respectively.

Details on modelling the probability functions wj (j = a, r, al) are presented in the Appendix.
Note that in the expression for Tal, the argument of wal includes the direction θ. This is because

the alignment contribution to turning does not depend on the location of the neighbours, ψ, but
rather on their direction, θ.

2.2 Model with a field of vision

In order to increase the biological realism of the model (1) from [1], we introduce a field of vision/
blind zone of the individuals. The model presented in Section 2.1 suggests that, in terms of attrac-
tive interactions, the neighbours behind a reference individual (see Figure 2(a)) have the strongest
influence on it. However, most animals cannot see behind themselves and are not susceptible to
sudden changes occurring behind them, especially when animals depend primarily on sight. We
introduce here a blind zone that is in a consistent format to the model presented in Section 2.1.

The field of vision/ blind zone is modelled via an additional truncation kernel. We refer again to
Figure 2(a). To correctly represent the field of vision of the reference individual ~x, the neighbours
located in front (with ψ within a certain interval centred at φ) should be given higher weights than
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Figure 4: Field of vision. a) Plots of the function Kbz from (16) for different values of a and b
(a controls the steepness of the graph, and b its width). b) Spatial representation of Kbz (a = 5,
b = π/2) for a reference individual located at the origin which moves horizontally to the right. Note
that Kbz takes large and almost constant values in the direct field of vision, decays at its periphery,
and has zero values in the blind zone.

the individuals located behind (|ψ−φ| close to π). We consider the following function that captures
this idea:

Kbz(φ− ψ) =
1

B

(
1

2
tanh

{
a

[
cos(φ− ψ) +

(
1− b

π

)]}
+

1

2

)
, (16)

where a and b determine the steepness and the width of the field of vision, respectively, and B is a
constant that normalizes the kernel.

Figure 4(a) shows how changing a and b alters the field of vision (a can range from 1 to ∞,
and b can be any real number). Note how decreasing the value of b from π to 0 increases the field
of vision. A large enough negative value of b would create a virtually flat function (plot not shown
here), corresponding to a full and uniform field of vision. In Section 4 we use b = −2π to capture a
full field of vision. Alternatively, increasing b up to a large enough positive value would shrink the
field of vision to reach complete blindness. This case is not interesting biologically and it will not
be studied here.

Figure 4(b) shows a spatial representation of Kbz with a = 5, b = π/2 corresponding to a
reference individual located at the origin which moves to the right (φ = 0). The function Kbz

captures a field of vision, where it takes large and almost constant values, and a blind zone, where
the function vanishes.

There are, of course, other expressions of Kbz which capture similar behaviours. We made this
specific choice for reasons related to the numerical implementation of the model. In particular, we
want the kernel to be of convolution type, so that Fourier-based methods are applicable (see more
details in Section 3, in particular equation (33)).

The kernel from Equation (16) is added as a weight to the integral definitions of the λ’s and
the T ’s from (9)-(11) and (13), (14), (15). The expressions of λa and Ta from (9) and (13), when
a field of vision is considered, change to:

λa(~x, φ) = qa

∫
R2

∫ π

−π
Kd
a(~x− ~s)Kbz(~s; ~x, φ)Ko

a(~s; ~x, φ)u(~s, θ, t)dθd~s, (17)

Ta(~x, φ
′, φ) = qa

∫
R2

∫ π

−π
Kd
a(~x− ~s)Kbz(~s; ~x, φ′)Ko

a(~s; ~x, φ′)wa(φ
′ − φ, φ′ − ψ)u(~s, θ, t)dθd~s. (18)
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Note that we explicitly indicated the dependence of Kbz on ~s, the location of the generic neighbour.
The expressions for the turning rates due to repulsion and alignment change similarly.

2.3 Predator-prey interactions

Though biological aggregates have interesting behaviours on their own, by introducing a predator,
more dynamic behaviours are observable. Predators can influence prey movement by constricting
prey into tighter groups, for example dolphins [9] or minke whales [38] condensing fish into bait
balls. Similarly, predators can dive through a group and split the prey, such as an Eleonora’s falcon
that dive bombs into a group of prey [11]. We are interested in adding a predator-prey relationship
to model (1) and investigate the behaviour of the resulting model.

Consider two species: a prey of density up and a predator (hunter) of density uh. We assume that
the dynamics of each species is governed by an equation of type (1), except that now interactions
between members of different groups must be accounted for. In particular, prey is strongly repelled
by predators and similarly, predators are strongly attracted to prey.

The model consists in the following coupled integro-differential equations for the prey and the
predator:

∂tu
p + γp~eφ · ∇~xup = −λp(~x, φ)up +

∫ π

−π
T p(~x, φ′, φ)up(~x, φ′, t)dφ′, (19a)

∂tu
h + γh~eφ · ∇~xuh = −λh(~x, φ)uh +

∫ π

−π
T h(~x, φ′, φ)uh(~x, φ′, t)dφ′, (19b)

where constants and functions with a p superscript refer to the prey, while a h superscript refers
to the predator (hunter). The prey and predator densities advect with constant speeds γp and γh,
respectively. The modelling assumptions for the turning rates λ and T that correspond to prey and
predator, are laid out below.

Prey responds to itself and to predator. Prey individuals interact with themselves according
to the rules described in Section 2.1 (attraction, repulsion, alignment) and in addition, they try
to avoid the predators. The turning rates λp and T p from (19a) take contributions from all these
interactions and their expressions read (compare to (8) and (12)):

λp(~x, φ) = λpa(~x, φ) + λpr(~x, φ) + λpal(~x, φ) + λprh(~x, φ), (20)

T p(~x, φ′, φ) = T pa (~x, φ′, φ) + T pr (~x, φ′, φ) + T pal(~x, φ
′, φ) + T prh(~x, φ′, φ). (21)

The first three terms in each of the right-hand-sides of (20) and (21) are defined as in Section 2.2
(see (17), (18)), and describe turning due to interactions of prey individuals among themselves. The
additional terms λprh and T prh incorporate repulsion of prey from the predator (note the subscript
h standing for predator/hunter).

In modelling the prey-predator components λprh and T prh we follow the approach used in Section
2.1 for one species interactions. This is in fact one of the merits of this model, that it does not need
extra modelling considerations to include interactions between different species. Such interactions
would come naturally from the same basic setup from Section 2.1. More precisely, we assume
that a prey individual has a comfort zone with respect to predators, and once a predator enters
this zone (within the prey’s field of vision), the prey starts turning and running away from the
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predator. This comfort zone can be described using a repulsive distance kernel in the form (3), but
with characteristics that refer to prey-predator interactions. We denote this kernel by Kd

rh, with a
subscript h that indicates that the prey’s repulsive distance kernel refers to the hunter (predator).

The prey-predator contributions λprh and T prh are given by:

λprh(~x, φ) = qrh

∫
R2

∫ π

−π
Kd
rh(~x− ~s)Kbz(~s; ~x, φ)Ko

r (~s; ~x, φ)uh(~s, θ, t)dθd~s, (22)

T prh(~x, φ′, φ) = qrh

∫
R2

∫ π

−π
Kd
rh(~x−~s)Kbz(~s; ~x, φ′)Ko

r (~s; ~x, φ′)wrh(φ′−φ, φ′−ψ)uh(~s, θ, t)dθd~s. (23)

Note that the expressions above involve integration with respect to the other species, in this
case the predator population uh. Also note that the blind zone and orientation kernels Kbz and Ko

r

used in (22) and (23) are exactly the same kernels used to describe interactions of prey with itself.
This is because it is reasonable to assume that the field of vision of a prey individual is intrinsic
(and it does not depend on what is actually perceived in there) and also, because the orientation
kernels introduced in Section 2.1 capture generic changes in orientation (which could result from a
variety of reasons, including interactions with other prey fellows or predators). Alternatively, one
could consider different perception fields of prey with respect to predators and modify the blind
zone kernel in (22) and (23).

We reiterate that the prey-predator repulsive distance kernel Kd
rh is in the form of (3), but

has a different range drh, width mrh, and normalizing constant Arh. Also, a different value qrh
for the strength of the prey-predator repulsion was used. Typically this is significantly larger than
the strength of repulsion among prey individuals. Finally, we used a different turning probability
function wrh to indicate different turning precision and range, described by σrh and krh, respectively,
when turning of prey relative to a predator is considered.

Predator responds to itself and to the prey. The turning/ reorientation rates λh and T h

in the predator equation (19b) are modelled similarly. The predator interacts with itself and is
attracted to prey, behaviour captured by

λh(~x, φ) = λha(~x, φ) + λhr (~x, φ) + λhal(~x, φ) + λhap(~x, φ), (24)

T h(~x, φ′, φ) = T ha (~x, φ′, φ) + T hr (~x, φ′, φ) + T hal(~x, φ
′, φ) + T hap(~x, φ

′, φ). (25)

Similar to (20) and (21), the first three terms in each right-hand-side correspond to interactions of
the predator with itself. The terms λhap and T hap correspond to the attraction of predator towards
the prey (note the subscript p standing for prey).

The components λhj and T hj (j = a, r, al) in (24) and (25), which regard interactions of the
predator with itself, can be modelled as in Section 2.2. Below we use overbar to denote predator-
specific quantities and characteristics. We consider distance, orientation and blind zone kernels K̄d

j ,

K̄o
j and K̄bz, respectively, specific to interactions among predators, as well as interaction strengths

q̄j and turning functions w̄j (j = a, r, al). All such characteristics are modelled as in Section 2.1.
The predator distance kernels K̄d

j , for instance, are in the form of (3), but with ranges, widths and
normalizing constants which are specific to predator-predator interactions.

We illustrate below only the attraction terms λha and T ha from (24) and (25), the rest are similar:

λha(~x, φ) = q̄a

∫
R2

∫ π

−π
K̄d
a(~x− ~s)K̄bz(~s; ~x, φ)K̄o

a(~s; ~x, φ)uh(~s, θ, t)dθd~s, (26)
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T ha (~x, φ′, φ) = q̄a

∫
R2

∫ π

−π
K̄d
a(~x− ~s)K̄bz(~s; ~x, φ)K̄o

a(~s; ~x, φ)w̄a(φ
′ − φ, φ′ − ψ)uh(~s, θ, t)dθd~s. (27)

Attraction of the predator toward the prey is included in the turning rates λhap and T hap. Preda-
tors turn to approach and chase the prey situated in their cone of vision. It is natural to assume
that the attraction range of the predator with itself is different from the attraction range of the
predator with respect to prey. Therefore we use a distance kernel K̄d

ap describing attraction of

the predator toward the prey that is different from the distance kernel K̄d
a that corresponds to

attraction of predators to themselves. Similarly, the strength of attraction to the prey q̄ap and the
turning function w̄ap relative to the prey are different from q̄a and w̄a used in (26) and (27). We
arrive at:

λhap(~x, φ) = q̄ap

∫
R2

∫ π

−π
K̄d
ap(~x− ~s)K̄bz(~s; ~x, φ)K̄o

a(~s; ~x, φ)up(~s, θ, t)dθd~s, (28)

T hap(~x, φ
′, φ) = q̄ap

∫
R2

∫ π

−π
K̄d
ap(~x− ~s)K̄bz(~s; ~x, φ)K̄o

a(~s; ~x, φ)w̄ap(φ
′ − φ, φ′ −ψ)up(~s, θ, t)dθd~s. (29)

Remark. Using very similar ideas, the model from Section 2.2 can be altered to describe various
types of relationships. Two-species interacting may not be necessarily of a predator-prey type.
They could, for instance, compete for the same resources, but at the same time avoid each other.
Alternatively, another stationary predator could be added that might act as an obstacle. Or a
food patch can be included, as an attractive region. In theory, this model could extend to any
number of species that have a variety of relationships with other species. However, our numerical
investigations only focus on the single predator and single prey relationship.

3 Numerical method

Numerics for model (19) poses serious challenges. As a kinetic model, sampling in both space
and velocity variables is needed, which makes the integrals on the right-hand-sides very costly to
compute. Quadrature methods, for instance, would require the evaluation, at every gridpoint, of a
sum over all the other gridpoints, thus having a huge impact on the computational speed. A recent
work [28] presents the difficulties in simulating aggregation models with pairwise interactions, and
discusses about the various methods available: fast summation methods (Fast Multipole Method),
compressive sampling, Monte Carlo methods. In the present research we take a separate approach
and cast the space and angle integrals as convolutions, then use Fourier spectral methods to evaluate
them relatively cheaply in Fourier space. More specifically, the convolution of a kernel K with a
function u can be computed in Fourier space via a simple algebraic multiplication:

K̂ ∗ u (l) = K̂(l)û(l).

We consider a square domain [−L
2 ,

L
2 ) × [−L

2 ,
L
2 ) of side length L and sample it at N2 points

(N grid points in each space direction). The spatial grid spacing is ∆x = ∆y = L
N . The angle

dimension has M points with a domain of 2π radians, which goes from [−π, π), with grid spacing
of ∆φ = 2π

M . To update the solution in time we use the fourth order Runge-Kutta method.
The Fast Fourier Transform (FFT) has to be used with care, as it introduces a distortion

of modes called aliasing. To avoid aliasing the spatial grid is extended from N2 to (32N)2 and
the angular grid is extended from M to 3

2M . The 3
2 is the smallest possible factor to guarantee
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that dealiasing is successful and to minimize the computational time. Some functions with this
spatial and angular extension are fast Fourier transformed into the Fourier space, and then have
the highest third of the frequency Fourier coefficients set to zero. The calculations are carried
out in the extended real and frequency domains, and then reduced back to the original size. This
dealiasing process is standard as discussed in [39].

The left-hand-sides of the integro-differential equations (19a) and (19b) are computed easily.
By first taking the 2D Fourier transform of the linear convective term in (19a), it becomes

γ (cosφ l1 + sinφ l2) ûp, (30)

where l1, l2 are the horizontal and vertical components of the wave number, respectively. Similarly
for (19b). These new algebraic forms for the left-hand-sides can now be dealt with using the
integrating factor technique.

The right-hand-sides of (19a) and (19b) are the key of the matter and require much more work.
They involve the calculations of the integrals representing λ and T , which we now show can be cast
as convolutions. Note however that a certain component of T cannot be entirely represented as a
convolution and in that case we resort to quadrature methods.

Inspect first the attraction component of λp given by (17) with u replaced by up. It is not
immediately clear that the integral in (17) represents a convolution, as both the blind zone and
orientation kernels Kbz and Ko

a (see (16) and (5)) are functions of φ− ψ. But we can rework their
expressions, by expanding the cosine and using

cosψ =
sx√
s2x + s2y

, sinψ =
sy√
s2x + s2y

, (31)

where ~s− ~x = (sx, sy). The orientation kernel Ko
a becomes

Ko
a (~s; ~x, φ) =

1

2π

− cosφ
sx√
s2x + s2y

− sinφ
sy√
s2x + s2y

+ 1

 , (32)

which is now a function of ~x− ~s. Similarly, Kbz can be written as a function of ~x− ~s,

Kbz(~s; ~x, φ) =
1

B

1

2
tanh

a
cosφ

sx√
s2x + s2y

+ sinφ
sy√
s2x + s2y

+

(
1− b

π

)+
1

2

 , (33)

and hence, the spatial integration in (17) is a convolution. Regarding the integration with respect
to θ, note that none of the kernels in (17) depend on angle θ, it is only the density up which depends
on this variable. Hence, integration with respect to θ in (17) is simply the Fourier zero-mode of
up with respect to angle. Similar considerations apply to the attraction component of λh, as well
as the repulsion and inter-species components of both λp and λh. Regarding the latter, note from
(22) and (28) that the only difference is that integration (and hence Fourier multiplication) is done
with respect to the density of the other species.

The alignment component λpal of λp can be written as a convolution in both space and angle
variables. Indeed, the distance and blind zone kernels are functions of ~x− ~s, while the orientation
kernel Ko

al is a function of φ − θ (see (7)). As a result, calculation of λpal can be done via FFT

12



in space and angle, where the two Fourier transforms conveniently decouple. Similarly for the
alignment component λhal of λh.

The calculations of the reorientation rates T p and T h are a little more involved, due to the
presence of the turning probability functions. Here we make the comment which we alluded to
earlier, namely, that in order to take advantage of using FFT, we model the turning functions by a
sine function (see (38)). The gain brought by this choice can be seen for instance by inspecting the
attraction component (18). We noted above that the distance, blind zone and attractive orientation
kernels are functions of ~x− ~s. Suppose now that φ and φ′ are fixed and va is given by (38). Then,
by expanding the sine and using (31), the probability function wa from (36) can be expressed as

wa
(
φ′ − φ, φ′ − ψ

)
= gσa

(
φ′ − φ− κa

(
sinφ′ cosψ − cosφ′ sinψ

))
= gσa

(
φ′ − φ− κa

(
sinφ′

sx
s2x + s2y

− cosφ′
sy

s2x + s2y

))
,

with gσa given by (37). Note that the outcome is a function of ~x − ~s and therefore, the spatial
integration in the right-hand-side of (18) is a convolution which can be computed in Fourier space.
Integration with respect to θ reduces to calculation of the Fourier zero-mode. Similar considerations
apply to the repulsion and inter-species components of T p and T h.

The alignment components of the reorientation rates have to be treated separately. For con-
venience we drop the superscripts p or h for the following calculation, therefore it applies to both
populations. We have (see (15) with inclusion of blind zone):

Tal(~x, φ
′, φ) = qal

∫
R2

Kd
al(~x− ~s)Kbz(~s; ~x, φ′)

∫ π

−π
Ko
al(θ;φ

′)wal(φ
′ − φ, φ′ − θ)u(~s, θ, t)dθd~s. (34)

The integral with respect to θ is not a convolution and we have to resort to quadrature to compute
it. We use the trapezoidal rule with a double loop, to account for all angles φ and φ′. This is the
most computationally expensive step of the numerical algorithm and the only place where FFT
was not applicable. The integral over ~s can still be easily calculated with two-dimensional FFT as
before.

4 Numerical experiments

This section will showcase the versatility of the model and how it captures a large variety of
predator-prey interactions. We noted in the previous section that computing the alignment com-
ponent in the reorientation rates is very expensive computationally. To increase the computational
speed, we have excluded the alignment terms of the predator (but kept the alignment of the prey,
an important ingredient in the model). The omission of these terms lowered the computational cost
by slightly less than a factor of two. The lack of predator alignment is supported in fact by several
observations on hunting strategies of dolphins [9] and lions [40]. In future work we will consider
alternative formulations of alignment interactions, which can be cast as convolutions. One possible
solution is to model alignment using attractive-repulsive interaction mechanisms, as in [41].

For all experiments we take the size of the domain to be L = 4 and the speed of the prey to
be γp = 1. The parameters defining the ranges and widths of all distance kernels are also set for
all experiments, unless otherwise indicated: dr = 0, dal = 0.4, da = 0.8, drh = 0, d̄r = 0, d̄a = 0.4,
d̄ap = 0.4, mr = mal = ma = 0.2, mrh = 0.8, m̄r = 0.2, m̄a = 0.2 and m̄ap = 0.4. Recall that
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the overbar means that these constants refer to the predator. For example, m̄r shows the width
of the zone of influence for the predator being repelled by itself, while m̄ap shows the width of the
attraction zone of the predator with respect to the prey.

The parameters defining the turning uncertainties (see equation (37)) are set for both prey and
predator: σj = σ̄j = 0.2 (j = a, r, al). The parameters which characterize the blind zone of the
prey are also fixed at a = 10, b = π

2 , with the exception of the blind zone experiments, which show
the effect of changing the blind zone.

All figures below plot the spatial (or macroscopic) population densities ρp and ρh, defined by

ρp(~x, t) =

∫ π

−π
up(~x, φ, t) dφ and ρh(~x, t) =

∫ π

−π
uh(~x, φ, t) dφ,

respectively. We present contour plots of these functions, with magnitudes indicated by colour bars.
A small white arrow attached to a spatial location indicates the average direction an individual
located at that grid point is moving in. The size of the arrows shows the relative amount of motion
of the individuals.

4.1 Stationary predator

Predator ring. Predators sometimes cannot rely on speed and agility to catch their prey. Nev-
ertheless they can come up with clever ways to catch their prey which take less effort and are more
efficient. One such method is the predator ring. The predators can surround the prey, forcing it
into a ball, which condenses the group. This makes a higher probability of the predator catching
its prey. Figure 5 shows the predator ring in the top left figure, and five plots of the prey moving
around the centre of the ring.

The parameters for this experiment are: qr = 4, qal = 5, qa = 1, qrh = 20, kr = −0.65,
kal = 0.85, ka = 0.85 and krh = −0.7. The strength of repulsion, qr, is larger than the strength of
attraction, qa, which would cause the prey to disperse in the absence of the predator. The value of
qrh, the strength of prey-predator repulsion, is large, which forces the prey to keep a large distance
from the predator. The zonal width mrh was changed from 0.8 to 0.6 in this experiment to allow
the prey to be closer to the predator ring, instead of having it confined to the centre of the ring.
The prey’s initial condition is a small counter-clockwise rotating ball which eventually spreads
apart. Because of this initial condition, the prey deflects off of the predator ring and continues in
its counter-clockwise fashion.

The behaviour of a predator ring is common in nature in a variety of forms. One such form
is that of dolphins, which execute herding passes to condense fish into bait balls [9]. Cooperative
hunting by surrounding the prey has also been seen in lions [40]. Confining prey in this way makes
it more efficient for the predator to capture it.

4.2 Moving predator (no turning)

Even though it is important that the prey behave realistically around a stationary predator, much
more happens when the predator is in motion. A moving predator can cause the prey to turn as
a group, split or disperse. Since the predator can now come up behind the prey, the blind zone of
the prey plays a large role in how the group behaves. Also this section is used as a building block
for when the predator is also allowed to turn (see Section 4.3).
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Figure 5: Predator ring: A sequence showing the prey enclosed by a predator ring. The top left
plot is the predator and the other five are the prey. The prey move in a circle, continually trying
to avoid the predator, but the prey are trapped.
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a. Prey moving towards the predator. In this experiment the initial condition is set up for
the prey and predator to collide head on. To keep the experiment simple, the predator is a perfect
Gaussian bump that is moved to the left as time progresses with speed γh = 1.2. This means the
predator will not change its direction or shape. As the predator moves towards a group of prey,
which is also moving towards the predator, the prey behave differently based on the two parameters
of qa and qal. The other parameters for this experiment are set at: qr = 1, qrh = 40, kr = −0.4,
kal = 0.8, ka = 0.8, and krh = −0.95.

Figure 6 shows this experiment with the plots occurring sequentially from left to right. The
top row is the predator, the rest of the rows are the prey. The second row has qa = 1 and qal = 1
and shows a splitting, followed by dispersion of the group. The third row is a different simulation,
with qa = 1 and qal = 5, that shows a more biased splitting of the group. Since alignment is larger,
the prey will decide to turn the same way as the majority even if that puts them in harms reach of
the predator. The last row is also a different simulation having qa = 5 and qal = 1, and shows the
group turning around and staying together. Since the attraction is large, the prey tries hard not
to split and actually does a complete turn to avoid the predator. Eventually the prey will fan out
and then split from the constant pursuit of the predator.

This experiment shows a variety of behaviours this model can produce with only changing a few
parameters. It mimics a lunging predator and the prey must perform an evasive tactic to escape
from the predator [42].

b. Away from predator - blind zone - alignment. This experiment is designed to observe
how the blind zone factor effects the behaviour of the prey. The initial condition has both the
prey and predator moving to the left. Depending on the size of its blind zone, the prey will have
more or less information to make a decision to turn to avoid the chasing predator. The essential
parameter in this study is the width of the field of vision, measured by b (see Figure 4(a)). We set
the steepness of the peripheral vision at a = 10, and we vary only the values of b, while keeping
the other parameters fixed at the following values: γh = 1.2, qr = 1, qal = 5, qa = 1, qrh = 40,
kr = −0.4, kal = 0.8, ka = 0.8 and krh = −0.95. Note that alignment dominates the social
interactions among prey (qal > qr and qal > qa).

In Figure 7 the top row is the predator and all the other plots show the prey. The plots occur
sequentially from left to right. The second row has b = −2π (full field of vision, no blind zone)
and shows a biased splitting of the group. We remind the reader that a sufficiently large negative
value of b is needed to ensure that there is no contribution from the blind zone factor. The third
row has b = π/2 and shows a less biased splitting of the group. There are more individuals moving
down compared to the b = −2π case. The last row has a larger blind zone with b = π (see Figure
4(a)) and shows an even less biased splitting of the group. The only reason this case does not split
perfectly into two equal size groups is because the initial conditions were not symmetric. Also the
strong alignment will exaggerate the splitting by bringing more individuals from the group with
less to the group with more.

The increase of the blind zone causes the group to split more. The value of the width of the
blind zone plays a significant role in the behaviour of the prey. Another test of the effects of the
blind zone was done in [26], where a milling group turned into a carousel group and then to a freely
moving group by increasing the blind zone.

Remark. The experiments shown on the second and third rows in Figure 6 and those in Figure
7 capture two essential strategies used by prey to escape the predator: group splitting and dispersal.
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Figure 6: Prey moving towards the predator: The plots occur from left to right. The top row is
the predator, the rest of the rows are the prey. The second row has qa = 1 and qal = 1 and shows
the group splitting. A more biased splitting of the group occurs in the third row which has qa = 1
and qal = 5. The last row has qa = 5 and qal = 1 and shows the group turning completely around.
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Figure 7: Away from predator - blind zone - alignment: The predator is set to chase the prey from
inside the prey’s blind zone. The plots occur sequentially from left to right. The top row is the
predator, while the next three rows are the prey with increasingly large blind zone: b equal to −2π
(no blind zone), π2 and π, respectively. Since the strength of alignment, qal = 5, is much larger than
the strength of repulsion and attraction, qr = 1 and qa = 1 respectively, the prey’s main concerns
are to avoid the predator and to align with the group.
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When the predators are too close, the repulsion from the predators on the prey is too great for the
group to stay together. As a result, some of the prey will move away from the group in order to save
themselves, ignoring any group cohesiveness. Because the predator follows the largest density, the
individuals that break off from the group have a higher likelihood of not being caught. Dispersal
of prey would help minimize casualties in the case of wolves attacking sheep for instance. The
dispersing behaviour is common in fish (the so called “flash expansion”), as discussed in [42, 43].

c. Away from predator - blind zone - attraction. This experiment is another example of
how the blind zone plays a role in the behaviour of the prey. The parameters and initial conditions
are identical to the ones in the previous experiment, with exception of qa and qal, which are now
equal to 5 and 1 respectively.

The plots in Figure 8 occur sequentially from left to right. The top row is the predator, the
rest are the prey. The second row has b = −2π (no blind zone) and shows a high density group
turning together to avoid the predator. The third row has a blind zone width b = π/2 and shows a
greater amount of turning. The last row has b = π and shows less density and a slight separation
of individuals from the group. Since the strength of attraction, qa = 5, is larger than the strengths
of repulsion and alignment, one would think the group would remain together, but this does not
happen. When the prey have a blind zone of π, there is not as much information that is passed
around the individuals in comparison to the zero blind zone case. A larger field of vision enabled
the prey to stay together more. Depending on the type of predator and prey, this behaviour may
be advantageous or disadvantageous.

More interesting than the b = π case is the b = π
2 case. Looking at the small arrows inside

the spatial density of the prey at time 2.4 for the b = π
2 case, one can see that the individuals are

moving up to the right. In the other two cases, the individuals are moving more up than right.
Some fish will swim in a circle and arrive back at their starting point when a lunging predator
comes by, an evasion tactic called fountain [42, 44]. This behaviour was not captured, due to
complications with the periodic boundary conditions, but the case with b = π

2 shows some promise
that this behaviour can be captured. One can imagine that if the predator is to continue moving
to the left, if the boundary conditions are nonexistent and if there are two symmetric groups that
avoided the predator, then these two groups would be attracted together and eventually reform the
original group.

The tight turning behaviour shown in Figure 8 is seen in the prey species of the Eleonora’s
falcon [11]. One tactic prey can use to avoid a predator is to initiate tight turns at high speed.
Since the Eleonora’s falcon is larger than its prey, the prey have a higher chance of escape when
using this tactic.

4.3 Moving predator (with turning)

While a predetermined behaviour of a predator can capture small moments of believable reactions
of prey, a turning predator is much more realistic. We assume now that the predator reacts to
the prey and equations (24) and (25) are implemented for all remaining experiments. Since the
predator is no longer of a fixed shape, it is better to think of the predator as a group of predators.
In these experiments we assign a field of vision to the predators as well. The blind zone parameters
of the predators are fixed at a = 10, b = π

2 .

19
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Figure 8: Away from predator - blind zone - attraction: The predator is set to chase the prey from
inside the prey’s blind zone. The plots occur sequentially from left to right. The top row is the
predator, while the next three rows are the prey with increasingly large blind zone width: b equal
to −2π (no blind zone), π

2 and π, respectively. Since the strength of attraction, qa = 5, is much
larger than the strength of repulsion and alignment, qr = 1 and qal = 1 respectively, the prey’s
main concerns are to avoid the predator and to stay together.
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a. Fast predator. In this experiment the predators’ speed is increased from γh = 1.0 to γh = 1.5.
The predator can now move faster than the prey. The other parameters are: qr = 2, qal = 5, qa = 5,
qrh = 8, q̄r = 8, q̄a = 16, q̄ap = 6, kr = −0.6, kal = 0.6, ka = 0.6, krh = −0.95, k̄r = −0.6, k̄a = 0.6
and k̄ap = 0.95. A steady state is reached where the predators occupy the same location as the prey
and they both move in the same direction with the same speed. The predators are exploiting the
slowness of the prey and it can be thought of as the predators having a feast on the prey (see Figure
9). The plots on the left of Figure 9 show the prey, while the right plots show the predators. The
top row shows the initial conditions, which has the predators and the prey colliding head on. The
next two rows show later times with the middle row being time 10 and the bottom row being at
time 25. This shows how the prey and predator move up to the left and do not change form, hence
making this a translational steady state. Note that the prey and predator traverse the domain
twice from time 10 to time 25.

In nature predators are not often 50% faster than their prey. In this case the predators would
eat all of the prey and the prey would not have a chance to evolve to be faster. However, this speed
discrepancy is common when fish are in their juvenile stages. Often slow individuals will find places
to hide or use other defences. Moving fast for a predator is a huge advantage in capturing prey.
The tuna and the lamnid shark have evolved to have counter-current heat-exchange mechanisms
for conserving metabolic heat and raising their body temperatures [45]. These warmer muscles
give extra power and create faster swimming. Most predators would benefit from having a faster
movement speed.

b. Slow predator. In this experiment the predators’ speed is reduced from γh = 1 to γh = 0.25.
The initial condition for this experiment is the predators and the prey both being groups that are
not directed toward each other as seen in the first row of Figure 10. The rest of the rows in Figure
10 show three progressive steps in time for the prey in the left column and the predators in the
right column. The prey, though much faster than the predators, get trapped between the predators
and move in a circular motion. The predators disperse and once they become close enough, they
make their attempt at the prey. The parameters for this experiment are: qr = 2, qal = 5, qa = 5,
qrh = 20, q̄r = 20, q̄a = 0, q̄ap = 0.1, kr = −0.6, kal = 0.6, ka = 0.6, krh = −0.8, k̄r = −0.6,
k̄a = 0.6 and k̄ap = 0.6.

It has been observed that slow predators use special hunting techniques or strategies to capture
the prey. One technique is that of the frogfish, a slow predator that uses a very fast capture
technique. It waits for its prey to approach and then uses enormous suction pressure to engulf its
prey [46]. Similar hunting techniques have also been noted in pikes [44]. The experiment shown in
Figure 10 relates to the group chase simulated in [47], where predators disperse and surround the
prey.

c. Double predator split. This experiment shows how the predators can be clever about how
they catch prey. The initial condition is a random distribution in space and angle. The parameters
for this experiment are: γh = 2, qr = 1.8676, qal = 4.3989, qa = 5.9724, qrh = 50, q̄r = 8, q̄a = 10,
q̄ap = 24, kr = −0.6, kal = 0.6, ka = 0.6, krh = −0.95, k̄r = −0.5, k̄a = 0.8 and k̄ap = 0.95. These
parameters allow the predators and the prey to stay as a group or allow them to split quickly if
need be. Figure 11 shows a sequence of two predator groups working together to split the prey. The
left column is the prey while the right column is the predators. The top row shows the predators
splitting to follow the two separate groups of prey. The middle two plots show the two predator
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Figure 9: Fast predators: The prey are shown in the left column, while the predators are shown in
the right column. Fast predators, with speed γh = 1.5, can catch up and keep up with their prey.
This translational steady state shows the predators feasting.
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Figure 10: Slow predators: The prey are shown in the left column, while the predators are shown in
the right column. Slow predators, with speed γh = 0.25, spread and surround their prey. The prey
become trapped and move in a circular motion. At time 25 the predator forms a higher density
group to feast on the prey.

23



groups trapping the prey. The bottom row shows the prey escaping from both predator groups by
moving up or down and the predator groups collide. After the prey splits up and down they merge
again and then split left and right, which brings them back to the position in the first plot (See
Figure 11). This is a reoccurring pattern and there are likely many more to discover using this
model.

The wild dog shows elaborate hunting techniques. They have one of the highest capture rates
for a predator in the savanna [48]. Their techniques emphasize stamina instead of speed. Their
ability to work as a group is also advantageous. Group members take turns chasing the prey, while
trailing predators can cut corners, and eventually the prey, such as young, old or sick, will tire and
be captured [48]. The ability for the predator group to split and work as a team is showcased in
Figure 11. All of the complexities of the wild dogs’ hunting techniques are not demonstrated here,
however this model showcases a team effort by predators.

5 Discussion and concluding remarks

We demonstrated that our model generates realistic qualitative results that can be related to specific
examples of predator-prey behaviour in nature [49, 50]. Our focus in this paper was to illustrate
the hunting/escape strategies and for this reason we ignored the birth/death processes, including
the feasting of predator on the prey. Such processes will be considered in future work. We showed
that depending on the size of its field of vision, a prey’s escape may have different outcomes. Also,
it is important in an escape what interactions are dominant among the prey individuals, as the
prey may split (and disperse) or stay together. Some prey species, such as those of Eleonora’s
falcons [11], prefer tight turns (Figure 8), others, such as minnows [44], disperse (Figure 7). On the
other hand, predators develop their own hunting strategies, such as dolphins confining the prey [9]
(Figure 5) or wild dogs splitting to chase and tire out the prey [48] (Figure 11).

The grouping behaviour of animals has advantages and disadvantages. A clear advantage is
protection. In the presence of a predator, an animal in a group has a higher chance of survival, as
there are more potential prey for the predator to catch. When trying to escape a predator, the risk
of being caught is reduced if the prey individual places itself between another prey individual and
the predator (selfish herd model [51]). All prey groups from Figures 5-11 have larger densities in
the centre, illustrating this concept. Another instance of protection is when a school of fish confuses
a predator by appearing large and making it difficult for the predator to focus on only one fish
[9] (flash expansions in Figure 7). Also related, the larger a school of fish is, the more predators
are required to constrict the fish into a bait ball for easier capture [9]. One disadvantage of being
in a group is there may not be enough food for everyone when the group is foraging. Another
disadvantage is an increase of predation because a large group is hard to hide. Despite the fact
that finding a group takes a predator more time, a large group is still more conspicuous than an
individual.

The predator is governed by the same basic moving principles as the prey, movement at con-
stant speed and turning. Hence, the predator’s density satisfies an equation similar to that of the
prey, making the model cohesive. One can replicate the process by including any desired num-
ber of predators or prey, or any combination of interacting species. Food patches or undesired
locations/obstacles can be introduced too by making certain locations attractive or repellant, re-
spectively. By including a second group of predators (which could be of the same type as the first,
but performing different hunting approaches), the model can incorporate group capture techniques
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Figure 11: Double predator split: The prey are shown in the left column, while the predators are
shown in the right column. The predators work as a team when chasing the prey. The predators
come toward the group of prey from two angles and force the prey to split.
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and strategies that increase the efficiency of the hunt. The list of possible future directions regard-
ing this work does not stop here. Birth and death terms would have to be considered, to investigate
the long time behaviour of the predator-prey dynamics. Implementing other numerical methods,
such as Monte Carlo methods [28], would potentially make the numerics faster, and also, remove
the periodic boundary conditions. Finally, an extension of the model to three dimensions would be
very interesting to study.

6 Appendix

Modelling the probability functions in equations (13)-(15). We first describe the modelling
of wa. Since wa is a probability function, we have∫ π

−π
wa
(
φ′ − φ, φ′ − ψ

)
dφ = 1. (35)

The probability function wa is modelled by

wa
(
φ′ − φ, φ′ − ψ

)
= gσa

(
φ′ − φ− va

(
φ′ − ψ

))
, (36)

where gσa is an approximation of the delta function with width σa, and va is a turning function.
The decision making individual can turn to any direction within a specific range. This range is
centred around direction

φ = φ′ − va
(
φ′ − ψ

)
,

which is when the argument of the function gσa is zero. The parameter σa > 0 measures the width
of the turning range the decision making individual will move into — see Figure 3(b). The smaller
the σa, the more accurate the turning. If σa is large, then the range is wide and the decision making
individual can move anywhere within the range.

The function to describe gσa is taken to be

gσa (η) =
1√
πσa

∑
z∈Z

e
−
(
η+2πz
σa

)2

, (37)

which is a periodic Gaussian with extra contributions from full rotations.
The turning function va is modelled as

va (η) = ka sin η, (38)

where ka is a constant between 0 and 1 that describes how much the decision making individual
will turn due to attraction (see Figure 3(b)).

An alternative choice is va (η) = kaη, which may be more biologically realistic. However the
choice (38) for va is made because it is periodic and works well with the fast Fourier transform,
which the numerics in this paper is based on, as discussed in Section 3.

The probability functions wr and wal are defined through the same steps as equations (36)-(38),
using approximations gσr , gσal to the delta function, with widths σr, σal, turning functions vr, val,
and turning strengths kr, kal, respectively.

There is a major difference between wa and wr which has to be pointed out. Namely, in the
definition of wr, kr must be between −1 and 0 instead of between 0 and 1, as is ka. This is the
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only place where the negative factor comes in to enforce the negative behaviour of the repulsion
interaction. The attraction and alignment interactions are positive because they respond positively
to the surrounding individuals.
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