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Swarm Equilibria in Domains with Boundaries∗

R. C. Fetecau† and M. Kovacic†

Abstract. We study equilibria in domains with boundaries for a first-order aggregation model that includes
social interactions and exogenous forces. Such equilibrium solutions can be connected or discon-
nected, the latter consisting in a delta concentration on the boundary and a free swarm component
in the interior of the domain. Equilibria are stationary points of an energy functional, and stable
configurations are local minimizers of this functional. We find a one-parameter family of discon-
nected equilibrium configurations which are not energy minimizers; the only stable equilibria are the
connected states. Nevertheless, we demonstrate that in certain cases the dynamical evolution, along
the gradient flow of the energy functional, tends to overwhelmingly favor the formation of (unstable)
disconnected equilibria.
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1. Introduction. Research in mathematical modelling for self-organizing behavior or
swarming has surged in recent years. An aggregation model that has attracted a great amount
of interest is given by the following integro-differential equation in Rn:

ρt +∇ · (ρv) = 0,(1a)

v = −∇K ∗ ρ−∇V.(1b)

Here ρ represents the density of the aggregation, K is an interaction potential, and V is an
external potential. The asterisk (∗) denotes convolution. Typically, the interaction potential
K models symmetric interindividual social interactions such as long-range attraction and
short-range repulsion.

Model (1) appears in various contexts related to swarming and social aggregations, and the
associated literature is vast, covering a wide range of topics: modelling and pattern formation
[36, 41, 34, 35, 27], well-posedness of solutions [12, 9, 8], long time behavior of solutions [26, 35],
and blowup (in finite or infinite time) by mass concentration [25, 8, 32]. The equation also
arises in a number of other applications such as granular media [43, 17], self-assembly of
nanoparticles [30, 31], Ginzburg–Landau vortices [23, 22], molecular dynamics simulations of
matter [29], and opinion dynamics [37].

In this paper we study the aggregation model (1) in domains with boundaries. Despite
the extensive literature on model (1) in free space, there has been only a handful of works
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that consider the presence of boundaries [7, 44, 18]. These papers are motivated by physi-
cal/biological scenarios where the environment involves an obstacle or an impenetrable wall;
in the locust model from [42], for example, such an obstacle is the ground. We assume in this
work that the presence of boundaries limits the movement in the following way [44, 18]: Once
particles/individuals meet the boundary, they do not exit the domain but instead move freely
along it. The precise mathematical formalism of this “slip, no-flux” boundary condition is
elaborated below.

Consider the aggregation model (1) confined to a closed domain Ω ⊂ Rn. Suppose that
Ω has a smooth C1 boundary with outward normal vector νx at x ∈ ∂Ω. The geometric
confinement constrains the velocity field as follows: At points in the interior of Ω, or at points
on the boundary where the velocity vector, computed with (1b), points inward (v ·νx ≤ 0), no
modification is needed, and the velocity is given by (1b). On the other hand, for points on the
boundary where the velocity computed with (1b) points outward (v · νx > 0), its projection
on the tangent plane to the boundary is considered instead.

The model in domains with boundaries is then given by

ρt +∇ · (ρv) = 0,(2a)

v = Px(−∇K ∗ ρ−∇V ),(2b)

where

(3) Pxξ =

{
ξ if x 6∈ ∂Ω or x ∈ ∂Ω and ξ · νx ≤ 0,

Π∂Ω ξ otherwise.

Here Π∂Ω denotes the projection on the tangent plane to the boundary. Note that solutions to
(2) conserve the total mass; however, the linear momentum is no longer preserved (as opposed
to the model in free space). The latter observation has important implications for the long
time behavior of the solutions, as discussed later in the paper.

The well-posedness of weak measure solutions of (2) has been investigated recently in
[44, 18] in the framework of gradient flows in spaces of probability measures [1, 16]. The
setting of measure-valued solutions in these works is absolutely essential in this context, for
various reasons. First, mass accumulates on the boundary of the domain, and solutions develop
Dirac delta singularities there. Second, the measure framework is the appropriate setup for
connecting the PDE model with its discrete/particle approximation. In regard to the latter,
by approximating the initial density ρ0 with a finite number of delta masses, (2) reduces
to an ODE system, which then can be studied on its own. In [18], the authors establish
several important properties of such particle approximations. One is the well-posedness of
the approximating particle system where, due to the discontinuities of the velocity field at
the boundary, the theory of differential inclusions [28, 21] is being employed. Another is the
rigorous limit of the discrete approximation as the number of particles approaches infinity;
this limit is shown to be a weak measure solution of the PDE model (2).

The focus of the present paper is equilibrium configurations of model (2). A density ρ̄ is
an equilibrium if the velocity (2b) vanishes everywhere on its support:

(4) Px(−∇K ∗ ρ̄−∇V ) = 0 in supp(ρ̄).
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We note, however, that at points on the boundary, the unprojected velocity (i.e., −∇K ∗
ρ̄ − ∇V ) may not be zero; by (3) it can have a nonzero normal component that is pointing
outward. This scenario is akin to a falling object hitting a surface, when there is still a force
acting on it, but there is nowhere to go.

Model (2) is a gradient flow, and its equilibria are stationary points of the energy func-
tional. We use the framework developed by Bernoff and Topaz [7] to look for these stationary
densities. We also investigate their stability; given the variational formulation, stable equilib-
ria can be characterized as local minima of the energy. Most of the paper concerns a specific
interaction potential, consisting of Newtonian repulsion and quadratic attraction [27, 26]. The
main advantage of using this potential is that the equilibria must have constant densities away
from the boundary, which restricts the possible equilibrium configurations and simplifies the
calculations.

The present paper contains the first systematic study of equilibria for model (2) in two
dimensions; we note here that the results in [7] consider only cases in one and quasi-two
dimensions. Of particular relevance is a family of two-component equilibria that we found
in our study (in both one and two dimensions), consisting of one swarm component on the
boundary and another in the interior of the domain. These two-component equilibria can be
further differentiated as connected or disconnected, depending on whether the two components
are adjacent or not. We find that none of the disconnected equilibria are local minima of the
energy. In contrast, some connected configurations can be shown to be local (and in some
cases global) energy minimizers.

Nevertheless, we show that starting from a large class of initial densities, solutions to (2)
do evolve into such (unstable) disconnected equilibria that are not local energy minimizers.
While unusual, this behavior has been observed in continuum mechanics systems wherein
singularities form which act as barriers preventing further energy decrease [4, 5, 40]. Describing
and understanding this behavior for model (2) is one of the main goals of this paper.

The summary of the paper is as follows. Section 2 presents some background on model (2).
In section 3 we study the one-dimensional problem on a half-line. We find explicit expressions
for the equilibria and make various investigations of the dynamical model to quantify how
these equilibria are being reached. Section 4 considers the two-dimensional problem on a half-
plane. We compute the connected and disconnected equilibria and investigate their stability.
Finally, we present details on the numerical implementations.

2. Preliminaries.
Well-posedness and gradient flow formulation. The well-posedness of weak measure solutions

to model (2) has been established recently in [44] and [18]. The functional setup in these works
consists in the space P2(Ω) of probability measures on Ω with finite second moment, endowed
with the 2-Wasserstein metric. Under appropriate assumptions on the domain Ω and on the
potentials K and V , it is shown that the initial value problem for (2) admits a weak measure
solution ρ(t) in P2(Ω). We refer the reader to [44, 18] for specific details on the well-posedness
theorems and proofs; here we highlight only the facts that are relevant for our work.

It is a well-established result that the aggregation model in free space (model (1)) can
be formulated as a gradient flow on the space of probability measures P2(Ω) equipped with
the 2-Wasserstein metric [1]. A key result in [44, 18] is that such an interpretation exists for
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model (2) as well. Specifically, consider the energy functional

(5) E[ρ] =
1

2

∫
Ω

∫
Ω
K(x− y)ρ(x)ρ(y) dx dy +

∫
Ω
V (x)ρ(x) dx,

where the first term represents the interaction energy and the second is the potential energy.1

The weak measure solution ρ(x, t) to model (2) is shown to satisfy the following energy
dissipation equality [18]:

(6) E[ρ(t)]− E[ρ(s)] = −
∫ t

s

∫
Ω
|Px(−∇K ∗ ρ(x, τ)−∇V (x))|2ρ(x, τ) dx

for all 0 ≤ s ≤ t <∞. Equation (6) is a generalization of the energy dissipation for the model
in free space [16]. Characterization of equilibria of (1) as ground states of the interaction
energy (5) has been a very active area of research lately [2, 20, 14, 38].

The authors in [18] use particle approximations of the continuum model (2) as an essential
tool to show the existence of gradient flow solutions. The method consists in approximating
an initial density ρ0 by a sequence ρN0 of delta masses supported at a discrete set of points.
For N fixed, the evolution of model (2) with discrete initial data ρN0 reduces to a system of
ODEs, for which ODE theory can be applied. The ODE system governs the evolution of the
characteristic paths (or particle trajectories) which originate from the points in the discrete
support of ρN0 . Hence, the solution ρN (t) consists of delta masses supported at a discrete set
of characteristic paths. The key ingredient in the analysis is to find a stability property of
solutions ρN with respect to initial data ρN0 and show that in the limit N →∞, ρN converges
(in the Wasserstein distance) to a weak measure solution of (2) with initial data ρ0. This is
one of the major results established in [18].

Equilibria and energy minimizers. The authors in [7] study the energy functional (5) and
find conditions for critical points to be energy minimizers. We briefly review the setup there.

First note that the dynamics of model (2) conserves mass:

(7)

∫
Ω
ρ(x, t) dx = M for all t ≥ 0.

Hence, in what follows it is sufficient to consider zero-mass perturbations of a fixed equilibrium.
Single-component equilibria. Consider an equilibrium solution ρ̄ with mass M and con-

nected support Ωρ̄ ⊂ Ω, and take a small perturbation ερ̃ of zero mass:

ρ(x) = ρ̄(x) + ερ̃(x),

where ∫
Ω
ρ̄(x) dx = M,(8a) ∫

Ω
ρ̃(x) dx = 0.(8b)

1Note that throughout the present paper
∫
ϕ(x)ρ(x) dx denotes the integral of ϕ with respect to the measure

ρ, regardless of whether ρ is absolutely continuous with respect to the Lebesgue measure.
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Since the energy functional is quadratic in ρ, one can write

E[ρ] = E[ρ̄] + εE1[ρ̄, ρ̃] + ε2E2[ρ̃, ρ̃],

where E1 denotes the first variation,

(9) E1[ρ̄, ρ̃] =

∫
Ω

[∫
Ω
K(x− y)ρ̄(y) dy + V (x)

]
ρ̃(x) dx,

and E2 denotes the second variation,

(10) E2[ρ̃, ρ̃] =
1

2

∫
Ω

∫
Ω
K(x− y)ρ̃(x)ρ̃(y) dx dy.

Using the notation

(11) Λ(x) =

∫
Ωρ̄

K(x− y)ρ̄(y) dy + V (x) for x ∈ Ω,

one can also write the first variation as

(12) E1[ρ̄, ρ̃] =

∫
Ω

Λ(x)ρ̃(x) dx.

Two classes of perturbations are considered in [7]: perturbations ρ̃ supported in Ωρ̄ (first
class), and general perturbations ρ̃ in the domain Ω (second class). Perturbations of the first
class are a subset of the perturbations of the second class.

Start by taking perturbations of the first class. Since ρ̃ changes sign in Ωρ̄, for ρ̄ to be a
critical point of the energy, the first variation must vanish. From (12), given that perturbations
ρ̃ are arbitrary and satisfy (8b), one finds that E1 vanishes, provided that Λ is constant in
Ωρ̄, i.e.,

(13) Λ(x) = λ for x ∈ Ωρ̄.

The (Lagrange) multiplier λ is given a physical interpretation in [7]: It represents the energy
per unit mass felt by a test mass at position x due to interaction with the swarm in ρ̄ and the
exogenous potential. Indeed this interpretation is valid for all points x by considering Λ(x) as
the energy per unit mass felt by a test mass at position x. This interpretation is critical for
the study in [7], as well as for the present paper.

Equation (13) represents a necessary condition for ρ̄ to be an equilibrium. For ρ̄ that
satisfies (13) to be a local minimizer with respect to the first class of perturbations, the
second variation (10) must be positive. In general, the sign of E2 cannot be easily assessed.

Now consider perturbations of the second class. Since perturbations ρ̃ must be nonnegative
in the complement Ωc

ρ̄ = Ω \Ωρ̄, it is shown in [7] that a necessary and sufficient condition for
E1 ≥ 0 is

(14) Λ(x) ≥ λ for x ∈ Ωc
ρ̄.
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The interpretation of (14) is that transporting mass from Ωρ̄ into its complement Ωc
ρ̄ increases

the total energy [7].
In summary, a critical point ρ̄ for the energy satisfies the Fredholm integral equation

(13) on its support. Also, ρ̄ is a local minimizer (with respect to the general, second class
perturbations) if it satisfies (14). Note, however, that the word local in this context refers to
the small size of the perturbations, as the perturbations themselves are in fact allowed to be
nonlocal in space.

Remark 2.1 (formal variational framework). The minimization considerations above closely
follow the informal setup and approach from [7]; for a mathematically complete and rigorous
framework one needs to be more precise, however. First, one has to set the space of densities
over which the minimization of energy is considered (i.e., the space to which the equilibrium
ρ̄ and the perturbed equilibrium ρ belong). We take the space of such admissible densities
to be the set of Borel measures on Ω that have finite second moment and total mass M ,
endowed with the 2-Wasserstein metric. Apart from not having a density normalized to unit
mass (which does not add any technical difficulties), this is the framework commonly used in
rigorous variational studies of model (1) [2, 3, 16], including the recent work on domains with
boundaries [44, 18].

A rigorous derivation of the Euler–Lagrange equations within such a formal setup is pre-
sented, for instance, in [2, Theorem 4]; note that while the derivation there is for equilibria
in free space, it extends immediately to arbitrary domains Ω, as considered in this paper. As
in [2], by considering various types of admissible perturbations to an equilibrium ρ̄ (similar in
fact to the first and second class perturbations from [7]), one finds that (13) holds a.e. (with
respect to the measure ρ̄) within the support, while (14) holds at a.e. x. Hence, the necessary
conditions (13) and (14) for a local minimum, as found through the informal approach in [7],
could potentially be relaxed by requiring them to hold up to zero measure sets. Nevertheless,
given the connected equilibria considered in this paper, working directly with (13) and (14)
is simpler and makes no essential difference in our considerations.

Multicomponent equilibria. As discussed in [7], the support Ωρ̄ of an equilibrium density
has in general multiple disconnected components. Assuming m disjoint, closed, and connected
components Ωi, i = 1, . . . ,m, one can write

(15) Ωρ̄ = Ω1 ∪ Ω2 ∪ · · · ∪ Ωm, Ωi ∩ Ωj = ∅, i 6= j.

In [7], a swarm equilibrium is defined as a configuration in which Λ is constant in every
component of the swarm, i.e.,

(16) Λ(x) = λi for x ∈ Ωi, i = 1, . . . ,m.

Remark 2.2. We first point out that condition (16) is only a necessary condition for ρ̄ to
be an equilibrium of (2). Indeed, consider a density ρ̄ that satisfies (16), and check whether
it satisfies the equilibrium condition (4). By (16), (4) is indeed satisfied in every component
Ωi that lies in the interior of Ω (the projection plays no role there). However, consider
a component Ωi of the swarm that lies on the boundary of the physical domain Ω. The
component Ωi can be, for instance, a codimension one manifold, such as a line in R2; in fact,
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our numerical investigations in section 4 focus on this example. Since Λ(x) is constant on
Ωi ⊂ ∂Ω, we infer that the tangential component to ∂Ω of ∇Λ is zero at any point x ∈ Ωi.
Consequently, by (11), we conclude that the unprojected velocity at x (cf. (1b)) is normal to
∂Ω. For an equilibrium solution, this normal component must point into ∂Ω (v · νx > 0) (see
(2b) and (3)); however, one cannot infer this condition from (16). Section 4 provides examples
where solutions to (16) do not yield equilibria, precisely because the velocity at some points
on the boundary is directed toward the interior of Ω, and thus the steady state condition (4)
fails.

Given the physical interpretation of Λ(x), one can immediately observe that a multicom-
ponent equilibrium ρ̄ that satisfies (16) cannot be a local minimizer unless all λi are equal to
each other (i = 1, . . . ,m). Indeed, for a swarm equilibrium with λj > λk, transferring mass
from Ωj to Ωk would decrease the energy. In the applications considered in this paper, we have
not identified a disconnected equilibrium with a common value for Λ(x) in each component
of the support. We have, however, identified families of two-component equilibria that satisfy
(16) with λ1 6= λ2. While such equilibria cannot be minimizers with respect to arbitrary
perturbations, we investigate instead whether such equilibria are minimizers with respect to
perturbations that are local in space [7].

Following [7], we define a swarm minimizer as a swarm equilibrium which satisfies

(17) Λ(x) ≥ λi in some neighborhood of each Ωi.

By the interpretation of Λ, (17) means that an infinitesimal redistribution of mass in a neigh-
borhood of Ωi increases the energy.

Remark 2.3 (locality of perturbations). The word “local” has appeared above in various
instances with very different meanings. In the phrase “local minimizer,” the word local refers
to the small size of the perturbations. On the other hand, for a multicomponent swarm
minimizer, (17) has to hold only in a neighborhood of each component, which indicates that
only perturbations ρ̃ that are local in space are considered. In other words, a swarm minimizer
is a local minimizer of the energy with respect to admissible perturbations ερ̃ that are local
in space (for precise terminology and a formal variational setup, see Remark 2.1).

Multicomponent equilibria of model (2) are a major focus of the present study. To find
such equilibria we look for solutions of (16), and then we check (17) to decide whether the
equilibria are swarm minimizers. In sections 3 and 4 we investigate two-component swarm
equilibria in both one and two dimensions. For all such equilibria, λ1 6= λ2; in fact, the two
components of the support approach each other (and hence become a connected equilibrium)
as λ1 and λ2 approach a common value.

Newtonian repulsion and quadratic attraction. The present study focuses on a specific in-
teraction potential K given by

(18) K(x) = φ(x) +
1

2
|x|2,

where φ(x) is the free-space Green’s function for the negative Laplace operator −∆:

(19) φ(x) =

{
−1

2 |x|, n = 1,

− 1
2π ln |x|, n = 2.
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Potentials in the form (18), consisting of Newtonian repulsion and quadratic attraction, have
been considered in various recent works [25, 27, 26, 33]. The remarkable property of such
potentials is that they lead to compactly supported equilibrium states of constant densities
[25, 27]. This property will be further elaborated below.

We note that the analysis in [44, 18] requires assumptions on K which the potential (18)
does not satisfy. In particular, in that analysis, the interaction potential is required to be
C1 and λ-geodesically convex. Consequently, the results in [44, 18] do not immediately apply
to our study. Nevertheless we consider the framework developed in these papers, in partic-
ular, the gradient flow and the energy dissipation (see (6)), and the particle approximation
method which can be turned into a very valuable computational tool. Indeed, to validate our
equilibrium calculations we use a particle method to simulate solutions to (2).

Equilibria corresponding to potential (18). In the absence of an exogenous potential (V = 0),
the aggregation model (1) with interaction potential (18) evolves into constant, compactly
supported steady states. This can be inferred from a direct calculation using the specific form
of the potential (18). Indeed, expand

∇ · (ρv) = v · ∇ρ+ ρ∇ · v,

and write the aggregation equation (1) as

(20) ρt + v · ∇ρ = −ρ∇ · v.

From (1b) and (18), using −∆φ = δ and the mass constraint (7), one gets

∇ · v = −∆K ∗ ρ
= ρ− nM.(21)

This calculation shows that ∇ · v is a local quantity. By using (21) in (20), one finds that
along characteristic paths X(α, t), defined by

(22)
d

dt
X(α, t) = v(X(α, t), t), X(α, 0) = α,

ρ(X(α, t), t) satisfies

(23)
D

Dt
ρ = −ρ(ρ− nM).

The remarkable property of the interaction potential (18), as seen from (23), is that the
evolution of the density along a certain characteristic path X(α, t) satisfies a decoupled, stand-
alone ODE. Hence, as inferred from (23), ρ(X(α, t), t) approaches the value nM as t → ∞,
along all characteristic paths X(α, t) that transport nonzero densities. More specifically, it
has been demonstrated in [10, 27] that solutions to (1), with K given by (18), approach
asymptotically a radially symmetric equilibrium that consists of a ball of constant density
nM .

In domains with boundaries, as the velocity is projected (cf. (2b) and (3)) at points on the
boundary, the characteristic equations (and the evolution of the density along characteristic
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paths) should be considered in an extended, more general setup. In [18], for instance, the
authors study particle approximations for model (2) within the framework of differential in-
clusions. We do not pursue here the idea of studying the characteristic equations for domains
with boundaries. As the next calculation shows, for the purpose of this paper, which is focused
on equilibria, such extension is not in fact needed.

Indeed, consider an equilibrium solution ρ̄ of model (2) that consists of a delta accu-
mulation on the boundary and one or several swarms in the interior of the domain. Note
that, unlike the problem in free space, the interior swarms are not expected to be radially
symmetric. At any point x in the support of ρ̄, the velocity v̄ vanishes:

v̄ = Px(−∇K ∗ ρ̄) = 0.

In particular, at an arbitrary point x in one of the interior swarms, one has ∇ · v̄ = 0, and
hence, by a calculation similar to (21), one concludes that

(24) ρ̄(x) = nM at any x ∈ supp(ρ̄) ∩ int(Ω).

This key observation is used in sections 3 and 4 to investigate equilibria for model (2).
Finally, in the presence of an external potential, calculation of ∇ · v from (1b) and (18)

(see also (21)) yields
∇ · v = ρ− nM −∆V.

Following similar considerations, for an equilibrium ρ̄ of model (2), one has

(25) ρ̄(x) = nM + ∆V at any x ∈ supp(ρ̄) ∩ int(Ω).

In sections 3 and 4 we work with a linear gravitational potential V for which ∆V = 0, so
in fact, all equilibria we consider in this paper have constant densities in the interior of the
domain.

3. One dimension: Equilibria on a half-line. In sections 3.1–3.3 we consider the one-
dimensional problem on Ω = [0,∞), with interaction kernel given by (18) and (19). In section
3.4 we consider a different interaction kernel, namely a Morse-type kernel as investigated
in [7]. We study the existence and stability of both connected and disconnected equilibria
throughout.

3.1. No exogenous potential. We consider first the case V (x) = 0 (no exogenous forces).
By (24), an equilibrium has constant density M in the part of the support that lies in the
interior of the domain. We also expect that an equilibrium can have a delta aggregation
buildup at the boundary [7].

Based on these considerations (see also Remark 3.2 below), we look for equilibria in the
form of a delta accumulation of strength S at the origin and a constant density M in an
interval (d1, d1 + d2), with d1 ≥ 0, d2 > 0:

(26) ρ̄(x) = Sδ(x) +M1(d1,d1+d2).

The support Ωρ̄ of ρ̄ consists of two (possibly disconnected) components:

Ω1 = {0} and Ω2 = [d1, d1 + d2].
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First observe that by the constant mass condition (8a), we have

(27) S +Md2 = M.

A necessary condition for ρ̄ to be an equilibrium is to satisfy (16). Equation (16) is satisfied
provided Λ(x) is constant on each component of Ωρ̄:

(28) Λ(0) = λ1 and Λ(x) = λ2 in [d1, d1 + d2].

The calculation of Λ(x) from (11) yields

(29) Λ(x) = S

(
1

2
x2 − 1

2
x

)
+

∫ d1+d2

d1

(
1

2
(x− y)2 − 1

2
|x− y|

)
Mdy.

For x ∈ (d1, d1 + d2), an elementary calculation of Λ(x) gives

Λ(x) =
1

2
(S +Md2 −M)x2 +

1

2
(−S +M(2d1 + d2)(1− d2))x+

M

6
(3d2

1d2 + 3d1d
2
2 + d3

2)

− M

4
(2d2

1 + 2d1d2 + d2
2).

The second condition in (28) is satisfied only if the coefficients of x2 and x of the polynomial
above are zero. Setting the coefficient of x2 to zero yields the mass constraint condition (27),
while the coefficient of x vanishes, provided that

(30) S = M(2d1 + d2)(1− d2).

Combining the two conditions (27) and (30), we arrive at

(31) S = M(1− d2), d1 =
1− d2

2
.

Hence, there is a family of solutions to (28) in the form (26) with parameter d2 ∈ (0, 1].
Note that d1 + d2

2 = 1
2 , implying that for all the equilibria in this family, the center of mass

of the free swarm is at 1
2 .

By expressing everything in terms of d2 only, Λ takes the following values on the two
components Ω1 and Ω2 of Ωρ̄, respectively:

λ1 = −M
24

(1− d2)3 +
M

8
(1− d2)2 − M

12
,(32a)

λ2 = −M
24

(1− d2)3 − M

12
.(32b)

Note that λ1 > λ2 unless d2 = 1, in which case λ1 = λ2. Based on this observation, we
distinguish between two qualitatively different equilibria.

(i) Disconnected equilibria (d1 > 0). A generic disconnected solution to (28) of form (26)
is shown in Figure 1(a); the solid line indicates the constant density in the free swarm, and
the circle on the vertical axis indicates the strength S of the delta aggregation at the origin.
Note that in all numerical simulations presented in this paper we take M = 1.
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Figure 1. Equilibria (26) on a half-line for V = 0 (no exogenous potential). (a) Disconnected equilibrium
consisting in a free swarm of constant density and a delta aggregation at the origin. (b) Connected equilibrium
of constant density in (0, 1). (c) Energy of equilibria (26) as a function of the mass ratio; the lowest energy
state corresponds to the connected equilibrium (rM = ∞). Note that for a better visualization Λ(x) has been
shifted and stretched vertically.

To check that these solutions to (28) are in fact equilibria reduces to showing that the
velocity (see (2b) and (3)) vanishes at points in the support Ωρ̄ = Ω1 ∪ Ω2. Since Λ(x) is
constant in [d1, d1 + d2], it follows that the velocity vanishes everywhere in Ω2. The more
delicate part is evaluating the velocity at the origin. By (2b), the velocity at the origin is
computed by accounting (via a spatial convolution) for all the attractive and repulsive effects
of points that lie in Ωρ̄. The key observation is that the point at the origin (the only point in
Ω1) does not have any interaction effects on the origin itself; in a discrete setting this amounts
to the fact that particles sitting on top of each other do not exert interactions (attractive or
repulsive) among themselves. Therefore, the velocity v(0) calculated from (2b) reduces to an
integral over Ω2 only:

(33) v(0) = P0

(
−
∫

Ω2

K ′(−y)ρ̄(y)dy

)
.

An elementary calculation, using K ′(y) = y − sgn(y) and ρ̄(y) = M in Ω2 = (d1, d1 + d2),
yields

(34) −
∫

Ω2

K ′(−y)ρ̄(y)dy =
M

2
d2(2d1 + d2 − 1).

Finally, by (31),
v(0) = P0(0) = 0,

so the disconnected state is indeed an equilibrium.
We now check whether the disconnected equilibria are energy minimizers. By an elemen-

tary calculation, we find from (29) (also using (31))

Λ′(x) = M(x− d1) for x ∈ (0, d1) and Λ′(x) = M(x− d1 − d2) for x ∈ (d1 + d2,∞).
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Consequently, for all 0 < d2 < 1 (or, equivalently, 0 < d1 <
1
2), Λ(x) is strictly decreasing

in (0, d1) and strictly increasing in (d1 + d2,∞); for an illustration, see the dashed line in
Figure 1(a). This calculation shows that disconnected equilibria ρ̄ in the form (26) are not
local minima (swarm minimizers), as (14) is not satisfied near the origin; since Λ is strictly
decreasing in (0, d1), an infinitesimal perturbation of mass from the origin would bring that
mass into the free swarm, which is a more energetically favorable state.

Nevertheless, ρ̄ are steady states and, as demonstrated in section 3.3.1, are asymptotically
stable with respect to certain perturbations; given the considerations above, it is clear that
such perturbations must only be with respect to the aggregation in the free swarm. Also
shown in section 3.3.2, the dynamic evolution of model (2) consistently achieves (asymptot-
ically) disconnected steady states starting from a diverse set of initial densities, which make
such equilibria very relevant for the dynamics. Figure 1(a) shows in fact the disconnected
equilibrium (26) achieved via particle simulations: Stars represent particles, and the cross
indicates a superposition of particles at the origin.

(ii) Connected equilibria. There are two possible connected equilibria. The first is a
degenerate case of (26), where d1 = d2 = 0 and all mass lies at the origin (or by translation,
at any point in (0,∞)):

(35) ρ̄(x) = Mδ(x).

While (35) is an equilibrium solution, it is not an energy minimizer, as can be inferred from
the expression of Λ,

Λ(x) = −1

2
M |x|+ 1

2
Mx2,

by noting that (14) is not satisfied for x ∈ (0, 1). Any perturbation from this trivial equilibrium
that takes an infinitesimal amount of mass from the delta concentration and puts it in the
interior of Ω would result either in a disconnected state or in the connected equilibrium
discussed below.

The other connected equilibrium can be obtained as a limiting case d1 → 0 of the discon-
nected equilibria (26) (see also (31)). In this limit, there is no delta aggregation on the wall
(S = 0), d2 = 1, and the solution consists in a constant density in the interval (0, 1); see the
solid line in Figure 1(b). Alternatively, one can consider an entire family of such solutions
by taking arbitrary translations of the constant swarm to the right; this in fact corresponds
to the equilibrium solution in the absence of boundaries, as discussed in section 2. The con-
nected state is a swarm minimizer, as can be inferred by a direct calculation of Λ(x); for an
illustration, see the dashed line in Figure 1(b).

The energy corresponding to the equilibria (26) can be easily computed from (5), (11),
and (28) by noting that in the absence of an external potential,

E[ρ̄] =
1

2

∫
Ωρ̄

Λ(x)ρ̄(x)dx =
λ1

2

∫
Ω1

ρ̄(x)dx+
λ2

2

∫
Ω2

ρ̄(x)dx.

After a simple calculation, using the explicit expressions of λ1 and λ2 from (32), one finds

(36) E[ρ̄] =
M2

3

(
d3

1 −
1

8

)
=
M2

24
d2(−3 + 3d2 − d2

2).
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Note that E[ρ̄] has the lowest energy for d1 = 0 (or, equivalently, d2 = 1), which corresponds
to the (limiting) connected equilibrium.

Remark 3.1. The equilibria discussed above can be alternatively parametrized by rM ,
defined as the mass ratio between the mass in the free swarm and the mass accumulated at
the boundary of the domain (the origin in this case). This is in fact the parametrization used
for the two-dimensional study in section 4 (see (74)). In one dimension, the mass ratio of the
two components (cf. (26) and (31)) is given by

rM =
Md2

S
=

d2

1− d2
.

The parameter d2 ranges in (0, 1) for the disconnected equilibria in part (i), while the connected
equilibria in part (ii) correspond to d2 = 0 and d2 = 1, respectively. Consequently, in the
absence of an exogenous potential, an equilibrium exists for any rM ∈

[
0,∞), as well as

rM =∞. However, the only equilibrium that is an energy minimizer, and hence stable, is the
one with infinite mass ratio, corresponding to the connected steady state which has all mass
in the free swarm; see Figure 1(b).

Figure 1(c) shows a plot of the energy E[ρ̄] calculated in (36) as a function of mass ratio
rM . We find a monotonically decreasing profile with the lowest energy state corresponding
to the connected equilibrium with all mass in the free swarm (rM = ∞). The connected
equilibrium (d2 = 1 and d1 = 0) is in fact the global minimizer in this case, as one can infer
from the remark below.

Remark 3.2. To conclude that the connected equilibrium is the global minimizer, one
needs to consider other possible minimizers and show that their energies are larger. We have
already shown that disconnected equilibria of form (26) are not minimizers. One can also
show that a multicomponent free swarm is not an energy minimizer either. Following [7],
we wish to show that Λ(x) is convex between free swarm components, which is a sufficient
condition to show that it is not an energy minimizer as (17) does not hold.

Assume a disconnected equilibrium of the form

(37) ρ(x) = Sδ(x) +
m∑
i=1

ρi(x),

where ρi are supported on Ωi (Ωi are disjoint from each other and do not include the origin).
Note that by (24), ρi(x) = M for x ∈ Ωi, though this is not directly used below to show that
equilibrium (37) is not a minimizer.

Then (11) becomes

Λ(x) = S

(
1

2
x2 − 1

2
x

)
+

m∑
i=1

∫
Ωi

K(x− y)ρi(y) dy,

and for x /∈ ∪Ωi one gets

Λ′′(x) = S +
m∑
i=1

∫
Ωi

ρi(y) dy = M > 0.
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Therefore, Λ(x) is indeed convex between free swarm components, and (37) cannot be a
minimizer.

3.2. Linear exogenous potential. Consider the exogenous gravitational potential V (x) =
gx, with g > 0. The domain of the problem is, again, the half-line Ω = [0,∞). As V ′′(x) = 0,
we infer from (25) that an equilibrium has constant density M in the part of its support which
is not on the boundary.

We focus, as in section 3.1, on equilibria that have possibly disconnected components and
look for steady states in the form (26), consisting of a delta aggregation at the origin and a
constant density M in the interval (d1, d1 + d2), where d1 ≥ 0, d2 > 0. As above, the support
Ωρ̄ consists of two components, Ω1 = {0} and Ω2 = [d1, d1 + d2], and the constant mass
condition yields (27).

Equilibria (26) must satisfy the necessary condition (16), which in this case reduces to
(28). By direct calculation,

(38) Λ(x) = S

(
1

2
x2 − 1

2
x

)
+

∫ d1+d2

d1

(
1

2
(x− y)2 − 1

2
|x− y|

)
Mdy + gx.

By evaluating at x ∈ (d1, d2) and requiring that Λ(x) be constant in this interval, we
arrive at the following constraints on the parameters. First, by setting to zero the coefficient
of x2, we find (27), which represents the mass constraint condition. Then we note that the
coefficient of x vanishes, provided that

S = M(2d1 + d2)(1− d2) + 2g.

Combine this equation with the mass constraint (27) to find

(39) S = M(1− d2), d1 = − g

M(1− d2)
+

1− d2

2
.

Note that since d1 ≥ 0 and 0 < d2 < 1, then necessarily g < M
2 and 0 < d2 ≤ 1−

√
2g
M .

Denote by gc = M
2 this critical value of g. From the above we conclude that for any g < gc,

we have a family of solutions to (16) of the form (26) with parameter d2 ∈ (0, 1−
√

2g
M ]. For

any d2 in the open interval (0, 1−
√

2g
M ), d1 > 0, and hence these states are disconnected. For

d2 = 1−
√

2g
M , d1 = 0 and the state is connected. Also, from (39), we infer that the center of

mass d1 + d2
2 of the free swarm is located at 1

2 −
g
S .

For g > gc there are no equilibria in the form (26). As shown below, the equilibrium in
this case is a delta accumulation at the origin, which is also a global minimizer of the energy.
Physically this can be explained by having a threshold value gc beyond which the gravity is
so strong that it pins all mass on the boundary.

We consider now the two cases g < gc and g > gc.
Case g < gc. As noted above (cf. (39)), there exists a family of solutions to (16) of the

form (26), parametrized by d2 ∈ (0, 1−
√

2g
M ]. By an elementary calculation, one can compute
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the values of Λ(x) in each component of the support, Ω1 and Ω2, respectively:

λ1 = −M
24

(1− d2)3 +
M

8
(1− d2)2 − M

12
+

g2

2M

d2

(1− d2)2
,(40a)

λ2 = −M
24

(1− d2)3 − M

12
− g2

2M

1

1− d2
+
g

2
.(40b)

As in the zero gravity case, we find that λ1 > λ2 unless d2 = 1 −
√

2g
M (or, equivalently,

d1 = 0), in which case λ1 = λ2. We discuss separately the disconnected and connected states.

(i) Disconnected equilibria (d1 > 0, d2 < 1−
√

2g
M ). A generic disconnected solution to (28)

(here g = 0.125) is shown in Figure 2(a); the solid line indicates the constant density in the free
swarm, and the circle on the vertical axis indicates the strength of the delta aggregation. To
show that these states are equilibria, one need only check the velocity in Ω1, the boundary of
the domain. By an argument similar to that in the zero gravity case (attractive and repulsive
effects at the origin are only felt through interactions with the free swarm), the velocity v(0)
calculated from (2b) reads as

(41) v(0) = P0

(
−
∫

Ω2

K ′(−y)ρ̄(y)dy − g
)
.

By (34) and (39),

−
∫

Ω2

K ′(−y)ρ̄(y)dy = −g d2

1− d2
,

and hence, from (41) and (3) we find that

v(0) = P0

(
− g

1− d2︸ ︷︷ ︸
<0

)
= 0.

The disconnected state is indeed an equilibrium.
By a direct calculation, one can find from (38) and (39)

Λ′(x) = M(x− d1) for x ∈ (0, d1) and Λ′(x) = M(x− d1 − d2) for x ∈ (d1 + d2,∞),

and hence, Λ(x) is strictly decreasing in (0, d1) and strictly increasing in (d1 + d2,∞); see the
dashed line in Figure 2(a). We infer that disconnected equilibria ρ̄ in the form (26) are not
local minima; again, (14) is not satisfied near the origin, and an infinitesimal perturbation of
mass from Ω1 (boundary) would bring it into Ω2 (free swarm). Nevertheless, these equilib-
ria are asymptotically stable to certain perturbations of the free swarm, and our numerical
explorations indicate, as in the zero gravity case, that such disconnected steady states are
very relevant for model (2), as they are reached dynamically starting from a wide range of
initial densities; see sections 3.3.1 and 3.3.2. Figure 2(a) shows this particular disconnected
equilibrium obtained via particle simulations (stars and cross).

(ii) Connected equilibria. There are two different connected equilibria: one that has all

mass at the origin, and another that corresponds to the limit case d1 = 0, d2 = 1 −
√

2g
M of

the disconnected equilibria in part (i) above.
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Figure 2. Equilibria (26) on half-line for V (x) = gx (linear exogenous potential) with g = 0.125. (a) Dis-
connected state consisting in a free swarm of constant density and a delta aggregation at the origin. (b) Con-
nected state with a constant density in a segment adjacent to the origin and a delta aggregation at the origin. (c)
Energy of equilibria (26) as a function of the mass ratio; the lowest energy state corresponds to the connected

equilibrium (rM =
√

M
2g
− 1).

The first type is a delta concentration at the origin of strength M , as in (35). This can
be thought of as a degenerate case of (26) with d1 = d2 = 0. The calculation of Λ from (11)
yields

Λ(x) = −1

2
M |x|+ 1

2
Mx2 + gx.

Since Ωρ̄ = {0}, (13) trivially holds with λ = 0, while (14) is equivalent to

(42)

(
−1

2
M +

1

2
Mx+ g

)
x > 0 for all x > 0.

The inequality above does not hold when g < M
2 ; hence the equilibrium (35) is not an energy

minimizer when g < gc.
The other type of connected equilibrium is obtained from the disconnected equilibria in

part (i) in the limit d1 → 0; it consists of a delta aggregation at the origin of strength

S =
√

2gM and a constant density M in the interval (0, 1−
√

2g
M ). The connected equilibrium

for g = 0.125 and M = 1 is illustrated in Figure 2(b); see the solid line and circle on the
vertical axis indicating the strength of the delta aggregation. The connected state is a swarm
minimizer, as can be inferred from a direct calculation of Λ(x); see the dashed line in Figure
2(b).

The energy corresponding to the equilibria (26) in the gravity case can be computed
through elementary calculations from (5), (11), and (16), along with the expressions of λ1 and
λ2 from (40). We omit the details and list only the final outcome:

(43) E[ρ̄] =
M2

24
d2(−3 + 3d2 − d2

2) +
g

2
Md2 −

g2

2

d2

1− d2
.
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The zero gravity calculation (36) can be obtained from (43) by setting g to zero. Also as
expected, from (43) we find that the energy is decreasing with respect to d2:

∂E

∂d2
= −1

2

(
M

2
(d2 − 1)− g 1

d2 − 1

)2

≤ 0.

Hence, among all equilibria in the form (26), the one that has the lowest energy is the connected

state, corresponding to d2 = 1−
√

2g
M .

Remark 3.3. As noted in Remark 3.1, the family of equilibria above can be alternatively
parametrized by rM , the mass ratio between the mass in the free swarm and the mass on the
wall. By (39), rM is given by

(44) rM =
Md2

S
=

d2

1− d2
.

The parameter d2 ranges in (0, 1 −
√

2g
M ) for the disconnected equilibria, while d2 = 0 and

d2 = 1 −
√

2g
M correspond to the two connected equilibria discussed above. Hence, rM ∈

[0,
√

M
2g − 1] or, equivalently, rM ∈ [0,

√
gc
g − 1].

Figure 2(c) shows the energy (43) of the equilibria in the form (26) for the gravitational
potential with g = 0.125, plotted as a function of the mass ratio rM . Note the monotonically
decreasing profile, with the equilibrium of lowest energy being the connected state shown in
Figure 2(b); this equilibrium corresponds to the largest possible value of mass ratio, which in
this case is rM = 1. By an argument similar to that in Remark 3.2, one can in fact infer that
the connected equilibrium is a global minimizer.

A schematic of the existence and stability of equilibria in one dimension is shown in
Figure 3(a). Note that the only stable equilibrium for g < gc is the connected state with
rM =

√
gc
g − 1. Also, the closer the gravity to the critical value gc, the smaller the range of

possible mass ratios; at critical value g = gc the interval collapses to rM = 0 (no free swarm).
On the other hand, in the limit of vanishing gravity g → 0, an equilibrium exists for any mass
ratio rM ∈ [0,∞) (including infinite mass ratio), as is consistent with the zero gravity case
studied in section 3.1; see also Remark 3.1.

Case g > gc. The equilibrium solution in this case consists in a delta concentration at the
origin (see (35)). As noted above, for such equilibrium, (14) is equivalent to (42), which holds
trivially when g ≥ M

2 . We conclude from here that (35) is an energy minimizer. This fact is
also illustrated in the schematic from Figure 3(a): The only (stable) equilibrium when g > gc
is the configuration with all mass at the origin (rM = 0), which is in fact a global minimizer.

3.3. Dynamic evolution of the aggregation model. In this section we investigate the
dynamics of model (2), with a focus on how and how often the equilibria (26) are reached
dynamically. In particular, we determine under which perturbations the equilibria (26) are
asymptotically stable.

3.3.1. Reduced dynamics and basins of attraction. In this study of the dynamics we
assume a fixed amount of mass S on the wall and an arbitrary density profile ρ2 in the interior
of Ω. We wish to quantify the dynamics of the support of ρ2 and its center of mass. We achieve



SWARM EQUILIBRIA IN DOMAINS WITH BOUNDARIES 1277

g
0 0.2 0.4 0.6

r M

0

1

2

3

4
Equilibria; minimizers
Equilibria; not minimizers

Equilibria;
not minimizers

gc

(a)

g
0 0.2 0.4

r M

0

1

2

3

4
Equilibria; minimizers
Equilibria; not minimizers

,(g)
.(g)

~gc gc

-(g)

Equilibria;
not minimizers

(b)

Figure 3. Existence and stability of connected and disconnected equilibria. Highlighted in gray are regions
where equilibria exist but are not minimizers. (a) One dimension, V (x) = gx, gc = 0.5. For 0 < g < gc,
disconnected equilibria in the form (26) exist for all mass ratios rM ∈ (0,

√
gc
g
− 1); these equilibria are not

energy minimizers. The only stable equilibrium is the connected state with rM =
√
gc
g
− 1 (solid line). For

g > gc, there exists no equilibrium in the form (26). The trivial equilibrium where all mass lies at the origin
(rM = 0) is unstable for g < gc (dashed line), but it is a global minimizer when g > gc (solid line). (b) Two
dimensions, V (x1, x2) = gx1, g̃c ≈ 0.044, gc ≈ 0.564. For 0 < g < g̃c, disconnected equilibria in the form
(66) exist only for mass ratios rM ∈ (0, α(g)) ∪ (β(g), γ(g)), while for g̃c < g < gc, disconnected equilibria
exist for all mass ratios rM ∈ (0, γ(g)); none of these disconnected equilibria are energy minimizers. The only
stable equilibrium for 0 < g < gc is the connected state with rM = γ(g) (solid line). For g > gc, there exists
no equilibrium in the form (66). The equilibrium (75) that has all mass on the wall (rM = 0) is unstable for
g < gc (dashed line), but it is a global minimizer when g > gc (solid line).

explicit expressions defining the support of ρ2 and its center of mass which will hold up until
mass is transferred onto or off of the wall. Furthermore, we derive conditions for this transfer
to happen and thus identify when the assumption of having a fixed amount of mass on the
wall is violated.

Consider the evolution in (2) of a time-dependent density that has two distinct compo-
nents:

(45) ρ(x, t) = ρ1(x) + ρ2(x, t),

where ρ1(x) = Sδ(x) is a delta aggregation at the origin (with S fixed) and ρ2(x, t) is the
density profile of the free swarm, with support Ω2(t) = [a(t), b(t)]. Here, b(t) > a(t) > 0 holds
up until the time when the free swarm touches the wall.

Let

(46) M2 =

∫
Ω2(t)

ρ2(x, t) dx and C2(t) =

∫
Ω2(t) xρ2(x, t) dx

M2
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be the mass and the center of mass of the free swarm, respectively. Note that since the mass
on the wall is fixed, M2 does not depend on t and we have M2 = M − S.

Solutions of form (45) satisfy (2) in the weak sense. Note that (2) is an equation in
conservation law form, and its weak formulation is standard [24]. Assume that in the free
swarm the solution ρ2(x, t) is smooth enough so that (2) holds in the classical sense. By a
standard argument [24, Chapter 3.4] one can then derive the Rankine–Hugoniot conditions
which give the evolution of the two discontinuities a(t) and b(t). For instance, the evolution
of the left end is given by

(47)
da

dt
= v(a, t),

and by (2b), (18), and (19) we calculate

v(a, t) = −aS +
S

2
−
∫

Ω2

(
a− y +

1

2

)
ρ2(y, t)dy − g

= −Ma+M2

(
C2 −

1

2

)
+
S

2
− g.

By a similar calculation,

db

dt
= v(b, t)

= −Mb+M2

(
C2 +

1

2

)
+
S

2
− g.

Finally, we derive the evolution of the center of mass of ρ2 and close the system. Multiply
(2a) by x, integrate over Ω2, and use integration by parts in the right-hand side to get

(48)

∫
Ω2(t)

x(ρ2)t dx = (xρ2(K ∗ ρ1 +K ∗ ρ2 + V )x)
∣∣∣b
a
−
∫

Ω2

ρ2(K ∗ ρ1 +K ∗ ρ2 + V )x dx.

By an elementary calculation,

(49)
d

dt

∫
Ω2(t)

xρ2(x, t) dx =

∫ b

a
x(ρ2)t dx+ ρ2(b, t)b

db

dt
− ρ2(a, t)a

da

dt
.

Combine (48) and (49), and use the evolution of a(t) and b(t) derived above. The boundary
terms cancel, and we find

(50) M2
dC2

dt
= −

∫
Ω2

ρ2(K ∗ ρ1 +K ∗ ρ2 + V )x dx.

By symmetry of K, ∫
Ω2

ρ2(K ∗ ρ2)x dx = 0,
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and with (18) and V (x) = gx we get

(K ∗ ρ1)x = S

(
x− 1

2

)
, Vx = g,∫

Ω2

ρ2(K ∗ ρ1 + V )x dx = SM2C2 +M2

(
g − S

2

)
.

Hence, from (50) one can derive the evolution of C2, which together with the evolution of a
and b yields the following system of evolution equations:

dC2

dt
= −SC2 +

(
S

2
− g
)
,(51a)

da

dt
= −Ma+M2

(
C2 −

1

2

)
+
S

2
− g,(51b)

db

dt
= −Mb+M2

(
C2 +

1

2

)
+
S

2
− g.(51c)

It is now an elementary exercise to solve (51) for C2(t), a(t), and b(t) given initial data
C2(0), a(0), and b(0). One then gets

C2(t) =

(
C2(0)− 1

2
+
g

S

)
e−St +

(
1

2
− g

S

)
,(52a)

a(t) =

(
C2(0)− 1

2
+
g

S

)
e−St +

(
a(0)− C2(0) +

M2

2M

)
e−Mt +

(
S

2M
− g

S

)
,(52b)

b(t) =

(
C2(0)− 1

2
+
g

S

)
e−St +

(
b(0)− C2(0)− M2

2M

)
e−Mt +

1

2MS

(
M2 − 2Mg −M2

2

)
.

(52c)

An initial observation is that provided our assumptions hold for all t ≥ 0 (i.e., the mass on
the wall is fixed and a(t) > 0), the equilibrium solution for (51) corresponds to the disconnected
state (26). Indeed, one can check that at the equilibrium for (51), a = d1, b = d1 + d2, and
C2 = d1 + d2

2 , with d1 and d2 given by (39) in terms of S. We also mention that we are
discussing only realistic cases (C2(0) ≥ 0, a(0) ≥ 0). Some arguments made below would not
be true if we considered unrealistic cases, but, of course, these exceptions are irrelevant.

Next we wish to use the reduced dynamics to determine under which perturbations the
disconnected equilibria (26) are asymptotically stable. By inspecting the profile of Λ(x), we
have already observed that these equilibria are unstable under infinitesimal perturbations
which move mass off the wall (see Figures 1 and 2). Therefore disconnected equilibria can
only be (asymptotically) stable with respect to perturbations of the free swarm. We take such
a perturbation and consider the evolution of a density of the form

(53) ρ(x, t) = ρ̄(x) + ρ̃2(x, t),

where ρ̄ is the disconnected equilibrium (26) and ρ̃2 has support away from the origin and
zero mass. Note that density (53) can also be written in the separated form (45), where

(54) ρ1(x) = Sδ(x) and ρ2(x, t) = M1(d1,d1+d2)(x) + ρ̃2(x, t)
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such that ρ(x, t) = ρ1(x) + ρ2(x, t).
The reduced dynamics (51) can be used to track the dynamics of the center of mass C2(t)

and the support [a(t), b(t)] of ρ2(x, t), provided that
(i) no mass leaves the origin, and
(ii) no mass transfers from ρ2 to the origin.
We will now quantify when (i) and (ii) can happen. To address (i), one needs to inspect

the velocity at the origin, which, computed by (2b) and (18) (see also (46)), gives

v(0, t) = P0

(∫
Ω2(t)

(
y − 1

2

)
ρ2(y, t) dy − g

)

= P0

(
M2

(
C2(t)− 1

2

)
− g
)
.

We find that no mass leaves the origin (v(0, t) = 0), provided that

(55) C2(t) ≤ 1

2
+

g

M2
.

In particular, the initial perturbed state ρ(·, 0) in (53) must satisfy this restriction at t = 0.
We note that once (55) holds at t = 0, it holds for all times; this can be inferred from the
monotonic evolution of C2(t) (see (52a)), where

lim
t→∞

C2(t) =
1

2
− g

S
<

1

2
+

g

M2
.

For (ii), we note that mass transfer occurs when the left end of the support of the free
swarm meets the wall and pushes into it. Mathematically, this amounts to having a = 0
and da

dt < 0 hold simultaneously. Alternatively, we can simply find any cases where a(t) < 0
at some time. Using the explicit solutions (52), we find exactly the region of (a(0), C2(0))
which yields a(t) < 0 for t > 0 and C2(t) > 0. Denote the boundary a(t) = 0 for t > 0
and C2(t) > 0 by γ0, such that any points (a(0), C2(0)) below γ0 correspond to points where
the evolution would have mass from ρ2 transferring to the origin. Figure 4 illustrates the
curves γ0 (solid lines) for various mass ratios rM (or, equivalently, for various delta strengths
S). Initial conditions (a(0), C2(0)) above γ0 correspond to points where evolution would not
transfer mass from ρ2 to the origin and (51) holds for all time as long as C2(0) ≤ 1

2 + g
M2

; also
note that, necessarily, C2(0) > a(0).

In summary, one takes an initial perturbed state ρ(·, 0) in (53) and considers the center
of mass, C2(0), and the left edge of its support, a(0). As long as no mass leaves the origin
and no mass transfers from the free swarm to the wall, then (51) holds. Moreover, since we
consider only perturbations that have zero mass and do not perturb the mass on the wall,
then M2 and S of the perturbed state will be the same as for the disconnected equilibrium
ρ̄(x). By uniqueness of the solution (see (51)), we then know that

lim
t→∞

ρ(x, t) = ρ̄(x).

Therefore perturbations for which the perturbed state satisfies C2(0) ≤ 1
2 + g

M2
(condition

(i)) and (a(0), C2(0)) is above γ0 (condition (ii)) are exactly the perturbations to which the
disconnected equilibrium ρ̄(x) is asymptotically stable. Certain remarks are in order.
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Figure 4. Disconnected equilibria (26) are asymptotically attracting certain initial densities of type (45).
Considered are three mass ratios, one being the mass ratio of the minimizer (magenta) for g = 0 and g = 0.125.
A perturbed state ρ(x, t) (see (53) and (54)) that has a(0) and C2(0) in the region strictly above the solid curves,
representing γ0, and below the dashed lines, C2(0) = 1/2 + g/M2, will evolve dynamically to the disconnected
equilibrium of the corresponding mass ratio. An initial condition with (a(0), C2(0)) below the solid curves
will evolve dynamically to an equilibrium of a smaller mass ratio. The dashed lines indicate the thresholds
1/2 + g/M2 above which mass on the wall would lift off. Stars indicate the equilibrium for the mass ratio
corresponding to its color, which gives a sense of how much the center of mass or the left edge of the support
can be perturbed.

Remark 3.4. The calculations above do not restrict the size of the perturbations ρ̃ in (53);
the only restrictions are placed on the center of mass C2(0) and the left end point a(0) of
the perturbed free swarm at the initial time. Consequently, the basins of attraction of the
disconnected equilibria are considerable in size and highly nontrivial. Section 3.3.2 will further
elaborate on this point.

Remark 3.5. The connected equilibria (rM = ∞ and rM = 1) in Figure 4 and their
corresponding magenta curves have been included only for illustration. Strictly speaking, we
should have shown only mass ratios that correspond to disconnected equilibria for which the
considerations in this subsection hold. Nevertheless, by a continuity argument, the magenta
lines can be thought to correspond to disconnected equilibria that are arbitrarily close to the
connected states. In fact, we infer from the figure that if we perturb the connected equilibrium
such that the center of mass of the free swarm decreases (the centers of mass of the connected
equilibria for g = 0 and g = 0.125 are at 1/2 and 1/4, respectively), then mass will transfer
to the wall and result dynamically in a disconnected state.

Remark 3.6. Regarding the boundaries γ0 shown in Figure 4, we found that there is a
minimal mass ratio (rM ≈ 1 for g = 0 and rM ≈ 0.6 for g = 0.125) below which these curves
do not cross through the relevant 0 < a(0) < C2(0) region. For such mass ratios, any initial
perturbation with 0 < a(0) < C2(0) ≤ 1/2 + g/M2 would dynamically result in (i) and (ii)
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being satisfied for all times, and hence, equilibrium ρ̄ being achieved at steady state. On the
other hand, this observation also implies that equilibria ρ̄ with mass ratios below this threshold
cannot be achieved dynamically starting from initial densities with different mass ratios (as
no mass transfer into the origin occurs below the threshold). This fact is also supported by
the numerical simulations in section 3.3.2.

3.3.2. Nontrivial initial conditions leading to disconnected equilibria. We show in this
section that a wide range of initial conditions can lead to disconnected states. Furthermore,
we show that the mass ratios of the resultant states follow trends related primarily to the
initial center of mass, and secondarily to how close the swarm is to the wall.

To this end we consider initial states of particles with positions randomly generated from

a uniform distribution on (d
(i)
1 , d

(i)
1 + d

(j)
2 ), where 1 ≤ i, j ≤ 10, and

d
(i)
1 =

1

20
(i− 1), d

(j)
2 =

1

10
j for g = 0,(56)

d
(i)
1 =

1

40
(i− 1), d

(j)
2 =

1

20
j for g = 0.125.(57)

We ran 50 particle simulations of N = 1024 particles for each interval (d
(i)
1 , d

(i)
1 + d

(j)
2 ),

with 1 ≤ i ≤ 10 and 1 ≤ j ≤ 10. We evolved the particle simulations until the state is steady
and calculated the mass ratio of the resultant state.

For convenience of discussion later, we denote the midpoint of the initial interval,

(58) md =
1

2

(
d

(i)
1 +

(
d

(i)
1 + d

(j)
2

))
.

We mention here as well that the center of mass of the initial swarm will be close to this
midpoint, as we have drawn particle positions from a uniform distribution. This is particularly

important in comparing with the results of section 3.3.1, as the intervals (d
(i)
1 , d

(i)
1 +d

(j)
2 ) have

been constructed in such a way that for i = 11− j we have md = 1
2 for g = 0 and md = 1

4 for
g = 0.125; see Figure 4 and Remark 3.5.

We find that for the g = 0 case, all initial states with md <
1
2 resulted in a disconnected

state, and all initial states with md >
1
2 resulted in a connected state; see squares and circles

in Figure 5(a) indicating percentages of disconnected states. This result is consistent with
Remark 3.5. Furthermore, we see that for md = 1

2 some resultant states were disconnected and
some were connected, accounting for the fact that due to the random distribution of particles
sometimes we have the center of mass larger than 1

2 and sometimes smaller; see Figure 5(a).
For the case of g = 0.125 we find relatively similar results. Figure 5(b) shows that for

md < 0.15 we always get disconnected resultant states, and for md > 0.175 we always get the
connected equilibrium. For md = 0.15 and md = 0.175 the results can be mixed. We suspect
in fact that there may be discrete numerical effects and that the true value of md where we
observe variability in disconnected/connected resultant states is closer to 1

4 , consistent with
Remark 3.5. A discrete effect that occurs for g = 0, for instance, is when the correct resultant
state has mass on the wall which is greater than zero but less than that of two particles; this
case cannot be identified by the particle method as disconnected. Also note that this error,

which favors connected states, is more likely to occur for larger d
(i)
1 .
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Figure 5. Percentage of initial states which resulted in disconnected states for (a) g = 0 and (b) g = 0.125.
Note that we find disconnected resultant states for a significant set of initial data.

We also computed the mass ratios of the resultant equilibria in these simulations and
averaged over runs that have the same initial midpoint md. In both the gravity and no
gravity cases we found that the average resultant mass ratio tends to be smaller for smaller
md; see Figure 6. The results further support the fact that there indeed exists a minimal mass
ratio for equilibria that can be achieved dynamically; see Remark 3.6.
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Figure 6. Average mass ratios of resultant states for particular md for (a) g = 0 and (b) g = 0.125.
md = 1

2
has been omitted from (a) for clarity, as the average is much larger (about 516).
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3.3.3. Discrete energy dissipation. We wish to demonstrate that particle simulations
which lead to disconnected states obey a discrete-space, discrete-time analogue to (6). Let ∆t
be the length of time steps taken in a given particle simulation (see section 4.4.1 for details
on the implementation of the particle method), and further, let s = n∆t and t = (n + 1)∆t
for n ≥ 0 be two successive times in (6). We then have, after dividing by ∆t,

(59)
E[(n+ 1)∆t]− E[n∆t]

∆t
= − 1

∆t

∫ (n+1)∆t

n∆t

∫
Ω
|Px(−∇K∗ρ(x, τ)−∇V (x))|2ρ(x, τ) dx dτ.

We now check whether (59) holds in numerical simulations. For this purpose we pass to a
discrete-space analogue as per a particle simulation with particles of equal weight, namely M

N ,
where N is the number of particles. Let xi represent the position of particle i. The discrete
density is a superposition of delta accumulations at the particle locations,

ρN (x, t) =
M

N

N∑
i=1

δ(x− xi(t)),

and the corresponding discrete energy (see (5)) is given by

(60) E[ρN ] =
M2

2N2

N∑
i=1

N∑
j=1

K(xi(t)− xj(t)) +
M

N

N∑
i=1

V (xi(t)).

Note that K(0) = 0 in this context, so we do not need to exclude the case of i = j in the
double sum representing social interaction.

Figure 7 shows (solid lines) the left-hand side of (59) as computed from a particle simula-
tion, with E given by (60). The simulations correspond to emerging disconnected equilibria.
Shown there are g = 0 and g = 0.125. Also plotted in the figure (dashed lines), but indistin-
guishable at the scale of the figure, are discrete-time approximations of the right-hand side of
(59); we used the trapezoidal rule to approximate the time integration and a discrete analogue
of the projection operator Px (cf. section 4.4.1). The difference between the two computed
approximations falls within the discretization error of the particle method, and hence, the
results show that the energy dissipation formula (59) holds at the discrete level. Note also
that the energy decays for all times and levels off as it approaches the equilibrium.

3.4. Morse potential. In this subsection we consider the same problem setup as in section
3.1 except we use the Morse-type potential investigated in [7]:

(61) K(x) = −GLe−|x|/L + e−|x|.

We consider the case of G = 0.5 and L = 2 throughout this subsection, as these values were
one of the cases highlighted in [7]. The main point we want to make is that the findings
above apply to the Morse potential as well. In particular, there is a one-parameter family
of disconnected equilibria of model (2), which are not energy minimizers but are realized
dynamically starting from a variety of initial conditions.
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Figure 7. Verification of the energy dissipation formula (6) for particle simulations where more than one
particle joins the wall and disconnected states are emerging. (a) g = 0, and (b) g = 0.125. Approximations of
the left-hand side of (59) (solid lines) and the right-hand side of (59) (dashed lines) fall within the discretization
error. For the particular test shown here, the two approximations are within 10−4 (indistinguishable at the scale
of the figure), which is consistent with the choice of ∆x and ∆t.

One can find explicit forms for the equilibria for the Morse potential in just the same way
as we found explicit forms for the potential (18)–(19). We assume the solution form

(62) ρ̄(x) = Sδ(x) + ρ∗(x)1(d1,d1+d2),

with

ρ∗(x) = C cos(µx) +D sin(µx)− λ2

ε
,

µ =

√
ε

ν
, ε = 2(GL2 − 1), ν = 2L2(1−G).(63)

The density ρ∗ of the free swarm comes from the free space solution found in [7].
Then we seek to satisfy (cf. (28) and (8a))

(64) Λ(0) = λ1, Λ(x) = λ2 for x ∈ [d1, d1 + d2], S +

∫ d1+d2

d1

ρ∗(x) dx = M.

The appendix shows the system of equations that arise from these conditions. We end up
with four equations from requiring Λ(x) = λ2 for x ∈ [d1, d1 + d2], as one can find that the
constant term on the left-hand side is already λ2 and the nonconstant terms comprise four
linearly independent terms in x:

(65) −GL exp
(
−x
L

)
, exp(−x), −GL exp

(x
L

)
, exp(x).
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Together with Λ(0) = λ1 and the mass constraint, this yields a system of six equations for
seven unknowns (C, D, S, d1, d2, λ1, and λ2), indicating a one-parameter family of equilibria,
as in sections 3.1 and 3.2. We solved numerically this system for various S ∈ [0, 1] fixed.

Figure 8(a) shows a disconnected equilibrium found by solving (64); the circle indicates
the delta strength at origin, and the solid line indicates the free swarm. The Λ profile (dashed
line) shows that such disconnected equilibria are not energy minimizers (as in section 3.1).
Figure 8(b) shows the connected equilibrium, which is in fact the free space solution from [7].
The connected equilibrium is an energy minimizer, as inferred from the Λ profile. In both
plots note the excellent agreement with the particle simulations (crosses for delta aggregations
and stars for free swarms). Finally, Figure 8(c) shows the energy of the equilibria (62) as a
function of the mass ratio; as expected, the lowest energy is achieved by the connected state
with d1 = 0 (or, equivalently, rM =∞).
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Figure 8. Equilibria (62) on a half-line for V (x) = 0 (no exogenous potential). The interaction potential
is given by (61), where G = 0.5 and L = 2. (a) Disconnected state. (b) Connected state with no aggregation
at the origin; this is the same as the free space solution from [7]. (c) Energy of equilibria as a function of the
mass ratio; the lowest energy state corresponds to the connected equilibrium rM =∞.

The study in this subsection illustrates that the existence of (attracting) disconnected
equilibria which are not minimizers and the existence of a minimizing equilibrium that is the
connected state are not specific properties of the potential (18)–(19) but seem to be quite
generic.

4. Two dimensions: Equilibria on a half-plane. We consider equilibria in two dimensions
in the domain Ω = [0,∞) × R. The boundary ∂Ω = {0} × R can be interpreted as an
impenetrable wall. The interaction kernel is given by (18)–(19), i.e., it consists of Newtonian
repulsion and quadratic attraction.

4.1. No exogenous potential. As discussed in section 2, in the absence of boundaries the
equilibrium is a constant density in a disk [27]; in two dimensions the value of this constant
density is 2M (see (23)). Similar to the one-dimensional study, in domains with boundaries
we expect to have equilibria that consist in swarms of constant densities away from the wall
together with a possible aggregation buildup on the boundary.
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Given the considerations above, we search for an equilibrium that consists of a constant
density 2M in a bounded domain D that lies off the wall (x1 > 0) and a Dirac delta accu-
mulation on ∂Ω. For consistency of notation with the study in one dimension, we take the
horizontal extent of the free swarm D to be d1 < x1 < d1 + d2, with d1 ≥ 0, d2 > 0. Also, we
assume symmetry in the vertical direction and take the vertical extent of D to be given by
the lower and upper free boundaries x2 = −g(x1) and x2 = g(x1), respectively.

Specifically,

D = {(x1, x2) | d1 < x1 < d1 + d2,−g(x1) < x2 < g(x1)},

and the equilibrium we look for has the form

(66) ρ̄(x1, x2) = f(x2)δ∂Ω(x1, x2) + 2M 1D(x1, x2),

where the density profile f(x2) on the wall is assumed to have support [−L,L].
The support Ωρ̄ of ρ̄ consists of two components:

(67) Ω1 = {0} × [−L,L] and Ω2 = D̄,

where the bar indicates the closure of the set.
As in one dimension, we focus our efforts on solving the necessary equilibrium condition

(16). The unknowns in this case are the density profile f on the wall along with its extent
L, and the free boundary g along with its horizontal extent given by d1 and d2. It can be
immediately noted that this is a highly nonlinear problem, and, unlike in the one-dimensional
case, a solution can only be sought numerically.

Denote the area of D by |D|. By the mass constraint (8a) we find

(68)

∫ L

−L
f(x2)dx2 + 2M |D| = M.

Calculate Λ(x) for x = (x1, x2) ∈ Ωρ̄ using (11), where K is given by (18)–(19) and V = 0. A
generic point y = (y1, y2) ∈ Ωρ̄ can lie either on the wall or in D, along with its free boundary.
Consequently, Λ(x) consists of two terms:

Λ(x) =

∫ L

−L

(
− 1

2π
ln
√
x2

1 + (x2 − y2)2 +
1

2

(
x2

1 + (x2 − y2)2
))

f(y2)dy2

+ 2M

∫∫
D

(
− 1

2π
ln |x− y|+ 1

2
|x− y|2

)
dy.(69)

For an equilibrium, Λ(x) has to be constant in each component of Ωρ̄:

(70) Λ(x) = λ1 in {0} × [−L,L], and Λ(x) = λ2 in D̄.

Solving (70) numerically would be very expensive. First, it requires approximating Λ on a two-
dimensional numerical grid, where at each grid point we would have to evaluate numerically
a convolution integral. Second, it requires a nonlinear solver to solve (70) at all grid points of
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this two-dimensional domain. We show below how one can reduce the dimensionality of the
problem by making use of specific properties of the interaction potential.

Calculate the Laplacian of Λ from (69):

∆Λ(x) = 2

∫ L

−L
f(y2)dy2 + 2M

(
−1 + 2

∫∫
D

dy

)
= 2

(∫ L

−L
f(y2)dy2 −M + 2M |D|

)
,(71)

where for the first equality we used ∆(− 1
2π ln |x|) = −δ; in particular, the logarithmic term

in the single integral
∫ L
−L is harmonic for x ∈ D.

Using the mass constraint (68), one can infer from (71) that Λ is harmonic in D:

(72) ∆Λ(x) = 0 for all x ∈ D.

This observation greatly simplifies the problem of solving (70). Indeed, provided that Λ(x) =
λ2 is satisfied for x ∈ ∂D (i.e., only on the boundary of the free swarm), then by (72), using
standard theory for harmonic functions, Λ(x) = λ2 for all x ∈ D̄. Consequently, (70) reduces
to solving

(73) Λ(x) = λ1 in {0} × [−L,L] and Λ(x) = λ2 on ∂D.

We solve numerically (73) to find L, d1, d2, λ1, λ2, and the profiles f and g of the wall
aggregation and the free boundary. Approximations for the latter are found on a uniform grid
in the vertical, respectively, horizontal, direction. Details on the numerical implementation
are presented in section 4.4.2; we only re-emphasize here that there is a huge computational
gain in solving (73) versus (70) from having reduced the dimensionality of the problem.

As in the one-dimensional study, we find both disconnected and connected solutions to
(73). We present them separately. We note again that in all numerical simulations presented
in this paper, the mass M is set to 1.

Disconnected equilibria (d1 > 0). As in one dimension, denote by rM the ratio of the mass
M2 of the free swarm and the mass M1 of the aggregation on wall:

(74) rM :=
M2

M1
=

2M |D|∫ L
−L f(x2)dx2

.

Numerical simulations suggest that disconnected solutions to (73) in the form (66) exist for
all rM ∈ (0,∞). In fact, based on numerical explorations, we believe that there is a unique
disconnected solution to (73) for every rM ∈ (0,∞) fixed. The limiting cases, i.e, the zero
and infinite mass ratios, correspond to connected states, where all mass lies either on the wall
or off the wall, respectively. These solutions will be elaborated below, where connected states
are discussed.

To check whether the disconnected solutions are indeed equilibria, we compute numerically
the velocity field at points on Ω1, the part of the support that lies on the wall, and inspect its
horizontal component (cf. Remark 2.2). For all the disconnected states we computed, we found
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that velocity vectors at various points located near and at the edges of the wall aggregation
point toward the interior of the domain Ω. Consequently, their projections are not zero (see
(4)), and the states we computed are not equilibria. This result clearly shows that (16) is only
a necessary, but not sufficient, condition for equilibrium; see Remark 2.2.

The conclusion reached above is exactly the opposite of what was found in one dimension,
where all the disconnected solutions to (16) were steady states, though not local minima of
the energy. The essentially different behavior is due to the two-dimensional geometry. In one
dimension the distance from the wall to any point in the free swarm is necessarily parallel to
the normal of the wall. In two dimensions this is not the case, and some interactions between
the wall swarm and the free swarm can be farther than the distance from the wall to the
furthest extent of the free swarm in the horizontal direction. This enables more attractive
forces to come into play, most noticeably at the edges of the wall swarm x = (0,±L). Indeed,
the edges of the wall swarm are where one finds the largest velocities normal to and pointing
away from the wall, if one finds them at all.

Connected equilibria. The first type of connected equilibria corresponds to aggregations
that lie entirely on the wall (no free swarm, rM = 0). This is a degenerate case of densities
of form (66), where D is the empty set. The equilibrium in this case has the form of a delta
aggregation on the wall:

(75) ρ̄(x1, x2) = f(x2)δ∂Ω(x1, x2).

We find the density profile f(x2) on the wall and its support [−L,L] by solving numerically
(13) in Ωρ̄ = {0} × [−L,L]. Note that the mass constraint (8a) implies

(76)

∫ L

−L
f(x2)dx2 = M,

while in our case (13) reduces to

(77)

∫ L

−L

(
− 1

2π
ln |x2 − y2|+

1

2
(x2 − y2)2

)
f(y2)dy2 = λ for all x2 ∈ [−L,L].

We solve numerically (76) and (77) to find f , L, and λ. The wall profile f is shown in Figure
9(a), along with the density profile obtained from particle simulations; note the excellent
agreement between the two. We also note here that the only initial configurations that can
dynamically evolve into this equilibrium are those with initial support on the wall.

With this numerically computed solution we then check (14), which here reads as∫ L

−L

(
− 1

2π
ln
√
x2

1 + (x2 − y2)2 +
1

2

(
x2

1 + (x2 − y2)2
))

f(y2)dy2 ≥ λ for all (x1, x2) ∈ Ωc
ρ̄.

Note that Ωc
ρ̄ is the disjoint union of the two semi-infinite vertical lines {0} × (−∞,−L) and

{0} × (L,∞), with the open half-plane (0,∞) × R. A colored contour plot of Λ(x) is shown
(on the right) in Figure 9(a). As expected, the inequality above does not hold near the wall,
and hence, the equilibrium solution (75) is not an energy minimizer.
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Figure 9. Equilibria on a half-plane in two dimensions for V = 0 (no exogenous potential). (a) Equilibrium
aggregation that lies entirely on the wall (rM = 0). The solid line represents the density profile f on the wall
as solved from (76) and (77). Note the excellent agreement with the particle simulations (blue stars). The
equilibrium is not an energy minimizer, as indicated by the contour plot of Λ (shown at right). (b) Free swarm
equilibrium (rM = ∞) of constant density 2M in a disk of radius 1√

2π
. The contour plot of Λ, shown in the

figure, demonstrates that this equilibrium is an energy minimizer. Note that there are no disconnected equilibria
of form (66) in this case.

We note in passing that integral equations with logarithmic kernels such as (77) arise in the
representation of a harmonic function in terms of single-layer potentials. Various analytical
and numerical results have been derived for such equations [39, 45]. These results do not apply
to our setting, though, as in our problem the extent L of the boundary is also an unknown.

Connected equilibria of the second type correspond to swarm equilibria in free space and
consist of a constant aggregation of density 2M in a disk of radius 1√

2π
. A representative

equilibrium in this class can be considered the disk tangent to the wall at the origin; see
Figure 9(b). This is an equilibrium in the form (66), where f = 0 (no delta aggregation on
the wall) and d1 = 0 (no separation). By taking arbitrary translations that keep the disk
within Ω, one can then find a family of such constant aggregations. The constant density
equilibria are swarm minimizers, as (14) can be shown to hold; a contour plot of Λ is also
illustrated in Figure 9(b).

To argue that the connected equilibrium in Figure 9(b) is a global minimizer one should
rule out the existence of minimizers that have a form other than (66). In one dimension this
was done via a simple explicit calculation; see Remark 3.2. Though such a simple argument
does not seem to be available in two dimensions, we believe that the constant density in a
disk is a global minimizer; for the problem in free space it was shown that such an equilibrium
configuration is in fact a global attractor [10, 27].

4.2. Linear exogenous potential. Now we consider an exogenous gravitational potential
V (x1, x2) = gx1, with g > 0. The domain is the same as above, the half-plane Ω = [0,∞)×R,
so the exogenous forces are acting (horizontally) toward the wall. Note that ∆V = 0, and by
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using this observation in (25) we infer that away from the wall the equilibrium densities are
constant (equal to 2M) on their support.

As in section 4.1, we search for equilibria in the form (66), which consist in a delta
aggregation on the wall and a constant density free swarm. The same variables and setup
from section 4.1 are being used here as well. In particular, the support Ωρ̄ of the equilibrium
is given by (67), and mass conservation leads to (68). We solve numerically the necessary
condition for equilibrium (70), with Λ(x) given by

(78)

Λ(x) =

∫ L

−L

(
− 1

2π
ln
√
x2

1 + (x2 − y2)2 +
1

2

(
x2

1 + (x2 − y2)2
))

f(y2)dy2

+ 2M

∫∫
D

(
− 1

2π
ln |x− y|+ 1

2
|x− y|2

)
dy + gx1.

Since the gravitational potential has zero Laplacian, by the same argument as in the zero
gravity case one concludes that Λ is harmonic in D (see (72)). Consequently, the problem
reduces to solving (73), with Λ given by (78). We solve this equation numerically to find
approximations for L, d1, d2, and the profiles f and g of the wall aggregation and the free
boundary.

As in one dimension, there is a critical value gc such that for g > gc there is no equilibrium
in the form (66). The gravity in this case is too strong and pins all mass on the boundary of the
domain; the only equilibrium is a delta aggregation on the wall. For g < gc, however, we find
genuinely two-dimensional equilibria, which come in two types: connected and disconnected.
In section 4.3 we show how gc can be calculated in the two-dimensional problem. We find
gc = f(0)/2, where f is the density of the all-on-wall equilibrium (see (75) and Figure 9(a)). In
our simulations with M = 1, gc ≈ 0.564. We now proceed to present the two cases separately.

Case g < gc. Solutions to (73) of the form (66) exist only for mass ratios below a maximal
value which we denote here by γ(g). Recall that in one dimension, for subcritical gravities
(note that in one dimension gc = M/2), there exists a disconnected equilibrium for any mass
ratio in the interval (0,

√
gc
g − 1), where the maximal mass ratio

√
gc
g − 1 corresponds to the

connected equilibrium (see Remark 3.3).
The subcritical gravity case in two dimensions parallels the findings in one dimension in the

fact that for any fixed g < gc, there exists a family of disconnected equilibria which approach,
as the separation d1 vanishes, a connected equilibrium supported on both the boundary and
the interior of Ω. We parametrize this family of disconnected equilibria by rM , the mass ratio
defined in (74).

The major subtlety in two dimensions is that for low gravities, equilibria in the form (66)
exist only for certain mass ratios in the interval (0, γ(g)). To illustrate this fact, we introduce
a critical value g̃c, with g̃c < gc (as shown below, g̃c ≈ 0.044 for our simulations with M = 1).
We find that for gravities g̃c < g < gc there exists a disconnected equilibrium for any mass
ratio in (0, γ(g)). On the other hand, for g < g̃c, while solutions to (73) in the form (66) do
exist for all rM ∈ (0, γ(g)), not all of these solutions are equilibria. As a limiting case, we
recover the findings from the zero gravity study, where none of the disconnected solutions to
(73) were in fact equilibria. We now elaborate on these facts.

Remark 4.1 (critical gravities gc and g̃c). In one dimension it was trivial to find the critical
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gravity gc = M
2 . In two dimensions, however, the calculation of gc is not quite as trivial, and

furthermore, a second critical gravity g̃c appeared during investigation. Provided that the
wall profile f (see Figure 9(a)) satisfies some regularity conditions, we show in section 4.3
that gc = 1

2f(0). As discussed above, g > gc is the case where gravity is so strong that it
forces all mass onto the wall.

The other critical gravity, g̃c, was found by numerical investigation. While no explicit
formula was found for g̃c, there is an intuitive understanding which is elaborated below when
discussing Figure 12. The essential idea is that gravity is weak and there is just the right
amount of mass off the wall so that it interacts strongly enough with the wall while remaining
far enough that most of those interactions are attractive. For cases like this, mass begins
leaving the wall near (0,±L) since these points are farthest from the free swarm (the most
attractive interaction).

(i) g̃c < g < gc.
Disconnected equilibria. For any fixed gravity g ∈ (g̃c, gc), we find a family of disconnected

solutions to (73) with mass ratios in the interval (0, γ(g)); as mentioned above, γ(g) denotes
the maximal value that the mass ratio of the two components can take for that particular g.
In one dimension, γ(g) =

√
gc
g − 1 can be calculated explicitly, as discussed in Remark 3.3. In

two dimensions we approximate γ(g) numerically; see Figure 3(b). Note that γ(g) is strictly
decreasing and touches zero at g = gc. This is consistent with the fact that at larger gravities,
less mass can end up in the free swarm, and the range of rM decreases.

An illustration of a typical disconnected solution to (73) is shown in Figure 10(a); there
g = 0.064. To check that these solutions are indeed equilibria, we compute numerically the
velocity field at points on Ω1, the part of the support that lies on the wall, and inspect its
horizontal component (see Remark 2.2). Based on these investigations, we conclude that all
the two-dimensional disconnected states we found here are indeed equilibria. Also, as in the
one-dimensional case with subcritical gravity, these equilibria are not local minima for the
energy, as (17) is not satisfied near the wall; see Figure 10(a) for a contour plot of Λ. Since
Λ(x) decreases from the wall to the free swarm, an infinitesimal perturbation of mass from
the wall into x1 > 0 would bring the mass into the free swarm.

To further illustrate the point above, we compute the energy corresponding to the dis-
connected steady states. Figure 10(c) shows the plot of the energy E[ρ̄] as a function of
mass ratio rM for g = 0.064; note that for this value of gravity, the maximal mass ratio is
γ(0.064) ≈ 2.045. We observe a monotonically decreasing profile that supports what has been
noted above: Taking mass from the wall and placing it into x1 > 0 would result dynamically
in an equilibrium of larger mass ratio, which is more energetically favorable.

As the mass ratios of the disconnected equilibria increase toward the maximal value γ(g),
the free swarm gets closer and closer to the wall. This behavior is consistent with the results
in one dimension, where explicit calculations show that the separation d1 approaches zero in
such limit. Numerical evidence suggests that at rM = γ(g), the two-dimensional free swarm
touches the wall and forms a connected state. This aspect will be further discussed in the
next paragraphs.

Connected equilibria. There exist two types of connected equilibria: one that corresponds
to all mass on the wall (rM = 0), and another that corresponds to the maximal mass ratio
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Figure 10. Equilibria (66) on a half-plane for V (x1, x2) = gx1 (linear exogenous potential) with g = 0.064.
(a) Disconnected state consisting in a free swarm of constant density and a delta aggregation on the wall.
(b) Connected state with a constant density in a domain adjacent to the wall and a delta aggregation on the
wall. It should be mentioned that any apparent defects in (a) or (b) are the result of some numerical error and
intrinsic error involving particles preferring to arrange in hexagons and the geometry of the free swarm not
allowing hexagonal packing to cover the area. (c) Energy of equilibria (66) as a function of the mass ratio; the
lowest energy state corresponds to the connected equilibrium with rM = γ(g).

rM = γ(g). The first type can be obtained dynamically by initializing model (1) with a density
that is supported entirely on the wall. In fact, since the gravitational forces vanish at the wall,
the equilibrium density is identical to that computed in the zero gravity case; see equations
(75)–(77) and Figure 9(a). The only distinction comes in checking the minimization condition
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(14), which in the gravitational case reads as∫ L

−L

(
− 1

2π
ln
√
x2

1 + (x2 − y2)2 +
1

2

(
x2

1 + (x2 − y2)2
))

f(y2)dy2 + gx1 ≥ λ(79)

for all (x1, x2) ∈ Ωc
ρ̄.

The gravitational term, gx1, merely translates the minimum of Λ(x) shown in Figure 9(a)
toward the wall. This equilibrium is therefore not an energy minimizer until g = gc, when the
minimum of Λ(x) becomes degenerate and Λ(x) = λ for x ∈ {0} × [−L,L].

The connected equilibria of the second type are supported on both the wall and the interior
of Ω. As discussed above, they are realized when the free component of the disconnected state
touches the wall in the limit rM → γ(g). Alternatively, one can search for a connected state
independently by assuming an equilibrium of the form (66), with a domain D that touches the
wall (d1 = 0). For this purpose we solved (13) numerically, with Λ(x) given by (78). Figure
10(b) shows the connected equilibrium found by this direct approach for g = 0.064, along
with a particle simulation that has reached this steady state. Our numerical investigations
indicate that there is a unique such connected equilibrium. Also, the connected state is a
local minimizer of the energy, as can be inferred from the contour plot of Λ shown in the
same figure. Based on our study (see, for instance, Figure 10(c)), we believe in fact that this
equilibrium is a global minimizer of the energy, though for a definite conclusion one has to
rule out the possibility of having minimizers of a more general form than (66); see Remark 3.2
for the one-dimensional case.

Figure 11 illustrates the idea that the connected equilibrium is obtained from the discon-
nected states upon touching the wall. The solid lines in Figures 11(a) and 11(b) show the
boundary and the wall density profile f of the connected equilibrium, respectively, for the
same value of g used above (g = 0.064). The dashed lines correspond to the disconnected
equilibrium with the largest mass ratio rM < γ(g) (or, equivalently, with the smallest sepa-
ration d1 > 0) that we were able to obtain in numerical simulations. The findings indicate
that when the free swarm touches the wall at rM = γ(g), it establishes contact with the wall
over an entire vertical segment, and not just at a single point. This suggests that there is a
continuous deformation of the two-component equilibrium into the connected equilibrium of
mass ratio γ(g).

Finally, we remark that in our implementation for computing the connected equilibrium,
we do not require g(0) = L; that is, we do not ask for the extent of the delta accumulation
on the wall to match the boundary of the constant swarm in D. We assume instead the
inequality g(0) ≤ L, which allows the wall accumulation to extend beyond the points where
the free boundaries x2 = ±g(x1) meet the wall. And indeed, the equilibrium we find by
solving (13) satisfies the strict inequality g(0) < L.

(ii) g < g̃c. As in case (i), solutions to (73) of the form (66) exist for all mass ratios below
a maximal value, which is denoted again by γ(g). The profile of γ(g) for g ∈ (0, g̃c) is shown
in Figure 3(b); note that it connects smoothly at g = g̃c, with γ(g) computed as above for
g ∈ (g̃c, gc). Also, similarly to the one-dimensional case, γ(g) approaches ∞ as g → 0.

To check whether the computed solutions to (73) are indeed equilibria (see Remark 2.2),
we inspect the velocity field on the wall. For an equilibrium, the velocities on the wall
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Figure 11. Equilibria on a half-plane in two dimensions for V (x1, x2) = gx1, with g = 0.064: The
disconnected equilibria (66) approach a connected equilibrium state as the separation d1 from the wall approaches
0 (or, equivalently, rM approaches the maximal mass ratio γ(g)). (a) The solid line represents the connected
solution of (66). The dashed line shows a disconnected equilibrium with a mass ratio rM = 1.873 < γ(g); this
is the disconnected state with the largest mass ratio that we were able to obtain in our numerical investigations.
(b) Profile f of the density on the wall corresponding to the connected (solid line) and disconnected (dashed
line) equilibria shown in plot (a).

(before applying the projection) should point into the wall or, equivalently, their horizontal
components should be negative for all points in the support [−L,L] of the wall density f .
We find that there is an entire range of disconnected solutions to (73), with mass ratios
rM ∈ (α(g), β(g)) (here 0 < α(g) < β(g) < γ(g)), which are not steady states. Alternatively,
disconnected equilibria exist only for mass ratios rM ∈ (0, α(g)) ∪ (β(g), γ(g)).

Figure 12 illustrates the idea above for g = 0.04 < g̃c and various mass ratios. At mass
ratios rM ∈ (α(g), β(g)), the horizontal velocity is positive near the end of the wall profile (see
curves labeled (3) and (4)). Hence, mass would leave the wall, and these solutions to (73) are
not equilibria. For mass ratios outside this interval, the velocities are everywhere negative,
and such solutions are indeed equilibria.

We approximate numerically α(g) and β(g) and plot their profiles in Figure 3(b). Several
observations can be inferred. First, the two profiles meet at g̃c, indicating a bifurcation of
saddle-node type in the qualitative behavior of solutions to (73). Second, the range (α(g), β(g))
extends to (0,∞) in the limit g → 0, which is consistent with the findings from the zero gravity
case, i.e., no disconnected solution to (73) is a steady state. It is expected in fact that as g
weakens, the free swarm components of the disconnected solutions tend to be farther from the
wall, indicating more attractive forces on the wall profile near its ends. Additionally, weaker
gravity means less force pushing toward the wall as well, accounting for the widening of the
(α(g), β(g)) region.

On the other hand, the equilibria with mass ratios rM ∈ (0, α(g)) ∪ (β(g), γ(g)) have
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Figure 12. Horizontal velocity (before taking the projection (3)) along wall profile of solutions to (73)
for g = 0.04 < g̃c and (1) rM = 1.531, (2) rM = β(g) ≈ 1.379, (3) rM = 1.078, (4) rM = 0.744, (5)
rM = α(g) ≈ 0.439, (6) rM = 0.362. Note the positive velocities for rM ∈ (α(g), β(g)), that is, in (3) and (4),
indicating that mass would leave the wall and thus these solutions are not steady states. See also Figure 3(b).

properties similar to those found in case (i). Specifically, they are not local minimizers for the
energy, and they approach a connected equilibrium, with support on both the wall and the
interior of Ω, in the limit rM → γ(g). The other connected equilibrium corresponds to the
limit rM → 0 and represents an aggregation supported entirely on the wall. The profile of
this wall equilibrium does not depend on the particular value of the gravity (see Figure 9(a)).

We confirmed all the findings above with particle simulations. In particular, we initialized
the particle code at a disconnected state of form (66), with mass ratio in the range (α(g), β(g))
and density support provided by the solutions to (73). We observed that indeed, such states
are not equilibria, as particles near the end of the wall extent leave the wall and join the free
swarm component.

Case g > gc. The equilibrium in this case consists in a delta aggregation on the wall, of
form (75), with mass constraint given by (76). As noted above, the exogenous potential V
vanishes on the support Ωρ̄ = {0} × [−L,L] of ρ̄, and hence solving (13) is identical to the
zero gravity case (see (77)). We find the same density profile f illustrated in Figure 9(a). By
checking (79) one infers that this equilibrium is a local minimizer of the energy. We believe
this to be a global minimizer, though we do not have a good argument for excluding other
possible equilibrium configurations on the wall. Numerical simulations do support that it is
a global minimizer in that we have not seen any other state that is reached dynamically.
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4.3. Calculation of critical gravity gc. To calculate the critical gravity gc, we consider
the equilibrium consisting of all mass on the wall; see (75) and Figure 9(a). We then pose
the following question: How strong does gravity need to be such that a particle placed in the
interior of Ω always feels a velocity toward the wall? We consider such a particle at position
(ε, 0) with ε > 0. We get from (2b) that the velocity in the horizontal direction felt by this
particle is

v1 = −
∫ L

−L

(
1−

(
2π(ε2 + x2

2)
)−1
)
εf(x2)dx2 − g.

To study the competition between social and gravitational forces, one can focus just on
the social velocity, defined by

(80) vs1 = −
∫ L

−L

(
1−

(
2π(ε2 + x2

2)
)−1
)
εf(x2)dx2,

representing the velocity acting on the particle by interaction with the aggregation on the
wall. With this notation, the horizontal velocity v1 can be written as

(81) v1 = vs1 − g.

We first investigate numerically which ε maximizes the social velocity. To that purpose,
we take the approximation of the wall density profile f(x2) (see Figure 9(a)) and evaluate
(80) for ε ∈ (0, 1]. We do not evaluate directly at ε = 0 because there is a discontinuity there
as the particle ceases to feel any velocity in the horizontal direction once ε = 0. We refer the
reader to section 4.4 for details on how vs1 is approximated.

The numerical investigation indicates that vs1 is maximized in the limit as ε→ 0; see Figure
13. To further cement this evidence, we note that this is expected, as repulsion (corresponding
to positive velocity in this case) becomes stronger as distances shrink. Returning to the ques-
tion we posed at the beginning, by (81), gravity is strong enough to yield negative horizontal
velocity v1, provided that g is larger than the maximal social velocity. Consequently, we set

(82) gc = lim
ε→0

vs1.

In our simulations, an approximation of limε→0 v
s
1 can already be inferred from Figure 13.

A more instructive and explicit formula can be derived, however, by taking the limit directly
in (80):

lim
ε→0

vs1 = lim
ε→0

∫ L

−L

(
2π(ε2 + x2

2)
)−1

εf(x2)dx2.(83)

Assume that f(x2) has a convergent Taylor series centered on x2 = 0:

(84) f(x2) = f(0) +

∞∑
n=1

c2nx
2n
2 .
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Figure 13. Social velocity (80) acting from the aggregation on the wall (see (75) and Figure 9(a)) on a
particle at position (ε, 0).

Note that we have used here the symmetry of the wall profile about x2 = 0. Equations (83)
and (84) then give

(85) lim
ε→0

vs1 = f(0) lim
ε→0

∫ L

−L

ε

2π(ε2 + x2
2)
dx2 + lim

ε→0

∫ L

−L

∞∑
n=1

εc2nx
2n
2

2π(ε2 + x2
2)
dx2.

Observe that∣∣∣∣∣limε→0
ε

∫ L

−L

∞∑
n=1

c2nx
2n
2

2π(ε2 + x2
2)
dx2

∣∣∣∣∣ ≤
∣∣∣∣∣limε→0

ε

∫ L

−L

∞∑
n=1

1

2π
c2nx

2n−2
2 dx2

∣∣∣∣∣
≤ 1

2π

∣∣∣∣∣limε→0
ε

∫ L

−L

∞∑
n=1

2n(2n− 1)c2nx
2n−2
2 dx2

∣∣∣∣∣
= 0,(86)

where we have assumed that f ′′(x2) has a convergent Taylor series as well.
Also, by an explicit calculation,

(87) lim
ε→0

∫ L

−L

ε

2π(ε2 + x2
2)
dx2 =

1

2
.

With (85)–(87), (82) gives

(88) gc =
1

2
f(0).

Our numerical simulations yield f(0) ≈ 1.128 (cf. Figure 9(a)), and hence we find gc ≈ 0.564.
This value also agrees with Figure 13 (as it should).
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4.4. Numerical implementations.

4.4.1. Particle method. Consider N particles with positions xi and velocities vi. In free
space, the particle method for model (1) is simply implemented by numerically integrating

dxi
dt

= vi,(89a)

vi = −M
N

∑
j 6=i
∇K(xi − xj)−∇V (xi),(89b)

with 1 ≤ i ≤ N .
In domains with boundaries, one needs to consider the possibility of a particle meeting

the boundary within a time step. Let ∆t denote the time step used in simulations, and for
the sake of simplicity consider an explicit Euler method for time integration. If within a time
step, particle i meets the boundary, then, in accordance with (2b) and (3), from the moment
of collision it only continues to move in the tangential direction to the boundary.

For the one-dimensional problem on a half-line, this simply means that had a particle at
xi with velocity vi reached the origin within a time step ∆t, then it should simply be placed
at the origin at the end of the time step. The resulting integrating scheme is then given by

(90) xi(t+ ∆t) = xi(t) + ∆tP̄xivi(t),

where the projection operator P̄xi , which generalizes (3), is given by

(91) P̄xivi =

{
vi if xi + ∆tvi ≥ 0,

−∆t−1xi otherwise.

For the two-dimensional problem on a half-plane we should acknowledge that the vertical
velocity of a particle remains unchanged upon colliding with the wall. In this case, a particle
xi = (xi,1, xi,2) with current velocity vi = (vi,1, vi,2) updates its position according to (90),
except that in two dimensions the discrete projection operator is

(92) P̄xivi =

{
(vi,1, vi,2) if xi,1 + ∆tvi,1 ≥ 0,

(−∆t−1xi,1, vi,2) otherwise.

We used several general methods for getting disconnected states:
• using initial states that are highly concentrated (very small support) and very close

(or adjacent) to the wall;
• (one dimenson) using initial states as in section 3.3.1 (in separated form) or as in

section 3.3.2 (randomly generated from a uniform distribution on a segment in Ω);
• manually removing particles from the wall and placing them into the free swarm. This

allows us to see representations of all disconnected equilibria even if they are not
dynamically achievable.

Finally, we mention particular issues that can arise with regard to the choice of time step ∆t.
There are two phenomena that one can observe:
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x
0 d1 d1 + d2

0

S

1

Observers

$(0) = 61

$(x) = 62

Figure 14. Abstracted solution presumed in the numerical solver in one dimension showing locations of
observers where we solve Λ(x) to be a constant. Variables for the system are d1, d2, S, λ1, and λ2, as shown
in the figure.

• If particles are very concentrated and/or ∆t is too large, then one can observe erratic
dynamics where particles are sent far away from the free swarm.
• Related to the item above, particle methods applied in the manner described here

tend to overapproximate the number of particles on the wall in their resultant states,
though generally these errors are relatively small and we have mitigated the severity
through decreasing the time step.

4.4.2. Discretization of the first variation of the energy ((28) and (73)).
One-dimensional case. We assume a solution of the form (26) where we now treat S, d1,

and d2 as variables to be determined by satisfying (73). Furthermore, we also focus on the
disconnected state, so λ1, λ2 are also variables. We use the term observers in this context to
describe points along the boundary of Ωρ̄ at which we evaluate Λ(x). In one dimension we
require only three observers; see Figure 14. Finally, we consider the mass constraint (27) and
the mass ratio (44); in general we keep rM and M fixed.

Then our system of equations encompasses (27), (44), and

(93) Λ(0) = λ1, Λ(d1) = λ2, Λ(d1 + d2) = λ2

for a total of five equations for five unknowns. We also mention that if one fixes the mass
ratio to be that of the minimizer for a given gravity g, then the result from solving the system
of equations has |λ2 − λ1| and d1 below the tolerance of the solver, thus effectively recovering
the connected solution.

Two-dimensional case: Disconnected. Because of the symmetry about x2 = 0, we need
only focus on half the space but can extend to the full space using symmetry. We now assume
a solution of the form (66) where d1, d2, L, λ1, λ2, as well as the profiles f(x2) and g(x1) need
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(a) (b)

Figure 15. Abstracted disconnected (a) and connected (b) solutions presumed in the numerical solver in
two dimensions showing locations of observers where we solve Λ(x) to be a constant. Variables for the system
are d1, d2, L, λ1, λ2, and f(x2) and g(x1) evaluated on the numerical grid (see (95)).

to be determined. We define equidistant vertical and horizontal grids

(94) yi =
L

Nf
i, 0 ≤ i ≤ Nf , xj = d1 +

d2

Ng
j, 0 ≤ j ≤ Ng,

along with midpoints y∗i = 1
2(yi−1 + yi) for 1 ≤ i ≤ Nf and x∗j = 1

2(xj−1 + xj) for 1 ≤ j ≤ Ng.
We seek to find the Nf + Ng variables

(95) f(y∗i ) = fi, 1 ≤ i ≤ Nf , g(x∗j ) = gj , 1 ≤ j ≤ Ng.

The profile density f and the free boundary g are then extended with a linear interpolant.
To solve for (73) we use observers at (0, yi) for 0 ≤ i ≤ Nf , (x∗j , gj) for 1 ≤ j ≤ Ng, (d1, 0),

and (d1 + d2, 0); see Figure 15(a). We also have the mass condition (68) and the mass ratio
condition (74). Together we have Nf +Ng + 5 conditions in total and Nf +Ng + 5 variables.

Two-dimensional case: Connected. The connected state implementation uses the same
procedure in dealing with f(x2) but differs for the free boundary g. First, we lose the point
(d1, 0) as d1 = 0, and we do not pin this edge now. Second, we drop the mass ratio condition
and now we only have λ as λ1 = λ2 =: λ. These are the only differences though, and we wind
up with Nf +Ng + 4 conditions and Nf +Ng + 4 variables; see Figure 15(b).

The system of equations is solved with the MATLAB function fsolve using default set-
tings, and integrals are evaluated with integral or integral2 for one- or two-dimensional
integration, respectively. When using integral2 we use the iterated method setting.
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Remark 4.2 (mass and mass ratio constraints). In one dimension the mass constraint (27)
and the mass ratio constraint (44) are explicit, and we implement them directly in the numerics
as additional conditions.

In two dimensions, recall that we work with the linear interpolants of f and g in which
case, by using a numerical integrator, we can compute the necessary integrals for the mass
condition (68) and mass ratio condition (74), namely∫ L

−L
f(x2)dx2 and |D| =

∫ d1+d2

d1

∫ g(x1)

−g(x1)
dx2dx1.

Specifically, we used the MATLAB functions integral and integral2 to do the numerical in-
tegration. In using integral2 we employed the iterated method as described in the function’s
documentation.

5. Closing remarks and future directions. The present work has shown that the ex-
tensively studied aggregation model (1) has a potentially undesirable feature when posed in
domains with boundaries: Solutions robustly evolve to equilibria which are not local mini-
mizers of the energy. We illustrated this phenomenon in both one and two dimensions. In
particular, in one dimension we took advantage of a reduced system by which we could track
explicitly the evolution of the end points and center of mass of the free swarm (see (52)), and
hence quantify the basin of attraction of disconnected (nonminimizer) equilibria.

The reduced dynamics in one dimension can also be used to understand the essential
factor for why solutions in the presence of boundaries evolve into unstable minimizers: Once
concentrations form on the boundary, there is no mechanism in the model to break them
apart—note that in the reduced dynamics (51), the strength S of the delta aggregation at the
boundary remains fixed through time evolution. Viewed from this perspective, the aggregation
model seems flawed when boundaries are considered. To end the paper on a positive note and
to open new directions for future research in this matter, we briefly present some of our
preliminary investigations on how the aggregation model can be rectified.

Consider the aggregation model with quadratic nonlinear diffusion in a domain Ω:

(96) ρt +∇ · (ρv) = ν∆(ρ2),

with v given by (1b) and with no-flux boundary conditions prescribed on ∂Ω. In principle,
one could use an arbitrary power ρm, m > 1, for the nonlinear diffusion, but we illustrate the
idea here only for m = 2. The diffusion coefficient ν > 0 is taken to be small. We note that
model (96) is also a gradient flow with respect to the energy (see also (5))

(97) Eν [ρ] = ν

∫
Ω
ρ2(x) dx+

1

2

∫
Ω

∫
Ω
K(x− y)ρ(x)ρ(y) dx dy +

∫
Ω
V (x)ρ(x) dx.

The aggregation model with nonlinear diffusion has been considered by various works in
recent years. Such works include variational studies [6], well-posedness of solutions [11], as
well as investigations on equilibria and long time behavior of solutions [19, 13]; the latter
works are particularly relevant to the present paper. Nevertheless, the approach we consider
now is novel: Regard (96) as a regularization of the aggregation model (2), and show that
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the above degeneracies of the aggregation model are corrected by adding a small amount of
nonlinear diffusion.

One might ask why we do not consider linear diffusion, which could be easily implemented
into a numerical scheme. The main concern here is the loss of compact solutions. With
nonlinear diffusion as described above, we expect compact equilibria as found in [13]. Therefore
we focus on nonlinear diffusion, as we simply wish to showcase a mechanism to stop the model
from evolving into nonminimizing states.

To illustrate the regularization concept, we have computed numerical solutions of (96) us-
ing the finite-volume method developed in [15]. We note that this method has been specifically
designed for aggregation models of this sort; in particular, the method preserves positivity of
solutions as well as retaining a discrete gradient flow structure. It has been demonstrated in
[15] that the method performs accurate computations of long time behavior and stationary
states of model (96).

We present results in both one and two dimensions which support the idea that (96) is a
meaningful regularization of (2). We denote below by ρν(x, t) the solutions of (96), and by
ρ̄ν(x) its equilibria. The approach is to consider model (96) initialized near a disconnected
(unstable) equilibrium of (2), and to contrast the nonminimizer equilibria achieved with model
(2) with equilibria obtained with model (96).

In the context of the finite-volume discretization, a disconnected equilibrium of (2) can be
approximated by placing mass S in cells adjacent to the wall. In one dimension this amounts
to setting the density of the first cell adjacent to the wall equal to S

∆x , where ∆x is the grid
size. In two dimensions this amounts to considering the wall profile in Figure 10 and the cells
adjacent to this profile. Then for each point along the wall profile we place that mass into the
closest cell.

Figure 16(a) shows snapshots of the time evolution of ρν(x, t) in one dimension, for ν =
10−4, in the absence of a gravitational potential (V = 0). As seen in the figure, the effect of
adding small quadratic diffusion to (2) is that the model no longer evolves into a nonminimizer
of the energy (such as the disconnected equilibrium in Figure 1(a)), but approaches instead a
smoothed-out version of the (connected) energy minimizer of (2) shown in Figure 1(b). Figure
16(b) shows dynamically achieved equilibria of (96) for decreasing values of ν; as expected,
the smaller the diffusion, the sharper the approximation of the connected equilibrium.

Figure 17 demonstrates that a similar regularization procedure occurs in the presence of a
gravitational potential (here g = 0.125, as we had without diffusion). Initialized at an unstable
equilibrium of model (2) (Figure 2(a)), model (96) evolves dynamically into an approximation
of the connected equilibrium from Figure 2(b). Note that by the effect of diffusion, delta
concentrations at the boundary have now been replaced by steep boundary layers of large
(but finite) amplitude.

Finally, Figure 18 shows the regularization phenomenon in two dimensions with gravity
(g = 0.064, as for the numerical experiments without diffusion). Note that we do not consider
the case g = 0 here, as in the absence of gravity, model (2) in two dimensions does not
lead to disconnected equilibria. Figure 18 demonstrates that model (96) initialized at an
unstable (disconnected) equilibrium of (2) (Figure 18(a)) evolves into an approximation of
the connected energy minimizer (Figure 18(b)); here ν = 10−4.

As an additional numerical check, for both one and two dimensions with gravity, we
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Figure 16. Aggregation model with nonlinear diffusion on a half-line for V = 0 (no exogenous potential).
Initialized near a (disconnected) nonminimizer equilibrium of model (2) (see Figure 1(a)), solutions to (96)
approach asymptotically a smoothed-out version of the (connected) minimizer equilibrium of (2) shown in
Figure 1(b). (a) Several time snapshots of ρν(x, t) for ν = 10−4, with a zoom-out near the boundary shown
in insert. (b) Equilibria of (96) for various values of ν. The smaller the diffusion coefficient, the sharper the
approximation of the connected equilibrium.
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Figure 17. Aggregation model with nonlinear diffusion on a half-line for V (x) = gx with g = 0.125.
Solutions to (96) are initialized near a (disconnected) nonminimizer equilibrium of model (2) (see Figure 2(a)).
In contrast to the evolution governed by model (2), solutions to (96) evolve dynamically into an approximation of
the connected minimizer from Figure 2(b). (a) Several time snapshots of ρν(x, t) for ν = 10−4; the insert shows
a zoom-out near the boundary. Note that although the final time here is much smaller than in Figure 16(a), in
both figures the states were evolved until the flux at any location was below 10−12. (b) Equilibria of (96) for
various values of ν. By nonlinear diffusion, delta concentrations at the origin have been replaced by boundary
layers of finite amplitude. Approximations to the connected equilibrium become sharper with decreasing ν.
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(a) (b)

Figure 18. Aggregation model with nonlinear diffusion on a half-plane with ν = 10−4 in two dimensions for
V (x1, x2) = gx1 with g = 0.064. (a) Solutions to (96) are initialized at an unstable (disconnected) equilibrium
of (2) (see Figure 10(a)). (b) Solutions to (96) reach asymptotically a connected equilibrium, representing an
approximation of the connected energy minimizer for (2) shown in Figure 10(b).

computed the mass contained in the boundary layer near the wall and compared it with the
mass of the Dirac delta accumulation on the wall for the model with no diffusion. In one
dimension, we computed the total mass of densities greater than M = 1, which we regard as
the mass in the boundary layer. We found that the mass in the boundary layer approaches 1

2
as ν decreases to zero, supporting the claim that solutions ρν of (96) approach asymptotically
the connected equilibrium of (2) (note that for g = 0.125, the connected equilibrium of (2) has
a Dirac delta accumulation of strength S = 1

2 at the origin). In two dimensions we computed
the total mass of densities greater than 2M = 2 along horizontal lines x2 = const., which
we interpret as the vertical distribution of mass in the boundary layer. In support of the
regularization thesis, we found that such distribution of mass approaches, as ν decreases, the
wall profile f(x2) of the connected equilibrium shown in Figure 10(b).

In conclusion, adding small nonlinear diffusion to the model allows concentrations to
break apart and, hence, provides a mechanism that prevents the model from evolving into a
nonminimizer of the energy. A rigorous study of the zero diffusion limit of solutions ρν(x, t)
to (96), and of minimizers to (97), as well as a more systematic numerical investigation of
the diffusion model, are currently being considered by the authors and will be reported in a
future publication.

6. Appendix. We provide below the six equations derived from (64). The four equations
that ensure Λ(x) = λ2 for x ∈ [d1, d1 + d2] are

C

L−2 + µ2
exp

(
d1

L

)(
− 1

L
cos(µd1)− µ sin(µd1)

)
+

D

L−2 + µ2
exp

(
d1

L

)(
− 1

L
sin(µd1) + µ cos(µd1)

)
+
Lλ2

ε
exp

(
d1

L

)
+ S = 0,
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C

1 + µ2
exp (d1)

(
− cos(µd1)− µ sin(µd1)

)
+

D

1 + µ2
exp (d1)

(
− sin(µd1) + µ cos(µd1)

)
+
λ2

ε
exp (d1) + S = 0,

C

L−2 + µ2
exp

(
−d1 + d2

L

)(
− 1

L
cos(µ(d1 + d2)) + µ sin(µ(d1 + d2))

)
+

D

L−2 + µ2
exp

(
−d1 + d2

L

)(
− 1

L
sin(µ(d1 + d2))− µ cos(µ(d1 + d2))

)
+
Lλ2

ε
exp

(
−(d1 + d2)

L

)
= 0,

C

1 + µ2
exp (−(d1 + d2))

(
− cos(µ(d1 + d2)) + µ sin(µ(d1 + d2))

)
+

D

1 + µ2
exp (−(d1 + d2))

(
− sin(µ(d1 + d2))− µ cos(µ(d1 + d2))

)
+
λ2

ε
exp (−(d1 + d2)) = 0.

The equation that ensures Λ(0) = λ1 is

−GL

(
C

L−2 + µ2
exp

(
− y
L

)(
− 1

L
cos(µy) + µ sin(µy)

)

+
D

L−2 + µ2
exp

(
− y
L

)(
− 1

L
sin(µy)− µ cos(µy)

)
+
Lλ2

ε
exp

(
− y
L

))∣∣∣∣∣
y=d1+d2

y=d1

+

(
C

1 + µ2
exp(−y)

(
− cos(µy) + µ sin(µy)

)

+
D

1 + µ2
exp(−y)

(
− sin(µy)− µ cos(µy)

)
+
λ2

ε
exp(−y)

)∣∣∣∣∣
y=d1+d2

y=d1

+ S(1−GL) = λ1.

Finally, the mass constraint equation gives

S +
C

µ
(sin(µ(d1 + d2))− sin(µd1))− D

µ
(cos(µ(d1 + d2))− cos(µd1))− λ2d2

ε
= M.
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[2] D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul, Dimensionality of local minimizers of the
interaction energy, Arch. Ration. Mech. Anal., 209 (2013), pp. 1055–1088.
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[11] A. L. Bertozzi and D. Slepčev, Existence and uniqueness of solutions to an aggregation equation with
degenerate diffusion, Commun. Pure Appl. Anal., 9 (2010), pp. 1617–1637.

[12] M. Bodnar and J. J. L. Velazquez, An integro-differential equation arising as a limit of individual
cell-based models, J. Differential Equations, 222 (2006), pp. 341–380.

[13] M. Burger, R. Fetecau, and Y. Huang, Stationary states and asymptotic behavior of aggregation
models with nonlinear local repulsion, SIAM J. Appl. Dyn. Syst., 13 (2014), pp. 397–424, https:
//doi.org/10.1137/130923786.
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