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Abstract

We consider the aggregation equation ρt − ∇ · (ρ∇K ∗ ρ) = 0 in R
n, where the interaction

potential K incorporates short-range Newtonian repulsion and long-range power-law attraction.

We study the global well-posedness of solutions and investigate analytically and numerically

the equilibrium solutions. We show that there exist unique equilibria supported on a ball of

R
n. By using the method of moving planes we prove that such equilibria are radially symmetric

and monotone in the radial coordinate. We perform asymptotic studies for the limiting cases

when the exponent of the power-law attraction approaches infinity and a Newtonian singularity,

respectively. Numerical simulations suggest that equilibria studied here are global attractors for

the dynamics of the aggregation model.
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1 Introduction

The multidimensional integro-differential equation,

ρt −∇ · (ρ∇K ∗ ρ) = 0, (1)

has attracted a great amount of interest in recent years. The equation appears in various contexts
related to mathematical models for biological aggregations, where ρ represents the density of the
aggregation and K is the social interaction potential. The asterisk ∗ denotes convolution. We
refer to [1, 2] for an extensive background and literature review on mathematical models of social
aggregations and in particular, for a thorough discussion on the relevance of equation (1) for
modelling swarming behaviours. The equation also arises in a number of other applications such as
granular media [3, 4], self-assembly of nanoparticles [5, 6], Ginzburg-Landau vortices [7, 8, 9] and
molecular dynamics simulations of matter [10]. In this work however we are primarily interested
in biological applications, where equation (1) is used to model social aggregations such as insect
swarms, fish schools, bacterial colonies, etc [1].
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Regarded as a model for biological aggregations, equation (1) incorporates inter-individual
social interactions such as long-range attraction and short-range repulsion, through the aggregation
potential K. The properties of the potential (symmetry, regularity, monotonicity, etc) are essential
in studying issues such as the well-posedness [11, 12, 13] or the long-time behaviour [14, 15] of
solutions to model equation (1). In particular, a large component of the research on this model
dealt with attractive potentials K which lead to solutions that blow-up (in finite or infinite time)
by mass concentration, into one or several Dirac distributions [16, 17, 18].

It is essential however for an aggregation model to be able to capture solutions with biologically
relevant features. As pointed out by Mogilner and Keshet in their seminal work [1] on the class
of models discussed here, such desired characteristics include: finite densities, sharp boundaries,
relatively constant internal population and long lifetimes. The difficulty in finding such solutions
to model (1) has been indicated as a “challenge” in previous literature [19, 20], and in fact there
is only a handful of works that address this issue. Topaz and collaborators [15, 21] derived ex-
plicit swarm equilibria that arise in the one-dimensional model with Morse-type potentials (in the
form of decaying exponentials), but their explicit calculations do not extend to higher dimensions.
Other works illustrate asymptotic vortex states in 2D [19] and clumps (aggregations with compact
support) in a nonlocal model that includes density-dependent diffusion [2].

A recent publication of the authors [22] considered an interaction potential K for which equilib-
ria of the aggregation model (1) have the desired characteristics indicated above. More specifically,
the kernel investigated in [22] has a repulsion component in the form of the Newtonian potential
and attraction given by a power law1:

K(x) = φ(x) +
1

q
|x|q. (2)

Here, φ(x) is the free-space Green’s function of the negative Laplace operator −∆:

φ(x) =







−1
2 |x|, n = 1

− 1
2π ln |x|, n = 2

1
n(n−2)ωn

1
|x|n−2 , n ≥ 3,

(3)

and q is a real exponent, q ≥ 2. In (3), n is the number of space dimensions and ωn denotes the
volume of the unit ball in R

n.
We summarize briefly some of the results from [22] that are relevant to the present article. For

q = 2, the equilibrium density of (1)-(2) is uniform inside a ball of Rn and zero outside it. In
this case, the method of characteristics was used to solve explicitly the dynamics corresponding to
radially symmetric initial conditions in any dimension. This showed the global stability within the
class of radially symmetric solutions of the constant steady state. The explicit calculations did not
extend to general exponent q > 2, but the existence of a unique radially symmetric equilibrium of
compact support was shown, after casting the equilibrium problem as an eigenvalue problem for
an integral operator and applying the Krein-Rutman theorem. Some explicit calculations of the
equilibria could be performed however for the special subcase when q is even. In addition to these
studies on equilibria, the global well-posedness of solutions to (1)-(2) (with q ≥ 2) was shown by
borrowing techniques used in the analysis of incompressible Euler equations [23].

1See Section 5 for a discussion on how the potential can be modified to avoid the biologically unrealistic growth
of attraction with distance when q > 0.
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The main purpose of the work from [22] was to design attractive-repulsive potentials that yield
equilibrium states of finite densities and compact support. In this respect, the attraction component
1
q |x|q of the potential was specifically designed to counter-balance the singular Newtonian repulsion.
Newtonian (attractive) potentials for model (1) were considered in [8, 9] in the context of vortex
motions in two-dimensional superfluids. The main concern of these works was the well-posedness of
solutions, in particular concentration and singularity formation in measure-valued solutions. Very
recently, Newtonian potentials were also considered in aggregation models [24, 25]. In [25], the
authors study patch solutions and they consider separately the case of an attractive Newtonian
potential (with finite time concentration) and of a repulsive Newtonian potential (with spreading
to a circular/ spherical aggregation patch).

The purpose of the present research is (i) to extend the interaction potential (2)-(3) studied
in [22] to allow for more general attractive forces2 (q > 2 − n) and (ii) to investigate analytically
and numerically the properties of the equilibria to the aggregation model (1)-(2) for q > 2 − n.
Remarkably, the intricate balance between the power-law attraction and the singular repulsion
provides the model with a very interesting and at the same time biologically relevant set of steady
states. For all values of q ∈ (2−n,∞), the aggregation model has a unique steady state supported
in a ball. This steady state is radial and monotone in the radial coordinate. More specifically,
the equilibria are decreasing about the origin for 2 − n < q < 2 and increasing for q > 2, while
q = 2 corresponds to a constant equilibrium density. Figure 1 shows the equilibrium solutions in
three dimensions for various values of q; all shown equilibria have mass 1. The limits q → ∞ and
q ց 2−n, that is, when attraction becomes infinitely strong (at large distances) or as singular as the
(Newtonian) repulsion, are particularly interesting. As q → ∞, the radii of the equilibria approach
a constant, but the qualitative features change dramatically, as mass aggregates toward the edge
of the swarm, leaving an increasingly void region in the centre — this effect can be observed in
Figure 1 (q = 20, 40, 80). As q ց 2 − n, the radii of equilibria approach 0 and mass concentrates
at the origin – see Figure 1 (q = 1.5, 1, 0.5). Numerical simulations suggest that all these equilibria
are global attractors for the dynamics of (1)-(2), which motivates and gives strong grounds to the
studies of the present work.

There are a few very recent studies of equilibria of (1) with attractive-repulsive potentials in
power-law form that closely relate to our work. In [26], the authors study the stability of spherical
shell equilibria for potentials in the form K(x) = 1

q |x|q − 1
p |x|p, where 2 − n < p < q (short

range repulsion and long range attraction). While the attraction component, |x|q/q, is the same as
in (2), the singularity of the repulsion term is “better” than Newtonian (p > 2 − n). Shell steady
states are shown to exist and be locally stable under certain conditions on the exponents p and q.
The methods from [26] do not apply to Newtonian singularities. Other recent works that involve
model (1) with power-law potentials focus on pattern formation and linear stability analysis of
spherical shells [27, 28].

The results of the paper are as follows. Well-posedness of solutions to the aggregation model (1)-
(2) (with q > 2 − n) is studied in Section 2 by using analogies with the incompressible fluid flow
equations [23, 22, 25]. For all values of q ∈ (2−n,∞), we show in Section 3.1 that there exist unique
equilibria supported on a ball of Rn. In Section 3.2 we employ the method of moving planes [29]
to prove that such equilibria are radially symmetric and monotone in the radial coordinate. In
Section 4 we performed careful asymptotic and numerical investigations of the equilibria. Our
studies address two issues. The first one is the behaviour of equilibria as q → ∞ and q → 2 − n.

2In the special case q = 0 we take K(x) = φ(x) + ln |x|.
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Figure 1: Radially symmetric equilibria of (1)-(2) in three dimensions, for various values of q.The
equilibria are monotone in the radial coordinate: decreasing about the origin for 2 − n < q < 2,
increasing for q > 2, and constant for q = 2. As q → ∞, the radii of the equilibria approach a
constant, and mass aggregates toward the edge of the swarm, leaving an increasingly void region
in the centre. As q ց 2−n, the radii of equilibria approach 0 and mass concentrates at the origin.
Numerics suggests that all these equilibria are global attractors for the dynamics of (1)-(2).

As expected, the two limiting cases give very different asymptotic behaviours. The second issue
addressed in Section 4 is the stability of the equilibrium solutions. The results regarding stability
are preliminary and entirely based on numerical observations. Based on all numerical experiments
we performed, we conjecture that the equilibria studied in this paper are global attractors for
solutions to (1)-(2).

2 A priori bounds and well-posedness of solutions

We start by pointing out that the aggregation model (1)-(2) has two important conservation prop-
erties. Denote the initial density by ρ0:

ρ(x, 0) = ρ0(x), x ∈ R
n.

The aggregation model (1)-(2) satisfies:
(i) Conservation of mass:

∫

ρ(x, t)dx = M, for all t ≥ 0, (4)

where the constant M denotes the initial mass M =
∫
ρ0(x)dx.

(ii) Conservation of centre of mass:

∫

xρ(x, t)dx = 0, for all t ≥ 0, (5)
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where we assume, without loss of generality, that the centre of mass of the initial density is at the
origin:

∫
xρ0(x)dx = 0.

The solutions to (1)-(2) considered in this paper are bounded and integrable. For such solutions,
both properties follow immediately from (1). Property (ii) uses the radial symmetry of the potential.
The two conservation properties will be used frequently in this article.

By introducing the notation:

f(x) = −∇K(x),

we write the aggregation model as

ρt +∇ · (ρv) = 0, (6a)

v = f ∗ ρ, (6b)

f(x) =

(
1

nωn

1

|x|n−1
− |x|q−1

)
x

|x| . (6c)

This work makes extensive use of the Lagrangian formulation of the aggregation model (6),
where dynamics is tracked along the characteristic curves, defined by:

d

dt
X(α, t) = v(X(α, t), t), X(α, 0) = α, (7)

with velocity v defined by (6b) and (6c).

2.1 A priori bounds on density

Expand ∇ · (ρv) = v · ∇v + ρ∇ · v and write the evolution of the density ρ(X(α, t), t) along
characteristics:

dρ

dt
(X(α, t), t) = −ρ∇ · v(X(α, t), t). (8)

Calculation of ∇ · v from (6b) and (6c) yields:

∇ · v = ρ− (n+ q − 2)

∫

Rn

|x− y|q−2ρ(y)dy. (9)

The continuity equation (6a) expresses the fact that

ρ(X(α, t), t)J(α, t) = ρ0(α), (10)

where
J(α, t) = det∇αX

is the Jacobian of the particle map α → X(α, t).
Define the maximum of the density

ρmax(t) = sup
x

ρ(x, t).

We show that provided ρmax is bounded initially, it remains bounded above, uniformly in time.
This was shown in [22] for q ≥ 2 and here we extend the results to include 2− n < q < 2.
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Let q ∈ (2 − n, 2). From the characteristic equation (8) for ρ and the expression (9) for ∇ · v,
we have, along particle trajectories:

dρ

dt
= −ρ2 + (n+ q − 2)ρ

∫

Rn

|x− y|q−2ρ(y)dy (11)

= −ρ2 + (n+ q − 2)ρ

[
∫

|x−y|<r∗

|x− y|q−2ρ(y)dy +

∫

|x−y|>r∗

|x− y|q−2ρ(y)dy

]

≤ −ρ2 + (n+ q − 2)ρ

[

ρmax

∫

|x−y|<r∗

|x− y|q−2dy + rq−2
∗

∫

|x−y|>r∗

ρ(y)dy

]

, (12)

where we used q < 2 and r∗ > 0 will be chosen conveniently later. Use the following estimates on
the integrals in the right-hand-side of (12):

∫

|x−y|<r∗

|x− y|q−2dy =
nωn

n+ q − 2
rn+q−2
∗ ,

∫

|x−y|>r∗
ρ(y)dy ≤ M,

and choose r∗ to be:
r∗ = (ρmax)

−1/n. (13)

We find
dρ

dt
≤ −ρ2 + Cρρ(2−q)/n

max ,

with
C = nωn +M(n+ q − 2),

resulting in the following inequality

dρmax

dt
≤ Cρ(n+2−q)/n

max − ρ2max. (14)

As q > 2−n, the damping dominates the growth term in the right-hand-side of (14): (n+2−q)/n <
2. The right-hand-side of (14) becomes negative when ρmax > C(n+q−2)/n and hence, regardless of
the size of the support, the maximum density is bounded uniformly in time, provided it is initially
bounded.

Remark. For q ≥ 2, it was shown in [22] that the density has compact support uniformly in
time, provided the initial density ρ0 has compact support. This property was used to conclude
global wellposedness of solutions. In the present study, where 2 − n < q < 2, we could not show
the compact support of solutions when 2−n < q ≤ 1, but we managed to circumvent this by using
the uniform L1-bound of ρ.

We present briefly the argument that shows uniform compact support for 1 < q < 2. The density
is transported along characteristics (see equation (10)), so it is enough to show that the trajecto-
ries X(α, t) that carry non-zero densities remain within some compact set. Calculate using (6b)
and (6c):

x · v(x, t) =
∫

Rn

x · (x− y)

nωn|x− y|n ρ(y, t)dy −
∫

Rn

x · (x− y)|x− y|q−2ρ(y, t)dy. (15)

Define the maximum radius of support R(t) as

R(t) = max
α∈supp(ρ0)

|X(α, t)|,
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and denote by At the set of the maximizers, i.e., At = {α ∈ supp(ρ0) : |X(α, t)| = R(t)}.
The definition of R(t) implies that

R
dR

dt
= max

α∈At

X(α, t) · d

dt
X(α, t).

Take any α ∈ At which maximizes the right-hand-side of the expression above, and evaluate (15)
at x = X(α, t). The left-hand-side of (15) reduces to R dR

dt . The first term in the right-hand-side
of (15) can be estimated as follows:

∫

Rn

x · (x− y)

nωn|x− y|n ρ(y, t)dy ≤ R

nωn

∫

|x−y|<1

1

|x− y|n−1
ρ(y)dy +

R

nωn

∫

|x−y|>1

1

|x− y|n−1
ρ(y)dy

≤ ρmaxR+
M

nωn
R.

For the second term, use |x − y| ≤ 2R and x · (x − y) ≥ 0, for |x| = R on the boundary of the
support and y in the support of ρ, to find

−
∫

Rn

x · (x− y)|x− y|q−2ρ(y, t)dy ≤ −(2R)q−2

∫

Rn

x · (x− y)ρ(y)dy

= −2q−2MRq,

where we used conservation of mass (4) and centre of mass (5) to go from the second to the last
line. Using the estimates in (15), derive

dR

dt
≤ ρmax +

M

nωn
− 2q−2MRq−1.

We reiterate here that q > 1. Hence, the trajectories that carry non-zero densities will remain
inside the disk of radius Rmax, where

Rmax =

(
ρmax +M/(nωn)

2q−2M

) 1
q−1

.

2.2 Existence and uniqueness of solutions

To study well-posedness of solutions we use a Lagrangian approach and rewrite the aggregation
equation (1) in terms of particle trajectories. Then we regard the model as an ODE on a certain
Banach space and infer local existence and uniqueness from Picard theorem. The setup of the ODE
framework is the same as that used in [22] to study the case q ≥ 2 and is inspired from the study
of well-posedness of solutions to the incompressible Euler equation in Lagrangian formulation [23].
Extension to global existence is achieved through an argument similar to the well-known Beale-
Kato-Majda blow-up criterion for incompressible flows [30].

Make the change of variable y = X(β, t) in the expression (6b) for v, with f given by (6c), and
use (10) to write the characteristic equation (7) as

d

dt
X(α, t) = F(X(α, t)) (16a)

X(α, 0) = α, (16b)
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where the map F(X) is defined by

F(X(α, t)) =

∫

Rn

(
1

nωn

X(α, t) −X(β, t)

|X(α, t) −X(β, t)|n − |X(α, t) −X(β, t)|q−2(X(α, t) −X(β, t))

)

ρ0(β)dβ.

(17)
System (16)-(17) is a reformulation the PDE model (6) in terms of particle-trajectory equations.

Case q ≥ 2 was studied in detail in [22], by analogy with the ODE setup of the incompressible
Euler equations [23].

Following [23, 22], we consider the Banach space

B = {X : Rn → R
n such that ‖X‖1,γ < ∞},

where ‖ · ‖1,γ is the norm defined by

‖X‖1,γ = |X(0)| + ‖∇αX‖L∞ + |∇αX|γ . (18)

Here, | · | is the Hölder seminorm

|∇αX|γ = sup
α6=α′

|∇αX(α) −∇αX(α′)|
|α− α′|γ .

Consider an open subset OL, of B defined by

OL =
{

X ∈ B | inf
α

det∇αX(α) > 1/L and ‖X‖1,γ < L
}

.

The key ingredients to show local and global well-posedness of solutions are the properties of
the convolution kernel

k(x) =
1

nωn

x

|x|n , (19)

present in the repulsion component of (6c). In particular, k is singular, homogeneous of degree
1−n and its gradient P = ∇k is homogeneous of degree −n and defines a singular integral operator
(SIO). The close analogy with incompressible fluid equations comes from the fact that a similar
kernel appears in the Biot-Savart law [23].

The local existence and uniqueness is stated by the following theorem.

Theorem 2.1. (local existence and uniqueness) Consider a compactly supported initial density
ρ0 ∈ L∞(R2), with |ρ0|γ < ∞, for some γ ∈ (0, 1). Then for any L > 0, there exists T (L) > 0 and
a unique solution X ∈ C1((−T (L), T (L));OL) to (16)-(17), with q > 2− n.

Proof. Following [22, 23], we show that the map F is bounded and locally Lipschitz continuous on
OL. Local existence and uniqueness then follows from Picard theorem. Details are presented in
the Appendix.

We now use a continuation result of solutions to autonomous ODE’s on Banach spaces (Theorem
4.4 in [23]) to upgrade the result to global existence. Inspecting the set OL we infer that we cease
to have a solution at a finite time T∗ provided either infα det∇αX(α) becomes 0 or ‖X‖1,γ becomes
unbounded as t → T∗.

The first scenario is ruled out by the following proposition.
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Proposition 2.2. At any fixed time t < ∞, solutions of (16)-(17) satisfy

inf
α

det∇αX(α, t) ≥ e−Ct,

where C > 0 is a constant.

Proof. Use the differential equation that J satisfies,

d

dt
J(α, t) = J(α, t)∇ · v(X(α, t), t),

to derive

J(α, t) = exp

(∫ t

0
∇ · v(X(α, s), s)ds

)

.

Case q > 2 was considered in [22]. For 2 − n < q < 2, one can use (9) and similar calculations to
those leading to (12)-(14), to derive

|∇ · v| ≤ ‖ρ‖L∞ + C‖ρ‖
2−q
n

L∞ .

As ‖ρ‖L∞ is uniformly bounded in time (see Section 2.1), we find

J(α, t) ≥ exp (−Ct) ,

with C > 0.

The second scenario for the break-up of the solution (finite-time blow-up of ‖X‖1,γ) will be
treated as in Chapter 4.2 of [23]. This procedure was used in [22] to study global well-posedness of
solutions to (16), (17) when q ≥ 2. In summary, ‖X‖1,γ can be shown to remain bounded for all

finite times, provided
∫ t
0 ‖ρ(·, s)ds‖ds < ∞, for all t. This is an analogue of the Beale-Kato-Majda

condition for global existence of solutions to incompressible Euler equations [30, 23]. Our argument
is adapted from the analysis of the incompressible fluid equations presented in Chapter 4 of [23].

A first a priori bound is provided by the following proposition.

Proposition 2.3. Provided
∫ t
0 ‖∇v(·, s)‖L∞ has an a priori bound, ‖∇αX(·, t)‖L∞ and |∇αX(·, t)|γ

are a priori bounded.

Proof. The proof for q = 2 was presented in detail in [22] (see Proposition 2.3). Extending it to
general q > 2 − n does not pose any difficulties and we omit the details. See also Proposition 4.3
from [23] for the corresponding result in the context of incompressible Euler equations.

The Beale-Kato-Majda condition for global existence of incompressible Euler equations is an a
priori control on the time-integral of the supremum norm of vorticity. In the context of our aggre-
gation model (16)-(17), this condition will be replaced by an a priori bound on

∫ t
0 ‖ρ(·, s)‖L∞ ds.

Proposition 2.4. A sufficient condition for
∫ t
0 ‖∇v(·, s)‖L∞ds to be a priori bounded is an a apriori

bound on
∫ t
0 ‖ρ(·, s)‖L∞ds. More specifically,

∫ t

0
‖∇v(·, s)‖L∞ds ≤ eC(ρ0)

∫ t
0 ‖ρ(·,s)‖L∞ds,

where C(ρ0) is a constant that depends on the initial density only.
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Proof. Case q ≥ 2 was discussed in [22]. The proof for 2 − n < q < 2 requires some slight
adaptations from the corresponding result for fluids (see Theorem 4.3 and its proof in [23]). The
repulsion component of∇v can be estimated using (65). The attraction part has a milder singularity
and does not break the estimate, hence we have

‖∇v(·, t)‖L∞ ≤ c (|ρ(·, t)|γǫγ + ‖ρ(·, t)‖L∞ log(1/ǫ)) +M.

Set ǫ = |ρ(·, t)|−1/γ
γ to get

‖∇v(·, t)‖L∞ ≤ ‖ρ(·, t)‖L∞ (log |ρ(·, t)|γ + c) .

Lemma 4.8 in [23] can be trivially adapted to our context, resulting in the following inequality:

|ρ(·, t)|γ ≤ |ρ0|γ exp
(

(c+ γ)

∫ t

0
‖∇v(·, s)‖L∞ds

)

.

By combining the last two inequalities we find

‖∇v(·, t)‖L∞ ≤ C(ρ0)‖ρ(·, t)‖L∞

(

1 +

∫ t

0
‖∇v(·, s)‖L∞ds

)

.

The desired inequality follows after division by 1 +
∫ t
0 ‖∇v(·, s)‖L∞ds and integration with respect

to t.

Finally, we have all the ingredients to prove global existence of solutions. The result is given
by the following theorem.

Theorem 2.5. (global existence and uniqueness) Consider the trajectory equations (16), (17)
with the Banach space setup and notations as above, and a compactly supported initial density
ρ0 ∈ L∞(Rn), with |ρ0|γ < ∞, for some γ ∈ (0, 1). Then, for every T , there exists L > 0 and a
unique solution X ∈ C1([0, T );OL) to (16), (17) with q > 2 − n (a unique solution exists globally
in time).

Proof. Case q ≥ 2 was studied in [22] and we focus here on the range 2− n < q < 2.
The solution X is in the set OL provided

inf
α

det∇αX(α) > 1/L and ‖X‖1,γ < L. (20)

Using Proposition 2.2, the first condition is satisfied provided we choose L > eCT . We now investi-
gate the second condition in (20). Start by inspecting the first term in (18), |X(0, t)|. Integrate (7)
to get

X(0, t) =

∫ t

0
v(X(0, s), s)ds. (21)

The repulsion component of v can be bounded in terms of ‖ρ‖L∞ using (64). The attraction
component also has a uniform bound. To show this we distinguish two cases: (i) 2−n < q < 1 and
(ii) 1 ≤ q < 2, and inspect the attraction part of v, i.e., −|x|q−2x ∗ ρ. In case (i),

∣
∣|x|q−2x ∗ ρ

∣
∣ ≤

∫

|x−y|<1

1

|x− y|1−q
ρ(y)dy +

∫

|x−y|>1

1

|x− y|1−q
ρ(y)dy

≤ c‖ρ‖L∞ +M.
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In case (ii) solutions ρ are compactly supported (uniformly in time) in a ball of radius R, provided
the initial density ρ0 is — see Remark in Section 2.1. Hence,

∣
∣|x|q−2x ∗ ρ

∣
∣ ≤ (2R)q−1M.

Using (21) we derive

|X(0, t)| ≤ c1

∫ t

0
‖ρ(·, s)‖L∞ds+ c2t, (22)

The control of ‖X‖1,γ now follows from (22), Propositions 2.3 and 2.4. More precisely, by redefining
the constants appropriately, one can derive

‖X(·, t)‖1,γ ≤ Cec1tec2e
c3

∫ t
0 ‖ρ(·,s)‖L∞ds

. (23)

Given that ‖ρ(·, s)‖L∞ is uniformly bounded, we can choose the constant L large enough such that
‖X(·, t)‖1,γ < L, for all t ∈ [0, T ).

3 Radially symmetric steady states

In this section we show that the aggregation model admits a unique radially symmetric steady state
ρ̄ supported on a ball of Rn. For 2−n < q < 2, we prove that these steady states are monotonically
decreasing about the origin, while for q > 2 they are increasing about it. Case q = 2 corresponds to
constant solutions in a ball [22]. We further study these equilibria using numerical and asymptotic
methods in Section 4.

3.1 Existence and uniqueness of equilibria supported on a ball

Suppose that ρ̄ is a steady state with support the ball B(0, R) centred at the origin, of radius R.
The velocity v is zero in B(0, R), so its divergence also vanishes. Hence, from (9) we find that ρ̄
satisfies the following integral equation,

ρ̄(x)− (n+ q − 2)

∫

Rn

|x− y|q−2ρ̄(y)dy = 0, for x ∈ B(0, R), (24)

and vanishes outside B(0, R).
Consider the operator TR given by

TRρ̄(x) = (n+ q − 2)

∫

B(0,R)
|x− y|q−2ρ̄(y)dy. (25)

The subscript is used to emphasize the dependence of the integral operator on the radius R. As
q − 2 > −n, the kernel |x − y|q−2 is integrable and TR defines a linear bounded operator from
C(B(0, R),R) to itself. Equation (24) can be cast as an eigenvalue problem,

TRρ̄ = ρ̄, ρ̄ ∈ C(B(0, R),R), (26)

where solutions ρ̄ are eigenfunctions corresponding to eigenvalue 1.
The existence and uniqueness of a steady state supported in B(0, R) is provided by the following

theorem.
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Theorem 3.1. For every q > 2 − n and M > 0, there exists a unique radius R (that depends on
q and n only) and a unique steady state ρ̄ of the aggregation model (1)-(2) that is supported on
B(0, R), has mass M and is continuous on its support.

Proof. The strategy of the proof is to first investigate the operator TR from (25) for R = 1. We
show that T1 admits a positive eigenfunction ρ̄1 corresponding to the simple eigenvalue λ. By a
change of variable we find the desired eigenfunction ρ̄ that solves (26), along with the value of the
radius R in terms of λ.

Consider the operator T1 defined by (25) with R = 1. For q > 2−n, the kernel |x− y|q−2 is in-
tegrable and the linear operator T1 : (C(B(0, 1),R), ‖ · ‖L∞) → (C(B(0, 1),R), ‖ · ‖L∞) is bounded.
The operator is also compact. This is a textbook exercise in analysis [31], but we include it here
for completeness. Case q ≥ 2 presents no difficulty, as the kernel |x − y|q−2 is continuous. For
2 − n < q < 2, we write T1 as a limit of compact operators as follows. Consider a smooth cut-off
function h : [0,∞) → R, such as h(r) = 0 for 0 ≤ r ≤ 1/2, h(r) = 1 for r ≥ 1 and 0 ≤ h(r) ≤ 1 for
all r ≥ 0. Define

Kp(x, y) = h(p|x− y|)|x− y|q−2,

and

T1pρ̄(x) = (n+ q − 2)

∫

B(0,1)
Kp(x, y)ρ̄(y)dy.

The kernels Kp are continuous, hence the operators T1p are compact. Now estimate

|T1p(x)− T1(x)| ≤ (n+ q − 2)

∫

B(0,1)
|x− y|q−2|1− h(p|x− y|)|ρ̄(y)dy

≤ (n+ q − 2)‖ρ̄‖L∞

∫

|x−y|<1/p
|x− y|q−2dy

≤ nωn‖ρ̄‖L∞
1

pn+q−2
.

As n+ q − 2 > 0, 1
pn+q−2 → 0, when p → ∞. The convergence is uniform in x, hence,

‖T1p − T1‖ → 0, p → ∞,

and T1 is compact as a limit (in the operator norm) of compact operators.
We apply the Krein-Rutman theorem [32] to operator T1 in the following setup. Take the cone

in C(B(0, 1),R) consisting of all non-negative functions. T1 is a linear, strongly positive, compact
operator that maps the space of continuous functions C(B(0, 1),R) into itself. By Krein-Rutman
theorem (see Theorem 1.2 in [32]), there exists a positive eigenfunction ρ̄1 such that T1ρ̄1 = λρ̄1,
where λ (which depends only on q and n) is the spectral radius of T1. Moreover, the eigenvalue λ
is simple and there is no other eigenvalue with a positive eigenvector.

By making the change of variable

ρ̄(x) = ρ̄1(x/R) (27)

in (25), we get
TRρ̄(x) = Rn+q−2λ ρ̄(x).
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Now ask that ρ̄ is an eigenfunction of TR corresponding to eigenvalue one and find

R = λ− 1
n+q−2 , (28)

which gives the radius of the support as a function of q and n only. Once a mass M for ρ̄ is
set, uniqueness can be inferred from the uniqueness properties of the spectral radius of T1 and its
associated eigenfunction ρ̄1.

3.2 Qualitative properties of equilibria

Monotonicity and radial symmetry of equilibria. We prove that the equilibria given by
positive solutions of (24) (and whose existence and uniqueness was established in Theorem 3.1)
are radially symmetric and monotone in the radial coordinate. More specifically, equilibria are
monotonically decreasing when 2 − n < q < 2 and increasing for q > 2. To prove this result
we employ the method of moving planes, a technique introduced by the Soviet mathematician
Alexandroff in the early 1950’s, which became well-known after Gidas, Ni and Nirenberg [29]
applied it to study qualitative properties of positive solutions of elliptic equations. We refer to [32]
for a detailed description of the method and its applications.

Our use of the moving plane technique is inspired by a novel application of the method in
the context of integral equations [33]. Consider a steady state ρ̄ supported on the ball B(0, R);
ρ̄ satisfies the integral equation (24) in B(0, R) and vanishes outside B(0, R). For convenience of
calculations, denote

α = n+ q − 2.

As q > 2 − n, we have α > 0. Two cases will be distinguished from the subsequent analysis: (i)
2−n < q < 2 (equivalently, 0 < α < n) with radial equilibria which decrease about the origin, and
(ii) q > 2 (or α > n) with increasing solutions. Using the new notation, ρ̄ satisfies

ρ̄(x) =

{

α
∫

B(0,R)
1

|x−y|n−α ρ̄(y) dy x ∈ B(0, R)

0 x /∈ B(0, R).
(29)

Take µ ∈ R such that −R < µ < 0, and consider the reflection across the plane x1 = µ,
x 7→ xµ = (2µ−x1, x2, . . . , xn). In particular, we have the image 0µ of the origin 0 under this map.
Define

ρ̄µ(x) = ρ̄(xµ).

Using (29), ρ̄µ is given by

ρ̄µ(x) =

{

α
∫

B(0,R)
1

|xµ−y|n−α ρ̄(y) dy x ∈ B(0µ, R)

0 x /∈ B(0µ, R).
(30)

Define
Σµ = {x ∈ B(0, R) | x1 ≥ µ}.

We apply the method of moving planes and compare ρ̄(x) and ρ̄µ(x) for x ∈ Σµ. In case (i),
2− n < q < 2, the goal is to prove that

ρ̄µ ≤ ρ̄ on Σµ,
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for all µ ∈ (−R, 0), as this would imply the desired monotonicity with respect to x1. We first show
that there is a µ ∈ (−R, 0) for which this inequality holds. Then, by a continuity argument, we
prove that the plane x1 = µ can be moved continuously all the way to x1 = 0 (show that once
the inequality holds for a certain µ, it also holds for µ + ǫ, with ǫ small). Hence conclude that
ρ̄(x) increases as x approaches the origin from x1 < 0. A similar argument can be made using
planes x1 = µ > 0. Since the direction x1 can be chosen arbitrarily we conclude that ρ̄ is radially
symmetric and decreasing about the origin. For case (ii), q > 2, a similar argument leads to ρ̄
being radial and increasing about the origin.

We now state and prove the result regarding the monotonicity of equilibria of (1)-(2).

Theorem 3.2. Consider a bounded steady state ρ̄(x) of the aggregation model (1)-(2) that is
supported in a ball B(0, R) of Rn. Then, ρ̄ is radially symmetric and monotone about the origin.
More specifically, we distinguish two cases: (i) 2−n < q < 2, when ρ̄ is decreasing about the origin,
and (ii) q > 2, when ρ̄ is increasing.

Proof. We use the notations and symbols introduced in the preamble of the theorem. Calculate
ρ̄(x)− ρ̄µ(x), for x ∈ Σµ. As ρ̄µ(x) = 0 outside B(0µ, R), we have

ρ̄(x)− ρ̄µ(x) = ρ̄(x) > 0, for x ∈ Σµ \B(0µ, R).

It remains to consider the case x ∈ Σµ∩B(0µ, R). Denote by ΣC
µ the complement of Σµ in B(0, R),

i.e.,
ΣC
µ = B(0, R) \ Σµ,

and calculate, using (29),

ρ̄(x) = α

∫

Σµ

1

|x− y|n−α
ρ̄(y) dy + α

∫

ΣC
µ

1

|x− y|n−α
ρ̄(y) dy

= α

∫

Σµ

1

|x− y|n−α
ρ̄(y) dy + α

∫

Σµ∩B(0µ,R)

1

|xµ − y|n−α
ρ̄µ(y) dy.

In the above calculation we used |xµ−yµ| = |x−y| to write the second integral in the right-hand-side
as an integral with respect to yµ (subsequently relabelled y).

Similarly, using (30),

ρ̄µ(x) = α

∫

Σµ

1

|xµ − y|n−α
ρ̄(y) dy + α

∫

Σµ∩B(0µ,R)

1

|x− y|n−α
ρ̄µ(y) dy.

As ρ̄µ is zero outside B(0µ, R), the second integrals in the right-hand-sides of the expressions for ρ̄
and ρ̄µ above can be extended to Σµ. Hence, we compute, for x ∈ Σµ ∩B(0µ, R),

ρ̄(x)− ρ̄µ(x) = α

∫

Σµ

(
1

|x− y|n−α
− 1

|xµ − y|n−α

)

(ρ̄(y)− ρ̄µ(y)) dy. (31)

Case (i) 2− n < q < 2 (or 0 < α < n): For x ∈ Σµ ∩ B(0µ, R) and y ∈ Σµ, |x− y| < |xµ − y|.
Hence,

1

|x− y|n−α
− 1

|xµ − y|n−α
≥ 0, for all x ∈ Σµ ∩B(0µ, R) and y ∈ Σµ. (32)
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Let us first assume that there exists µ0 ∈ (−R, 0) such that

ρ̄(x) ≥ ρ̄µ0(x), for all x ∈ Σµ0 , (33)

and prove that µ0 can be extended all the way to the origin 0. Suppose by contradiction that µ0

cannot be extended. Take µ ∈ (µ0, µ0 + ǫ), ǫ > 0, and define

Σ−
µ = {x ∈ Σµ | ρ̄(x) < ρ̄µ(x)}.

For x ∈ Σ−
µ , using (31) and (32) we find

0 < ρ̄µ(x)− ρ̄(x) ≤ α

∫

Σ−
µ

(
1

|x− y|n−α
− 1

|xµ − y|n−α

)

(ρ̄µ(y)− ρ̄(y)) dy,

and hence,

‖ρ̄µ − ρ̄‖L∞(Σ−
µ ) ≤ α‖ρ̄µ − ρ̄‖L∞(Σ−

µ ) sup
x∈Σ−

µ

∫

Σ−
µ

(
1

|x− y|n−α
− 1

|xµ − y|n−α

)

dy, (34)

The function under the integral on the right-hand-side is integrable, as α > 0. Also, from (31),

we infer that ρ̄(x) > ρ̄µ(x) in the interior of Σµ0 , which implies that the closure Σ−
µ0 of Σ−

µ0
has

measure 0. As limµ→µ0 Σ
−
µ ⊂ Σ−

µ0 , we conclude that the measure of Σ−
µ approaches 0 as µ → µ0.

Therefore, we can choose ǫ small enough such that

α sup
x∈Σ−

µ

∫

Σ−
µ

(
1

|x− y|n−α
− 1

|xµ − y|n−α

)

dy ≤ 1

2
.

By (34) we have ‖ρ̄µ− ρ̄‖L∞(Σ−
µ ) =0, which implies that Σ−

µ is empty, hence µ0 is not maximal and

we reached the desired contradiction.
It remains to show that µ0 ∈ (−R, 0) with the property (33) exists indeed. Note that (33) holds

for µ0 = −R (see (29) and (30)). An argument entirely similar to the one made in the previous
step proves that the plane µ0 = −R can be moved further to the right, while (33) still holds. This
concludes the proof for case (i).

Case (ii) 2 < q (or α > n) follows similarly, the single difference being the sign of the integrand
in (31). More precisely, instead of (32), the reversed inequality holds:

1

|x− y|n−α
− 1

|xµ − y|n−α
≤ 0, for all x ∈ Σµ ∩B(0µ, R) and y ∈ Σµ.

A similar argument as that made for case (i) shows that ρ̄ decreases as x approaches the origin
from x1 < 0. Hence conclude that in this case ρ̄ is radially symmetric and increasing about the
origin.

Remarks
a. Case q = 2 corresponds to constant solutions in a ball. These solutions were studied in detail

in [22].
b. Theoretical findings are in perfect agreement with numerical results — see Section 4.
c. The convexity of the steady state can be inferred easily from (24) when q > 3 (the function

|x|α is convex for α > 1).
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4 Numerical and asymptotic studies of radial equilibria

We showed that a steady state ρ̄ supported on a ball is necessarily radially symmetric and monotone.
In this section we investigate further their properties using numerical and asymptotic methods.

4.1 Numerical methods for the dynamic evolution and steady states

In solving numerically the steady states (24) or the dynamic evolution of solutions to (1)-(2), the
computational bottleneck is the evaluation of the integral operators. The methods we use are
similar to those in [18, 22] and are reviewed and extended below.

Steady states. The equilibria are computed from (24) by using the power method [34], whose
convergence is guaranteed by Theorem 3.1. First, write the operator TR given by (25) in radial
coordinates:

TRρ̄(r) =
n(n+ q − 2)ωn
∫ π
0 sinn−2 θdθ

∫ R

0
(r′)n−1ρ̄(r′)I(r, r′)dr′, (35)

where

I(r, r′) =

∫ π

0
(r2 + (r′)2 − 2rr′ cos θ)q/2−1 sinn−2 θdθ. (36)

The steady states ρ̄ are eigenfunctions of TR corresponding to eigenvalue 1. Here the eigenvalue
problem consists in determining the eigenfunction ρ̄ and the radius R of the support. The actual
steady density is a constant multiple of this eigenfunction, where the constant is determined from
the initial mass.

By the scaling argument used to prove Theorem 3.1 , it is enough to find the spectral radius λ
of T1, and its corresponding eigenfunction ρ̄1; the steady state ρ̄ can then be calculated from (28)
and (27).

Given an initial positive density ρ̄(0) on [0, 1], consider the iterative scheme (power method):

ρ̄(m+1) = T1ρ̄
(m)/‖T1ρ̄

(m)‖, λ(m) = ‖T1ρ̄
(m)‖/‖ρ̄(m)‖, (37)

where ‖ · ‖ can be any norm for functions on the unit interval [0, 1]. The sequence ρ̄(m) converges
to ρ̄1 [34], and the spectral radius of T1 is given by the limit of λ(m), as m goes to infinity.

The integral operator in (35) is discretized by the trapezoidal rule. The computational complex-
ity can be reduced to the calculation of the integration in r′ only, where I(r, r′) can be interpolated
using the fact that I(r, r′) = max(r, r′)q−2I1(s), where

I1(s) =

∫ π

0
(1 + s2 − 2s cos θ)q/2−1 sinn−2 θdθ, s = min(r, r′)/max(r, r′) ∈ [0, 1], (38)

and I1 is computed at sample points on [0, 1].
The calculations do not present significant challenges, except for q ∈ (2− n, 3− n], when I1(1)

is unbounded, making the error in the trapezoidal rule uncontrollable. We managed to calculate
this more singular case only in dimensions one and three, where I(r, r′) can be obtained explicitly.
Due to these computational difficulties, the singular limit q → 2 − n studied below by asymptotic
methods is valid in all dimensions, but its numerical verification is done only in one and three
dimensions.
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In three dimensions for instance, the kernel I from (36) can be calculated explicitly: when
r, r′ 6= 0,

I(r, r′) =

{
(r+r′)q−|r−r′|q

qrr′ , if q 6= 0
1
rr′ ln

r+r′

|r−r′| , if q = 0,
(39)

and when r′ = 0 or r = 0,
I(r, 0) = 2rq−2, I(0, r′) = 2r′q−2.

Using the explicit form (39), when q is in the singular range (−1, 0], and r ≈ r′, the integrand
r′2I(r, r′)ρ(r′) in the integral operator (35) is weakly singular. However, the part associated with
this weak singularity can be approximated as the product of the weakly singular function |r− r′|−q

and a smooth function. When the latter is approximated by linear or higher order interpolation,
the whole integral can be calculated explicitly[35], giving an accurate approximation of (35).

The steady states have been displayed in Figure 1 in dimension three, for a wide range of values
of q. The results are perfectly consistent with the monotonicity properties stated and proved in
Theorem 3.2. As noted from Figure 1, equilibria display an interesting asymptotic behaviour as
q → ∞ and q ց 2 − n. As q → ∞, the radii of the equilibria approach a constant, and mass
aggregates toward the edge of the swarm. As q ց 2 − n mass concentrates at the origin, as
attraction becomes as strong as the Newtonian repulsion. We perform careful asymptotic studies
in Section 4.2 and confirm and detail these observations.

Dynamic evolution to equilibria. All numerical simulations we performed suggest that equi-
libria that solve (24) are global attractors for the aggregation model (1)-(2). To evolve dynamically
the solutions to (1)-(2), we consider the model in characteristic form (see (16), (17), (11)). In radial
coordinates the characteristic equations read

dr

dt
=

1

rn−1

∫ r

0
(r′)n−1ρ(r′)dr′

− ωn−1

∫ ∞

0
(r′)n−1ρ(r′)

∫ π

0
(r − r′ cos θ)(r2 + r′

2 − 2rr′ cos θ)q/2−1 sinn−2 θdθdr′ (40a)

dρ

dt
= −ρ

[

ρ− (n+ q − 2)ωn−1

∫ ∞

0
(r′)n−1ρ(r′)

∫ π

0
(r2 + r′

2 − 2rr′ cos θ)q/2−1 sinn−2 θdθdr′
]

.

(40b)

The term associated with the singular repulsion (the Newtonian potential φ) in the right-hand-
side of (40a) is calculated by taking advantage of the fact that the corresponding kernel is the
fundamental solution of the Laplace equation.

Similar to the discretization of the integral from (35), the computational complexity in calcu-
lating the integrals from (40a) and (40b) can be reduced by introducing the following auxiliary
functions: I1 (defined by (38)),

I2(s) =

∫ π

0
(1− s cos θ)(1 + s2 − 2s cos θ)q/2−1 sinn−2 θdθ,

I3(s) =

∫ π

0
(s− cos θ)(1 + s2 − 2s cos θ)q/2−1 sinn−2 θdθ.
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Thus, the angular integrals in θ in (40a) and (40b) become products of powers of r, r′, and these
auxiliary functions, with s = min(r, r′)/max(r, r′). Hence the double integrals in (40a) and (40b)
become single integrals in r′ and are evaluated by trapezoidal rule. Due to the extra factor 1−cos θ
in the integrand, I2(1) and I3(1) are bounded for any q > 2 − n, and can always be used in the
trapezoidal rule. This observation reduces the total complexity in the computations to O(N2)
per time step, where N is the number of spatial gridpoints in the radial coordinate r. Once the
characteristic speeds in (40) are found, the equations are evolved in time by the classical fourth
order Runge-Kutta method.

Figures 2(a) and 2(b) show simulation results in three dimensions, corresponding to q = 1.5
and q = 20, respectively. We plot the solution against the radial coordinate r. The initial data
used in Figure 2 is

ρ(x, 0) = (0.2 − 20|x|2 + 1000|x|4) exp(−40|x|2)/c, (42)

where c is a constant chosen to normalize the mass to one. The solutions approach as t → ∞ the
steady states studied in Section 3 and shown in Figure 1. We note that for large q, the convergence
near the origin tends to be slow. Based on numerical observations we conjecture that these equilibria
are global attractors for solutions to (1)-(2). In future work we plan to validate rigorously these
observations regarding the global stability of the steady states.
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Figure 2: Time evolution of a radially symmetric solution to the aggregation model (1)-(2) with
(a) q = 1.5 and (b) q = 20, in three dimensions, starting from initial data (42). The solutions
approach asymptotically the steady states studied in Section 3 (solutions to (24)) and shown in
Figure 1. Numerics with a variety of other initial conditions suggests that these equilibria are global
attractors for the dynamics of (1)-(2).

4.2 Asymptotic behaviour of equilibria as q → ∞ and q ց 2− n

In general, there is no explicit formula for the radius of the support R and the corresponding
steady states ρ̄ on B(0, R), governed by (24). However, when q is large or close to the singular

18



limit 2 − n, the asymptotic behaviours can be obtained by perturbation expansions. To facilitate
the exposition, we only consider the case R = 1 and solve the eigenvalue problem

T1ρ̄1(x) = λρ̄1(x), for x ∈ B(0, 1), (43)

where

T1ρ̄1(x) = (n+ q − 2)

∫

B(0,1)
|x− y|q−2ρ̄1(y)dy, (44)

and ρ̄1 vanishes outside B(0, 1). Provided we know the spectral radius λ of T1 and its corresponding
eigenfunction ρ̄1, the actual steady state ρ̄ in (24) can be recovered as ρ̄(r) = cρ̄1(r/R), where
R = λ−1/(n+q−2) and c is a constant related to the total mass (see the proof of Theorem 3.1, in
particular equations (27) and (28)).

In the rest of this section, the total mass for ρ̄1 is assumed to be one. All asymptotic behaviours
are investigated in one dimension first, to illustrate the essential techniques and features in a
relatively simple setting, and then in higher dimensions.

Asymptotic limit when q → ∞. In this limit, the numerically computed eigenfunctions are
observed to be concentrated near the boundary and the dominant contribution of the integral
operator (44) comes from |y| ≈ 1. This motivates the following asymptotic construction.

Start with the eigenvalue problem (43) in one dimension (n = 1):

λρ̄1(x) = (q − 1)

∫ 1

−1
|x− y|q−2ρ̄1(y)dy. (45)

When x > 0, the above integral on the right hand side is dominated at y ≈ −1, that is

(q − 1)

∫ 1

−1
|x− y|q−2ρ̄1(y)dy ≈ (q − 1)ρ̄1(−1)

∫ 1

−1
|x− y|q−2dy

= ρ̄1(−1)
(
(1 + x)q−1 + (1− x)q−1

)
. (46)

For x < 0 we find the same expression, considering the symmetry ρ̄1(1) = ρ̄(−1). Evaluate (45) at
x = −1 and use (46) to approximate its right-hand-side. We find λ ≈ 2q−1 and

ρ̄1(x) ≈
q

2q+1

(
(1 + x)q−1 + (1− x)q−1

)
, (47)

where the coefficient q/2q+1 is chosen such that the approximated ρ̄1 has total mass one.
Approximations, as q → ∞, to the actual steady states (with unit mass) and their support

can be found from (27) and (28). Hence, R = λ−1/(q−1) ≈ 0.5. However, this is not an accurate
approximation, as it can be observed from Figure 3(a), where we plot the radius R against q, as
obtained from numerics (dots) and the above approximation (dashed line), the latter being referred
to as the coarse approximation. To obtain the numerical results we used the methods described in
Section 4.1.

The approximation of the eigenvalue λ can be improved considerably if in the right-hand-side
of (45) one uses the expression of ρ̄1 given by (47). Near y ≈ −1, use ρ̄1(y) ≈ q(1− y)q−1/2q+1 to
approximate the right-hand-side in (45). Then, evaluate at x = 1 to find

λρ̄1(1) ≈
q(q − 1)

2q+1

∫ 1

−1
|1− y|2q−3dy.
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The integral in the right-hand-side can be computed exactly and also, from (47), ρ̄1(1) ≈ q/4. We
derive the refined approximation λ ≈ 2q−2, with the corresponding radius,

R ≈ 2−(q−2)/(q−1). (48)

The refined approximation, displayed as solid line in Figure 3(a) shows an excellent agreement with
the numerical results (dots). Note that R → 0.5 (the coarse approximation), as q → ∞, but the
convergence is slow.

Formally, the eigenfunction (47) can be regarded as ρ̄(1) obtained from the power method
iteration (37), by starting with a constant initial guess ρ̄(0) ≡ 1. The coarse approximation 2q−1

of the eigenvalue is exactly λ(1), while the refined approximation 2q−2 is λ(2). Here the norm ‖ · ‖
is the function evaluation at x = 1, i.e., ‖ρ̄‖ = ρ̄(1). The same idea is applied below in higher
dimensions, even though the expressions are much more complicted. This fact also illustrates the
fast convergence of the iterative scheme (37) for large q.

We also compare the steady states, as obtained by numerics (see methods in Section 4.1) and
asymptotics (expression (47)). Figure 3(b) shows an excellent agreement between the two solutions
for q = 10 and q = 20.
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Figure 3: Numerical and asymptotic solutions in dimension one, as q → ∞. (a) Radius R of the
steady states (24). The refined asymptotic approximation (48) (solid line) agrees extremely well
with the numerical solution (dots). The coarse approximation R = 0.5 (dashed line) captures the
(slow) asymptotic limit, as q → ∞. (b) Eigenfunctions ρ̄1 of T1 computed by numerical (Section 4.1)
and asymptotic (equation (47)) methods. The agreement between the two sets of results is excellent.

In higher dimensions, the eigenvalue problem can be approximated in a similar manner. Based
on numerical observations, we assume that most contribution in the integral from (44) comes from
the boundary. Hence, the eigenvalue problem for T1 is approximated by

λρ̄1(x) ≈ (n+ q − 2)ρ̄1(1)

∫

B(0,1)
|x− y|q−2dy. (49)
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In general, the integral on the right-hand-side can not be integrated explicitly in the natural radial
coordinates. However, when the origin is shifted to x, we have

∫

B(0,1)
|x− y|q−2dy =

∫

B(x,1)
|y|q−2dy

=
nωn

∫ π
0 sinn−2 θdθ

∫ π

0
sinn−2 θ

∫

r2+r′2−2rr′ cos θ≤1
(r′)n+q−3dr′dθ

=
nωn

(n+ q − 2)
∫ π
0 sinn−2 θdθ

∫ π

0
sinn−2 θ(

√

1− r2 sin2 θ − r cos θ)n+q−2dθ.

(50)

The approximation to the eigenvalue λ is obtained by evaluating expression (49) at r = 1, which
gives

λ ≈ nωn
∫ π
0 sinn−2 θdθ

∫ π

0
sinn−2 θ(| cos θ| − cos θ)n+q−2dθ

= (n− 1)ωn−1 2
n+q−3Beta

(
n− 1

2
,
n+ q − 1

2

)

= (n− 1)ωn−12
n+q−3Γ(

n− 1

2
)Γ(

n+ q − 1

2
)/Γ(n − 1 +

q

2
), (51)

where Beta and Γ are the beta and Gamma functions, respectively.
The radius of the support R = λ−1/(n+q−2) can then be approximated as q → ∞ using Stirling’s

approximation,
Γ(z + 1) ∼

√
2πzz+1/2e−z.

We refer to the outcome of this procedure as the coarse approximation and we plot the result in
Figure 4(a) (dashed line). Note the low accuracy of this approximation, when compared to the
numerical calculation (dots). The coarse approximation approaches however, as q → ∞, the correct
value 0.5, but the convergence is extremely slow.

The eigenfunction ρ̄1 is approximated from (49):

ρ̄1(r) ≈ C

∫ π

0
sinn−2 θ(

√

1− r2 sin2 θ − r cos θ)n+q−2dθ, (52)

where C is a normalization constant determined by the total mass.
Similar to the 1D case, using the explicit approximation (52) of the eigenfunction, one can

improve considerably the approximation of the corresponding eigenvalue λ (and hence of R), by
substituting (52) into (49) and evaluating at r = 1. The outcome of this improved procedure is
referred to as the refined approximation and is plotted (solid line) in Figure 4(a). The agreement
of the refined approximation with the numerical results is now excellent. There is also a very good
agreement between the eigenfunctions computed numerically (see Section 4.1) and their asymptotic
approximation provided by (52) — see Figure 4(b).

Remark. Since the integral expression (52) for the approximation of ρ̄1 is concentrated at
θ ≈ π, we can use Laplace’s method to find the leading order when r is away from zero. Since

ρ̄1(1) = C2n+q−3Beta
(
n−1
2 , n+q−1

2

)

, and for θ ≈ π,

√

1− r2 sin2 θ − r cos θ = (1 + r)
[
1− r(π − θ)2/2 + · · ·

]
,
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the eigenfunction ρ̄1 can be further approximated away from the origin as

ρ̄1(r) ≈ C(1 + r)n+q−2

∫ π

0
sinn−2 θ(1− r(π − θ)2)n+q−2dθ

= C(1 + r)n+q−2

∫ ∞

0
θn−2e−(n+q−2)rθ2dθ

= Cr−(n−1)/2(1 + r)n+q−2.

However, this expression breaks down for r near the origin and approximation (52) is used instead
in the plot from Figure 4(b).

To conclude, the asymptotic study as q → ∞ shows that the radii of support of the equilibria
(24) converge (slowly) to a fixed value R = 0.5, while the density concentrates to a δ-sphere of
radius 0.5. We also point out that this asymptotic behaviour applies to all dimensions n.
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Figure 4: Numerical and asymptotic solutions in dimension three, as q → ∞. (a) Radius R of the
steady states (24). The refined asymptotic approximation (solid line) and the numerical solution
(dots) agree extremely well. The dashed line represent the coarse approximation obtained from
(51) and Stirling’s formula. The radii R approach (very slowly) the constant 0.5, as q → ∞. (b)
Eigenfunctions ρ̄1 of T1 computed by numerical and asymptotic (approximation (52)) methods.
There is very good agreement between the two solutions.

Asymptotic limit when q → 2− n. We write

q = 2− n+ ǫ,

and perform an asymptotic study in the small ǫ regime. We start with solutions in one dimension
first, where the eigenvalue problem (43) reads

λǫρ̄
ǫ
1(x) = ǫ

∫ 1

−1
|x− y|ǫ−1ρ̄ǫ1(y)dy, ǫ = q − 1. (53)
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Here the subscript and superscript ǫ is used to emphasize the dependence of the eigenvalue λ
and the corresponding eigenfunction ρ̄1 on ǫ. The asymptotic expansion suggested from numerical
simulation is

λǫ = λ0 + λ1ǫ+ λ2ǫ
2 + · · · , (54a)

ρ̄ǫ1(x) = ρ̄(0)(x) + ǫρ̄(1)(x) + ǫ2ρ̄(2)(x) + · · · . (54b)

The kernel |x− y|ǫ−1 is not integrable in the limit when ǫ → 0, and thus we can not substitute
the formal expansions into (53) directly. Hence, it is not possible to carry out a straightforward
expansion. However, using the fact that

ǫ

∫ 1

−1
|x− y|ǫ−1dy = (1 + x)ǫ + (1− x)ǫ,

the governing equation (53) can be written as

[λǫ − (1− x)ǫ − (1 + x)ǫ] ρ̄ǫ1(x) = ǫ

∫ 1

−1
|x− y|ǫ−1 [ρ̄ǫ1(y)− ρ̄ǫ1(x)] dy. (55)

Now using the asymptotic expansions (54a) and (54b), we obtain

O(1) : λ0 − 2 = 0 (56a)

O(ǫ) :

∫ 1

−1
|y − x|−1(ρ̄(0)(y)− ρ̄(0)(x))dy − (λ1 − ln(1− x2))ρ̄(0)(x)) = 0 (56b)

O(ǫ2) :

∫ 1

−1
|y − x|−1(ρ̄(1)(y))− ρ̄(1)(x)))dy − (λ1 − ln(1− x2))ρ̄(1)(x))

=

(

λ2 −
ln2(1− x) + ln2(1 + x)

2

)

ρ̄(0)(x))−
∫ 1

−1

ln |x− y|
|y − x| (ρ̄(0)(y))− ρ̄(0)(x)))dy.(56c)

The first equation (56a) yields λ0 = 2 and the second equation (56b) is an eigenvalue problem for
the limiting profile ρ̄(0). Integrating the equation (56b) with respect to x, we can get an alternative
expression for the eigenvalue λ1 as

λ1 =

∫ 1
−1 ρ̄

(0)(x) ln(1− x2)dx
∫ 1
−1 ρ̄

(0)(x)dx
. (57)

Even though we do not expect any explicit solutions to (56b), we can discretize and solve it using
inverse iteration [36]. The condition ρ̄(0)(±1) = 0, motivated from the numerical calculation of the
steady states, is used to get rid of the singularity on the boundary. The initial data for the inverse
iteration can be taken as the steady state ρ̄ǫ1 calculated numerically from (53) with ǫ close to zero
(and initial guess of the eigenvalue from (57) with ρ̄(0) replaced by ρ̄ǫ1). This inverse power iteration
normally converges in just a few steps.

The solution ρ̄(1) of (56c) is more challenging. Since this first order correction ρ̄(1) does not
provide much insight into the problem, we focus instead on the second order correction λ2 of the
eigenvalue λ. By the solvability condition for (56c), the right hand side of (56c) is orthogonal to

23



ρ̄(0), giving

λ2

∫ 1

−1

[

ρ̄(0)(x)
]2

dx =

∫ 1

−1

ln |y − x|
|y − x| (ρ̄(0)(y)− ρ̄(0)(x))ρ̄(0)(x)dydx

+

∫ 1

−1

ln2(1− x) + ln2(1 + x)

2

[

ρ̄(0)(x)
]2

dx. (58)

Figure 5(a) shows the normalized steady states ρ̄ǫ1 for ǫ = 1, 0.5, 0.2 (corresponding to q =
2, 1.5, 1.2), as computed numerically from the eigenvalue problem (53) using the methods described
in Section 4.1. In the same figure we also plot (plain solid line) the leading order term ρ̄(0) of the
expansion (54b), obtained by solving (56b) with the inverse iteration method. The plot confirms
that the equilibria ρ̄ǫ1 approach the limiting profile ρ̄(0) as ǫ → 0.

In Figure 5(b) we plot (dots) the eigenvalues λǫ for various values of ǫ ∈ (0, 1] (corresponding
to q ∈ (1, 2]), computed directly from (53) using the power method (Section 4.1). The dashed line
represents the asymptotic approximation of λǫ from (54a) that includes second order corrections
(λ1 is computed from (57) and λ2 from (58). The agreement between the two sets of results for
small ǫ’s is excellent.
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Figure 5: (a) Normalized steady states ρ̄ǫ1 for ǫ = 1, 0.5, 0.2 (q = 2, 1.5, 1.2) computed directly
from (53) using the numerical methods from Section 4.1. The plain solid line represents the leading
order term ρ̄(0) of the expansion (54b). Equilibria ρ̄ǫ1 approach the limiting profile ρ̄(0) as ǫ → 0.
(b) Eigenvalues λǫ for various values of ǫ ∈ (0, 1] (q ∈ (1, 2]), computed directly from (53) (dots).
The dashed line is the asymptotic approximation of λǫ from (54a) valid at order O(ǫ2). Note the
excellent agreement between numerics and asymptotics for small ǫ (q close to 1).

At a closer inspection, it becomes clear that the expansion (54b) may be non-uniform near
the boundary x = 1. In Figures 6(a)-(b) we plot ρ̄ǫ1 evaluated at x = 0 and x = 1, respectively,
for different values of ǫ. The eigenfunctions ρ̄ǫ1 are computed directly from (53) — see also Fig-
ure 5(a). At the origin (Figure 6(a)) we find a linear dependence on ǫ, as the approximation
ρ̄ǫ1(0) = ρ̄(0)(0) + ǫρ̄(1)(0) + · · · is uniform. However, at x = 1, we find ρ̄ǫ1(1) ∼

√

0.253ǫ +O(ǫ2),
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hence the expansion (54b) is non-uniform near the boundary (Figure 6(b)). To find a valid asymp-
totic expansion near x = 1 one has to introduce a boundary layer and perhaps use the method of
matched asymptotics to relate the inner and outer expansions. We do not pursue this direction
here.
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Figure 6: (a) Validation of the asymptotic expansion (54b) away from the boundary. At x = 0,
ρ̄ǫ1(0) has a linear dependence on ǫ of the form 0.5944− 0.0936ǫ, as the expansion (54b) is uniform
near the origin. (b) At x = 1, ρ̄ǫ1(1) has a square-root dependence on ǫ of the form

√
0.2530ǫ. There

is a boundary layer near x = 1 where the expansion (54b) is no longer valid.

The situation in higher dimensions is similar. We write the eigenvalue problem (43) as

(λǫ − kǫ(r))ρ̄
ǫ
1(r) = ǫ

∫

B(0,1)
|x− y|ǫ−n(ρ̄ǫ1(y)− ρ̄ǫ1(x))dy, r = |x|, (59)

where we used again subscripts and superscripts to emphasize the dependence on ǫ = q + n − 2,
and the auxiliary function kǫ is defined by

kǫ(|x|) = ǫ

∫

B(0,1)
|x− y|ǫ−ndy.

Equation (59) is the analogue of (55) from 1D.
The auxiliary function kǫ(r) can be simplified by shifting the origin (see the calculation leading

to (50)), with the result:

kǫ(r) =
nωn

∫ π
0 sinn−2 θdθ

∫ π

0
sinn−2 θ(

√

1− r2 sin2 θ − r cos θ)ǫdθ

=
nωn

∫ π
0 sinn−2 θdθ

∫ π

0
sinn−2 θ

(

1 + ǫ ln(
√

1− r2 sin2 θ − r cos θ)

+
ǫ2

2
ln2(

√

1− r2 sin2 θ − r cos θ) +O(ǫ3)
)

dθ,
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where we also used a Taylor expansion in ǫ to expand (
√

1− r2 sin2 θ − r cos θ)ǫ. The O(ǫ) term
can be simplified using the the following calculation:

∫ π

0
sinn−2 θ ln(

√

1− r2 sin2 θ − r cos θ)dθ

=

∫ π/2

0
sinn−2 θ

[

ln(
√

1− r2 sin2 θ − r cos θ) + ln(
√

1− r2 sin2 θ + r cos θ)
]

dθ

= ln(1− r2)

∫ π/2

0
sinn−2 θdθ.

Hence,

kǫ(r) = nωn +
nωn

2
ln(1− r2)ǫ+ k(2)(r)ǫ2 +O(ǫ3), (60)

where

k(2)(r) =
nωn

2
∫ π
0 sinn−2 θdθ

∫ π

0
sinn−2 θ ln2(

√

1− r2 sin2 θ − r cos θ)dθ.

Since the integrand in (59) is integrable provided ρ̄ǫ1 is Hölder continuous, by introducing the
formal asymptotic expansion (54) in (59) and using (60), one finds

O(1) : λ0 − nωn = 0 (61a)

O(ǫ) :

∫

B(0,1)
|y − x|−n(ρ̄(0)(x)− ρ̄(0)(y))dy − (λ1 −

1

2
nωn ln(1 − |x|2))ρ̄(0)(x) = 0 (61b)

O(ǫ2) :

∫

B(0,1)
|y − x|−n(ρ̄(1)(y)− ρ̄(1)(x))dy −

(

λ1 −
1

2
nωn ln(1− |x|2)

)

ρ̄(1)(x) =

(

λ2 − k(2)(|x|)
)

ρ̄(0)(x)−
∫

B(0,1)
|y − x|−n ln |y − x|(ρ̄(0)(y)− ρ̄(0)(x))dy. (61c)

Therefore, the leading order of the eigenvalue is λ0 = nωn and the limiting steady state ρ̄(0)

and the first order correction λ1 can be solved by inverse iteration. The second order correction λ2

can be obtained from the solvability condition:

λ2

∫

B(0,1)

[

ρ̄(0)(x)
]2

dx−
∫

B(0,1)
k(2)(|x|)

[

ρ̄(0)(x)
]2

dx

=

∫

B(0,1)

∫

B(0,1)
|y − x|−n ln |y − x|

[

ρ̄(0)(y)− ρ̄(0)(x))
]

ρ̄(0)(x)dydx (62)

In Figure 7 we test the asymptotic results in three dimensions. The qualitative behaviour of
the steady states ρ̄ǫ1 and their corresponding eigenvalues λǫ is similar to what has been observed in
one dimension (Figure 5).

Figure 7(a) shows the normalized steady states ρ̄ǫ1 for ǫ = 2, 1, 0.5, 0.2 (corresponding to q =
1, 0,−0.5,−0.8) obtained by solving numerically (43), along with the limiting profile ρ̄(0) (plain solid
line) found by inverse iteration from (61b). The asymptotic results are confirmed, as equilibria ρ̄ǫ1
approach the limiting profile ρ̄(0) for ǫ → 0. In Figure 7(b) we test the asymptotic expansion (54a) at
order O(ǫ2) (dashed line) against the numerical solution of (43) (dots). The agreement is excellent
for small ǫ or equivalently, for q close to the critical value −1.

Remark. An implication of the above study is that, in all dimensions, the radius R =
λ−1/(n+q−2) = λ−1/ǫ vanishes exponentially fast as q ց 2 − n, and as a result, the true steady
state ρ̄ converges to a Dirac delta function.
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Figure 7: (a) Equlibria ρ̄ǫ1 in three dimensions for ǫ = 2, 1, 0.5, 0.2 (q = 1, 0,−0.5,−0.8) computed
numerically from (43) (see Section 4.1). The plain solid line is the limiting profile ρ̄(0) found by
inverse iteration from (61b). As ǫ → 0, ρ̄ǫ1 approaches the limiting profile, confirming the asymptotic
expansion. (b) Comparison between numerics and asymptotics in three dimensions: eigenvalues
obtained numerically from (43) (dots) and from the asymptotic expansion (54a) valid at order
O(ǫ2). The two sets of results agree very well for small ǫ (q close to −1).

5 Discussion

We have studied the aggregation model (1) with potentials K that contain short-range Newtonian
repulsion and long-range power-law attraction. The main merit of the family of potentials con-
sidered here is that it leads to solutions which have biologically relevant features, such as finite
densities, sharp boundaries and long lifetimes [1]. Finding such solutions to model (1) has been
indicated as a “challenge” in previous works [19, 20] and the literature addressing this issue has
been very scarce.

Well-posedness of solutions to (1) was studied by analogy with incompressible fluid equations
[23], using the Lagrangian (particle) formulation of the model. The main object of the present work,
i.e., equilibria supported on a ball, was investigated through a variety of analytical, numerical and
asymptotic methods applied to the integral equation (24). We derived existence and uniqueness
of such equilibria using the Krein-Rutman theorem and established qualitative properties such as
monotonicity and radial symmetry, by the method of moving planes.

The numerical results confirm the analytical findings and also suggest that the equilibria studied
in this work are global attractors for the dynamics of (1). We formulate this observation as a
conjecture and we plan to address it in future work. A possible approach is to use the fact that
the aggregation equation (1) represents a gradient flow with respect to the energy

E[ρ] =
1

2

∫

Rn

∫

Rn

K(x− y)ρ(x)ρ(y)dydx.

However the energy is not convex, therefore its global minimizers cannot be characterized easily.
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Some recent progress in this direction was done in [37] in the context of aggregation models with
long-range attraction and quadratic diffusion.

The asymptotic results revealed some very interesting features of solutions to (24). In particular,
as the exponent q of the power-law attraction approaches ∞, the radii R of the support approach a
constant value 0.5, and the density concentrates on a δ-sphere. Distributions on spheres (uniform,
as well as surprisingly complex patterns) have been studied recently [28, 26] using potentials with
power-law repulsion and attraction. Concentrations on δ-spheres typically represent equilibrium
solutions of the aggregation model. It is not surprising in fact that the non-convex energy E has
multiple stationary points, adding to the difficulties in studying its equilibria, as indicated before.
Aggregations on spherical shells could be stable or unstable, depending on the exponents of the
repulsive and attractive power-laws [27, 26]. Choosing the repulsion component in Newtonian
form, as in this paper, seems to rule out concentrations on spheres from the possible asymptotic
behaviours of solutions to (1), except in the limit q → ∞.

The limit q → 2−n of solutions to (24) is interesting for its own sake. Weakly singular integral
operators are subjects of many articles and textbooks (see [31] and references therein), but a careful
asymptotic study of the eigenvalue problem (24), as the singularity approaches the critical value
2 − n, is missing from the literature. We studied the scaled problem (43) for R = 1 and showed
that eigenvalues λ approach a constant, while the corresponding eigenfunctions approach a limiting
profile ρ̄(0), as q → 2− n (see Figures 5 and 7). Consequently, from the scaling (27)-(28), solutions
to (24) approach a Dirac δ in the limit. The findings are consistent with works that consider blow-
up in aggregation models with purely attractive potentials [16, 17], in particular recent works that
consider Newtonian potentials [25].

Finally, we want to comment briefly on the biologically unrealistic feature of the potential (2),
that is, the growth of attraction with distance, when q > 0. As discussed in more detail in [22], the
dynamics of (1) remains unchanged if the potential is modified in an arbitrary way outside a ball of
R
n, with a sufficiently large radius that depends on the initial conditions only. Hence, truncating

the attractive potential partially fixes the problem, as it removes the unbounded growth at infinity.
In [22] there is also a numerical illustration of this issue.
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6 Appendix

Proof of Theorem 2.1 We show that the operator F : OL → B is bounded, i.e., ‖F(X)‖1,γ < ∞,
for all X ∈ OL. We outline the main steps and refer to Chapter 4 [23] for details and various
technical calculus inequalities.

Write F (X) as
F (X) = v ◦X.

Using the calculus inequality (Lemma 4.1 [23])

|XY |γ ≤ ‖X‖L∞ |Y |γ + |X|γ‖Y ‖L∞ , (63)

we estimate:
‖F (X)‖1,γ ≤ ‖v‖L∞ + (‖∇v‖L∞ + |∇v|γ) ‖X‖1,γ .
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As ‖X‖1,γ ≤ L for X ∈ OL, it remains to bound ‖v‖L∞ , ‖∇v‖L∞ , and |∇v|γ .
We first inspect the repulsion component of v (see (6b), (6c) and (19)) and estimate ‖k ∗ ρ‖∞,

‖P [ρ]‖L∞ and |P [ρ]|γ , where P = ∇k and P [ρ] is the principal-value SIO:

P [ρ](x) = PV

∫

P (x− y)ρ(y)dy.

The first of these terms can be bounded as follows:

|k ∗ ρ(x)| ≤ 1

nωn

∫

|x−y|<1

1

|x− y|n−1
ρ(y)dy +

1

nωn

∫

|x−y|>1

1

|x− y|n−1
ρ(y)dy

≤ ‖ρ‖L∞ +
M

nωn
. (64)

To bound P [ρ] we follow the proof of Lemma 4.6 [23]. We split the integral:

|P [ρ](x)| = PV

∫

|x−y|<ǫ
P (x− y)ρ(y)dy

︸ ︷︷ ︸

I1(x)

+

∫

|x−y|>ǫ
P (x− y)ρ(y)dy

︸ ︷︷ ︸

I2(x)

.

The kernel P has mean-value zero on the unit sphere,

∫

|x|=1
Pds = 0,

which enables us to rewrite I1 as

I1(x) = PV

∫

|y|<ǫ
P (y)(ρ(x− y)− ρ(x))dy.

Hence

|I1(x)| ≤
∫

|y|<ǫ
P (y)

|ρ(x− y)− ρ(x)|
|y|γ |y|γdy

≤ c|ρ|γ
∫

|y|<ǫ
|y|−n+γdy,

and
|I1(x)| ≤ c|ρ|γǫγ .

Here and below, c denotes a generic constant. For the second integral, we estimate

|I2(x)| ≤
∫

ǫ<|x−y|<1
|P (x− y)|ρ(y)dy +

∫

|x−y|>1
|P (x− y)|ρ(y)dy

≤ c‖ρ‖L∞ log

(
1

ǫ

)

+M.

Conclude
‖P [ρ]‖L∞ ≤ c (|ρ|γǫγ + ‖ρ‖L∞ log(1/ǫ)) +M. (65)
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Finally, using the same argument as in Lemma 4.6 [23], one can show

|P [ρ]|γ ≤ c|ρ|γ . (66)

Estimate the seminorm |ρ|γ as in the proof of Proposition 4.2 [23], by using (10) and calculus
inequality (63):

|ρ|γ ≤ ‖ρ0 ◦X−1‖L∞ |det ∇xX
−1|γ + |ρ0 ◦X−1|γ‖det ∇xX

−1‖L∞ . (67)

Using the calculus inequalities
|f ◦ Y |γ ≤ |f |γ ‖∇Y ‖γL∞ , (68)

‖Y −1‖1,γ ≤ c‖Y ‖2n−1
1,γ , (69)

from Lemmas 4.3 and 4.2 [23], respectively, estimate

|ρ0 ◦X−1|γ ≤ |ρ0|γ ‖∇xX
−1‖γL∞

≤ c|ρ0|γ‖X‖γ(2n−1)
1,γ ,

and
|det ∇xX

−1|γ ≤ c‖X‖2n−1
1,γ .

As X ∈ OL, ‖det ∇xX
−1‖L∞ < L and ‖X‖1,γ < L. Return to (67) to find:

|ρ|γ ≤ C(L) (‖ρ0‖L∞ + |ρ0|γ) .

Using the above bound on |ρ|γ and the uniform bound on ‖ρ‖L∞ derived in Section 2.1, we infer
from (64)-(66) that the repulsion component of F yields a bounded operator. The singularity of the
attraction component is milder than that of the repulsion and does not break the existing estimates
for the singular repulsion kernel k. We conclude that F is bounded.

To prove that F is Lipschitz continuous, we show that F ′(X) is bounded as a linear operator
from OL to B, i.e., ‖F ′(X)‖ < ∞, for all X ∈ OL. Calculate F ′(X) using (17) and (6c):

F ′(X)Y =
d

dǫ
F(X + ǫY )

∣
∣
∣
∣
ǫ=0

=

∫

∇f(X(α)−X(β))(Y (α) − Y (β))ρ0(β)dβ, (70)

where we suppressed the time dependence for convenience.
To estimate the component of F ′(X)Y due to repulsion one could follow the proof of Lemma

4.10 in [23]. The attraction component is milder and does not break the estimates. It can be shown
that

‖F ′(X)Y ‖1,γ ≤ C(L) (‖ρ0‖L∞ + |ρ0|γ) ‖Y ‖1,γ ,
which proves the boundedness in the operator norm of F ′(X).

A key observation is that the term Y (α)− Y (β) in (70) compensates for the singularity of ∇f .
We present here the estimate of ‖F ′(X)Y ‖L∞ , which requires in fact some changes to the proof of
Lemma 4.10 [23]. We do not present the estimates of ‖∇αF ′(X)Y ‖L∞ and |∇αF ′(X)Y |γ , we refer
instead to the calculations in [23].
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Use a change of variable, x = X(α), y = X(β), and split the repulsion component of F ′(X)Y
from (70)

∫

∇k(x− y)(Y (X−1(x))− Y (X−1(y)))ρ(y)dy =

∫

|x−y|<1
︸ ︷︷ ︸

J1

+

∫

|x−y|>1
︸ ︷︷ ︸

J2

.

The procedure is similar to what we did to derive (64). From mean-value theorem, we have

|Y (X−1(x))− Y (X−1(y))| ≤ ‖(∇αY ◦X−1)∇xX
−1‖L∞ |x− y|.

As |∇k(x)| ≤ c|x|−n,

|J1| ≤ c‖(∇αY ◦X−1)∇xX
−1‖L∞‖ρ‖L∞

∫

|x−y|<1

1

|x− y|n−1
dy

≤ C(L)‖∇αY ‖L∞ ,

where we also used (69), X ∈ OL, and the uniform bound on ‖ρ‖L∞ in the second inequality.
The outer integral satisfies

|J2| ≤ c‖(∇αY ◦X−1)∇xX
−1‖L∞

∫

|x−y|>1
ρ(y)dy

≤ C(L)M‖∇αY ‖L∞ ,

where we used conservation of mass.
Combine the two estimates for J1 and J2 and argue that the attraction component would not

break these estimates, to find
‖F ′(X)Y ‖L∞ ≤ C(L)‖Y ‖1,γ .
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