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Abstract

We present an alternative derivation of the H1-boundedness of solutions to a generalized
Hasegawa-Mima equation, first investigated by Grauer [4]. We apply a Lyapunov function
technique similar to the one used for constructing energy bounds for the Kuramoto-Sivashinsky
equation. Different from Grauer [4], who uses this technique in a Fourier space approach, we
employ the physical space construction of the Lyapunov function, as developed in [1]. Our
approach has the advantage that it is more transparent in what concerns the estimates and the
dominant terms that are being retained. A key tool of the present work, which replaces the
algebraic manipulations on the Fourier coefficients from the other approach, is a Hardy-Rellich
type inequality.

AMS Mathematics Subject Classification: 35K30, 37L30, 76X05

1 Introduction

We consider the following extension of the two-dimensional Hasegawa-Mima equation derived in
[8] and later analyzed by Grauer [4]:

∂t(1−∆)u = −kuy − αuyy + {u,∆u}+ β{u, uy}+ ∆3u. (1)

Here, k, α and β are positive constants and {·, ·} denotes the Poisson bracket

{f, g} = (∂xf)(∂yg)− (∂yf)(∂xg).

We require that u(x, y, t) is periodic in y with period Ly and antisymmetric and periodic in x
with period 2Lx for all times. Note that the equation is invariant under the change u(x, y, t) →
−u(−x, y, t).

The Hasegawa-Mima equation [6],

∂t(1−∆)u = −kuy + {u,∆u}, (2)

models the dynamics of electrostatic drift waves, here described by the electrostatic potential
flutuations u. Drift wave turbulence is of particular interest to plasma confinement in tokamaks
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and controlled nuclear fusion research [7]. The Hasegawa-Mima equation is similar in structure
with the 2D incompressible fluid equations, written in terms of the stream-function. In fact, the
same equation was derived in a geophysical context by Charney to describe the dynamics of Rossby
waves [10]. Among other similarities with the 2D fluid equations, (2) has an inverse energy cascade
from small to large scales and forms dipole vortices and other coherent structures [7].

Liang et al. [8] extend the original model (2) in several ways. First, they consider the electrons
to be non-adiabatic, and introduce the so called E × B drift nonlinearity, described in (1) by the
term β{u, uy}. The E × B drift transfers energy non-locally from large to small scales (as in
3D turbulence) and therefore competes with the polarization drift nonlinearity {u,∆u} originally
considered by Hasegawa and Mima. Second, Liang et al. consider the destabilizing term −αuyy
due to trapped particle instabilities. Finally, they introduce an energy sink. Similar to Grauer [4],
we take a 6th order damping term, ∆3u.

The Hasegawa-Mima equation conserves the H1-energy, as can be easily checked by multiplying
(2) by u and integrating over the spatial domain, with use of the periodic boundary conditions.
Hence, using energy methods, existence and uniqueness results for Hasegawa-Mima equation can
be established [5]. The generalized Hasegawa-Mima equation (1) does not conserve (or dissipate)
the H1-energy, due to the destabilizing anti-diffusive term −αuyy. Indeed, after multiplying (1) by
u and integrating with the respect to space over [−Lx, Lx]× [0, Ly], we get

∂t
1

2

∫ (
u2 + (∇u)2

)
dxdy = α

∫
(uy)

2 dxdy −−
∫

(∇∆v)2 dxdy. (3)

Clearly, the right-hand-side of (3) is not sign-definite and no conclusive statement regarding the
energy behavior can be immediately drawn. Grauer [4] makes an analogy with the Kuramoto-
Sivashinsky (KS) equation,

ut = −uux − uxx − uxxxx, (4)

a model for certain hydrodynamic problems, in particular the propagation of flame fronts [11].
Indeed, multiply (4) and integrate over space, using the periodic boundary conditions, to get an
energy evolution that has no definite sign in its right-hand-side:

∂t
1

2

∫
u2dx =

∫
(ux)2dx−

∫
(uxx)2dx.

The spectrum of the linear operator in (4) has a number of unstable modes that grows linearly with
the size of the period. Upon reaching large amplitudes however, the linear instabilities are compen-
sated by the nonlinearities and the high-order dissipative term, through an intricate stabilization
mechanism. Numerical experiments confirm this stabilizing scenario.

Various methods have been developed to show energy bounds for the KS equation. In particular,
the Lyapunov function technique, that has seen constant improvements over the years [9, 2, 3, 1],
uses a suitable background flow to absorb the instability. Grauer [4] applies this technique to
show H1-energy bounds for solutions of the generalized Hasegawa-Mima equation (1). He uses the
approach developed in [2], where the L2-energy bound is shown through calculations done entirely
in the Fourier space. The estimates in [4] then reduce to various (clever) algebraic manipulations
to bound the contribution from the destabilizing or sign-indefinite terms by the Fourier coefficients
generated by the 6th order dissipation. We think that this approach obstructs to some extent the
intuition behind the various terms that are involved in the calculation, in particular the way they
get subdominated by higher order, sign definite quantities.
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In the present article we offer an alternative derivation of the H1-energy bound for solutions
of (1) by following the physical space approach developed by Bronski and Gambill [1] to show
sharper L2-bounds for the KS equation. The construction of the background flow potential is
made explicitly and all estimates are done in the physical space, for a better transparency in what
concerns the dominant versus the subdominant terms. The main result is stated in Theorem 1. Its
proof is presented toward the end of the article, after a series of technical lemmas have been stated
and the analogy with the KS equation has been properly addressed. The key ingredient used by
[1], and not present in the Fourier-based methods, is a Hardy-Rellich type inequality (see Lemma
2) that allows to bound the quadratic form from below.

2 Energy estimate

Lyapunov function. This paper follows the Lyapunov function construction used for the Kuramoto-
Sivashinsky (KS) equation and detailed in numerous papers [9, 2, 3]. The main idea is to establish
that the H1-norm of u(x, y, t) − φ(x) is a Lyapunov functional for some suitably chosen function
φ. To this purpose we write

u(x, y, t) = v(x, y, t) + φ(x), (5)

where φ(x) is an antisymmetric function. Equation (1) can be written as

∂t(1−∆)v = −kvy − αvyy + {v,∆v}+ β{v, vy}+ ∆3v

+ φx∆vy − vyφxxx + βφxvyy + ∆3φ.

We multiply the equation by v, integrate over the domain Ω = [−Lx, Lx]× [0, Ly] and integrate by
parts to obtain

∂t
1

2

∫ (
v2 + (∇v)2

)
dxdy = α

∫
(vy)

2 dxdy −
∫

(∇∆v)2 dxdy

−
∫
φxvyvxx dxdy − β

∫
φx(vy)

2 dxdy −
∫
φxxxvxxx dxdy. (6)

The main result of this paper is the following energy estimate, whose proof is deferred to the
end of the section, after various technical results are stated and proved.

Theorem 1. Consider a smooth, antisymmetric in x, solution u of the generalized Hasegawa-Mima
equation (1) on Ω, with periodic boundary conditions. Then, there exists a suitable function φ such
that

∂t

∫ (
v2 + (∇v)2

)
dxdy ≤ −λ

∫ (
v2 + (∇v)2

)
dxdy +M, (7)

where λ > 0 depends on Lx and M > 0 depends on φ. Here, v and φ are related to u through the
background flow decomposition (5). Further, it follows that

lim sup
t→∞

‖v‖2H1 ≤
M

λ
, (8)

and one can conclude the existence of an attracting ball in H1 of radius
√

M
λ .
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Similarities to the KS equation. The integral −
∫

(∇∆v)2 dxdy contains the only terms in the
right-hand-side of (6) that are negative sign-definite. Expand this expression to get

−
∫

(∇∆v)2 dxdy = −
∫

(v2xxx + 3v2xxy + 3v2xyy + v2yyy) dxdy.

Commute the mixed partial derivatives in one of the v2xxy terms and group it with the term that
multiplies β in (6), to obtain the following quadratic form for vy:

−〈vy,Kvy〉 =

∫ (
v2yxx + βφxv

2
y

)
dxdy.

A similar quadratic form appears in the study of the KS equation, where it serves as the main tool
used to show energy bounds for KS using a Lyapunov function argument [2]. The strategy in to
show coercivity of the quadratic form, which in our context reads∫ (

v2yxx + βφxv
2
y

)
dxdy ≥ A

∫
v2y dxdy, (9)

for a constant A independent of Lx and Ly. Provided A can be chosen large enough (in particular,
A > α), the term that multiplies α in (6) is subdominant with respect to −A

∫
v2y dxdy.

The last term in (11) can be estimated easily as∣∣∣∣∫ φxxxvxxxdxdy

∣∣∣∣ ≤ 1

2

∫
v2xxxdx+

1

2

∫
φ2xxx. (10)

Therefore, provided the quadratic form K is coercive with coercivity constant A, we can derive
from the previous considerations,

∂t
1

2

∫ (
v2 + (∇v)2

)
dxdy ≤ −1

2

∫ (
v2xxx + 4v2xxy

)
dxdy + (α−A)

∫
v2y dxdy

−
∫
φxvyvxx dxdy +

1

2

∫
φ2xxx dxdy. (11)

We first address the coercivity of the quadratic form, by following closely the results from [1].
The main remaining issue is to estimate the term

∫
φxvyvxx dxdy. We make use of the explicit

construction of the potential φx in the physical space from [1], that we summarize below.

Potential construction from [1]. We assume that the function φx takes the following form

βφx = γLc2−c1−1x + Lc2x q(L
c1
x x), γ, c1, c2 > 0, (12)

where γ is a constant and q is a compactly supported smooth function. The potential comprises
a positive constant, γLc2−c1−1x , and a very localized component of width O(L−c1x ) and amplitude
O(Lc2x ). More specifically,

q(z) =
Q(z)

z2
, (13)
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where Q is an even function, defined for z ≥ 0, by

Q(z) =



−q0f( zδ ) z ∈ (0, δ)
−q0 z ∈ (δ, a2 − δ)
−q0 + (q0 + q1)f(

z−a
2
+δ

δ ) z ∈ (a2 − δ,
a
2 )

q1 z ∈ (a2 , a)
q1f(1 + a−z

δ ) z ∈ (a, a+ δ)
0 z ∈ (a+ δ,∞).

(14)

Here, f(z) is a C∞(0, 1), non-decreasing function satisfying

lim
z→0

f(z) = 0, lim
z→0

f (k)(z) = 0 for k ≥ 1,

lim
z→1

f(z) = 1, lim
z→1

f (k)(z) = 0 for k ≥ 1,

and q0, q1, a and δ are positive constants. Note that supp(q) ⊂ (−a− δ, a+ δ), where supp denotes
the function support.

Lemma 1. Provided the positive constants q0, q1, a and δ satisfy

q0a
2 < 1,

q1 >
q0

1− a2q0
,

a+ δ < L1+c1
x ,

the potential functions q and Q defined in (13) and (14) have the following properties [1]:

(i) q ∈ C∞0 ,

(ii)
∫
q(z) dz ≤ −A (for this condition to hold, δ has to satisfy an additional smallness assumption),

(iii)
∫ L1+c1

x

−L1+c1
x

1
2v

2
z +Qv2 dz ≥ 0,

for any constant A and all v ∈ H1(−L1+c1
x , L1+c1

x ).

One of the main tools used in the proof of the energy bound for the KS equation from [1] is the
following Hardy-Rellich type inequality, which we state as a lemma:

Lemma 2. Suppose that w ∈ C3(−a, a) with w(0) = 0. Then, if v(z) = w(z)/z, we have the
inequality: ∫ a

−a

1

2
w2
zz dz ≥

∫ a

−a
v2z dz.

For the proofs of Lemmas 1 and 2 we refer to [1]. The following result provides the coercivity
of the quadratic form used in deriving (9).

Lemma 3. There exists a potential φ defined by (12) such that∫ Lx

−Lx

(
w2
xx + βφxw

2
)
dx ≥ A

∫ Lx

−Lx

w2 dx, (15)

for all w ∈ C3(−Lx, Lx) with w(0) = 0, where A represents an arbitrary fixed constant.
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Proof. Using (12) and the change of variable z = Lc1x, we get∫ Lx

−Lx

(
w2
xx + βφxw

2
)
dx = L3c1

x

∫ L
1+c1
x

−L1+c1
x

(
w2
zz + Lc2−4c1x q(z)w2

)
dz + γLc2−c1−1x

∫ Lx

−Lx

w2 dx

To satisfy (15) it would be sufficient that

γLc2−c1−1x ≥ A, (16)

and ∫ L
1+c1
x

−L1+c1
x

(
w2
zz + Lc2−4c1x q(z)w2

)
dz ≥ 0. (17)

Case Lx > 1. This is the case considered in [1] and all the other works regarding optimal energy
bounds for the KS equation. More specifically, it is the scaling of the energy with the period Lx as
Lx →∞ that is of interest in those studies. To have (16) hold uniformly in Lx > 1 we need c1 and
c2 to satisfy

c2 − c1 − 1 ≥ 0. (18)

Similarly, for (17) to hold uniformly in Lx > 1 we need

c2 − 4c1 ≤ 0. (19)

Regarding the latter condition, one can argue it by contradiction. Suppose that c2 − 4c1 > 0 and
take a function w whose support is contained in a region where q < 0. Then conclude that (17)
cannot hold uniformly in Lx > 1.

Due to periodic boundary conditions, the potential βφx has zero mean on (−Lx, Lx) and hence,
from (12) we infer that

2γ = −
∫
q(z) dz. (20)

Using Lemma 1, property (ii), we conclude that the constant γ in the expression of the potential
(12) can be made arbitrarily large. This proves (16), provided (18) holds.

To show (17), we use (19), Lemma 2 and Lemma 1 (property (iii)) to get∫ L
1+c1
x

−L1+c1
x

(
w2
zz + Lc2−4c1x q(z)w2

)
dz ≥ Lc2−4c1x

∫ L
1+c1
x

−L1+c1
x

(
w2
zz + q(z)w2

)
dz

≥ Lc2−4c1x

∫ L
1+c1
x

−L1+c1
x

(1

2
v2z + z2q(z)︸ ︷︷ ︸

Q(z)

v2
)
dz

≥ 0.

Case 0 < Lx < 1. This case is not of interest for energy bounds for the KS equation, but the
procedure from [1] used for the case Lx > 1 above, applies as well. Based on similar considerations
used to derive (18) and (19), we note that for (16) and (17) to hold uniformly for Lx < 1, c1 and
c2 must necessarily satisfy

c2 − c1 − 1 ≤ 0,

c2 − 4c1 ≥ 0.

Considerations very similar to those used in the previous case follow easily, completing the proof.
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Estimate of
∫
φxvyvxx dxdy. We state and prove the following lemma:

Lemma 4. For appropriate choices of the constants c1 and c2 that enter the equation (12) for the
potential, we have ∣∣∣∣∫ φxvyvxx dxdy

∣∣∣∣ ≤ 1

4

∫ (
v2xxx + v2yxx

)
dxdy +

1

16

∫
v2ydxdy.

Proof. Use (12) to get:∫
φxvyvxx dxdy =

γ

β
Lc2−c1−1x

∫
vyvxx dxdy +

1

β
Lc2x

∫
q(Lc1x x)vyvxx dxdy. (21)

Periodic (in y) boundary conditions and integration by parts yield the first term in the right-hand-
side of (21), zero: ∫

vyvxx dxdy = −1

2

∫
∂y(vx)2 dxdy

= 0.

Now use supp(q) ⊂ (−a− δ, a+ δ) to estimate the remainder term as follows:

Lc2x

∣∣∣∣∫ Ly

0

∫ Lx

−Lx

q(Lc1x x)vyvxx dxdy

∣∣∣∣ = Lc2x

∣∣∣∣∣
∫ Ly

0

∫ L
−c1
x (a+δ)

−L−c1
x (a+δ)

q(Lc1x x)vyvxx dxdy

∣∣∣∣∣
≤ sup |q(x)|Lc2x

∫ Ly

0

∫ L
−c1
x (a+δ)

−L−c1
x (a+δ)

|vy||vxx| dxdy

≤ 1

2
sup |q(x)|Lc2x

[∫ Ly

0

∫ L
−c1
x (a+δ)

−L−c1
x (a+δ)

v2y dxdy +

∫ Ly

0

∫ L
−c1
x (a+δ)

−L−c1
x (a+δ)

v2xx dxdy

]
. (22)

Since v is an antisymmetric function of x, so are vy and vxx. Hence, vy and vxx have zero mean on
a symmetric x-interval, and by Wirtinger’s inequality (a special one-dimensional case of Poincaré’s
inequality) in the x variable we have∫ L

−c1
x (a+δ)

−L−c1
x (a+δ)

v2y dx ≤
1

π2
L−2c1x (a+ δ)2

∫ L
−c1
x (a+δ)

−L−c1
x (a+δ)

v2yx dx

≤ 1

π2
L−2c1x (a+ δ)2

∫ Lx

−Lx

v2yx dx,

where for the second inequality we used a+δ < L1+c1
x (see the hypotheses on the parameters stated

in Lemma 1. Similarly, ∫ L
−c1
x (a+δ)

−L−c1
x (a+δ)

v2xxdx ≤
1

π2
L−2c1x (a+ δ)2

∫ Lx

−Lx

v2xxx dx.

By combining the last two estimates with (21) and (22) we obtain∣∣∣∣∫ φxvyvxx dxdy

∣∣∣∣ ≤ 1

2π2β
sup |q(x)|Lc2−2c1x (a+ δ)2

[∫ Ly

0

∫ Lx

−Lx

v2yxdxdy +

∫ Ly

0

∫ Lx

−Lx

v2xxxdxdy

]
.

(23)
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The inequality k2 ≤ k4 + 1
4 for all k implies, using the Fourier transform, that∫ Ly

0

∫ Lx

−Lx

v2yxdxdy ≤
∫ Ly

0

∫ Lx

−Lx

v2yxxdxdy +
1

4

∫ Ly

0

∫ Lx

−Lx

v2ydxdy.

Then, the lemma follows from (23) and the previous estimate, provided we choose the positive
constants c1 and c2 such that

1

2π2β
sup |q(x)|Lc2−2c1x (a+ δ)2 ≤ 1

4
. (24)

If Lx > 1, then we need

c2 − 2c1 ≤ logLx

(
π2β

2 sup |q(x)|(a+ δ)2

)
. (25)

Combining (25) with the previous requirements (18) and (19), we infer that a necessary condition
for c1 is

c1 ≥ max

{
1

3
, 1− logLx

(
π2β

2 sup |q(x)|(a+ δ)2

)}
(26)

For 0 < Lx < 1, the inequality (25) is reversed and combined with the previous constraints on
c1 and c2, it yields the necessary condition

c1 ≤ min

{
1

3
, 1− logLx

(
π2β

2 sup |q(x)|(a+ δ)2

)}
.

Proof of Theorem 1.

Proof. The proof follows easily from the previous results. In (6), use the coercivity property stated
in Lemma 3 for w = vy, the estimate from Lemma 4 and (10) to get

∂t
1

2

∫ (
v2 + (∇v)2

)
dxdy ≤ −1

4

∫ (
v2xxx + v2xxy

)
dxdy + (

1

16
+ α−A)

∫
v2y dxdy +

1

2

∫
φ2xxx dxdy.

(27)
Recall that v is antisymmetric in x, in particular of mean zero on (−Lx, Lx). Apply the Wirtinger’s
inequality in the x variable to get ∫

v2 dxdy ≤ L2
x

π2

∫
v2x dxdy.

Furthermore, due to periodic boundary conditions, vx and vxx are also mean zero,∫
v2x dxdy ≤

L4
x

π4

∫
v2xxx dxdy.

Similarly, vy and vyx are mean zero in the x variable and we have∫
v2y dxdy ≤

L4
x

π4

∫
v2xxy dxdy.
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The last three Poincaré-type inequalities can be used for the first term in the right-hand-side of
(27) to generate the H1-norm of v, as needed in (7). Since according to Lemma 3, we can choose
the constant A such that A > 1

16 + α, we have from (27),

∂t

∫ (
v2 + (∇v)2

)
dxdy ≤ −1

4
min

{
π6

L6
x

,
π4

L4
x

}∫ (
v2 + (∇v)2

)
dxdy +

∫
φ2xxx dxdy.

Choosing

λ =
1

4
min

{
π6

L6
x

,
π4

L4
x

}
,

and

M =

∫
φ2xxx dxdy,

proves the theorem.

Large period regime. This is the regime of interest for the KS equation, since the number of
the unstable modes of the linearization about the zero state, increases linearly with the period. In
this context, the primary goal is to find sharp L2-bounds on the size of the attracting ball, i.e., find
the optimal (minimum) exponent p, such that lim supt→∞ ‖u‖2 = O(Lp), where L is the period. As
far as the modified Hasegawa-Mima equation (1) is concerned, its linearization about the zero-state
does not seem to indicate any particular interest in the limit Lx → ∞. We will discuss briefly
however, the regime of large Lx and Ly, mainly to compare the outcomes of the two approaches,
the physical space construction used in the present paper and the Fourier space method used in [4].

Using (12), we immediately infer that∫
φ2xxxdxdy = O

(
LyL

2c2+3c1
x

)
, (28)

For large Lx, λ = π6

4 L
−6
x and hence, from (8),

lim sup
t→∞

‖v‖2H1 ≤ O
(
LyL

2c2+3c1+6
x

)
. (29)

We have to minimize the exponent 2c2 + 3c1 + 6 subject to the constraints (18), (19) and (25).
Inspect (26) for large Lx and take c1 = 1 − logLx

C, where C = π2β/(2 sup |q(x)|(a + δ)2). Also,
choose optimally c2 = c1 + 1 to find from (29), that

lim sup
t→∞

‖v‖2H1 ≤ O
(
LyL

13
x

)
.

Interestingly, the Fourier method used by Grauer [4] gives the same exponents in the large period
regime.
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