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Summary. We consider a quasilinear equation that consists of the inviscid Burgers
equation plus O(α2) nonlinear terms. As we show, these extra terms regularize the
Burgers equation in the following sense: for smooth initial data, the α > 0 equation has
classical solutions globally in time. Furthermore, in the zero-α limit, solutions of the
regularized equation converge strongly to weak solutions of the Burgers equation. We
present numerical evidence that the zero-α limit satisfies the Oleinik entropy inequality.
For all α ≥ 0, the regularized equation possesses a nonlocal Poisson structure. We prove
the Jacobi identity for this generalized Hamiltonian structure.
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1. Introduction

In this paper, we consider the following quasilinear evolution equation:

ut + uux − α2utxx − α2uuxxx = 0, (1)

with α > 0. By introducing the Helmholtz operator,

H = Id−α2∂2
x , (2)

we may rewrite (1) as

vt + uvx = 0 (3)
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where

v = Hu. (4)

The main goal of this work is to show that (1) represents a valid regularization of the
Burgers equation. That is, we claim that solutions uα(x, t) of (1) with initial data

uα(x, 0) = H−1v0(x)

converge strongly, as α→ 0, to unique entropy solutions of the Cauchy problem for the
inviscid Burgers equation

ut + 1

2

(
u2
)

x
= 0, (5a)

u(x, 0) = v0(x). (5b)

Before discussing how we establish this claim, let us clarify what is meant by a regular-
ization of a shock-forming hyperbolic equation such as (5a).

Inviscid Burgers and Its Regularizations

We are primarily concerned with the case when v′0(x) < 0 for at least one point x ∈ R. In
this case, regardless of how smooth v0(x) is, the classical solution u(x, t) of the Burgers
equation exists only until a break time T (see [Joh90]). Therefore, we work with the
weak form of (5). When v′0 has mixed sign, there exists a global weak solution u(x, t)
of (5). The solution is not unique unless we impose an additional constraint, which is
called an entropy inequality by analogy with gas dynamics. Here we will work with the
Oleinik inequality

u(x + a, t)− u(x, t)

a
<

C

t
, (6)

for every a > 0, t > 0, and x ∈ R, where C is a constant that depends only on v0. Taken
together, the system (5)–(6) has a unique weak solution u(x, t) that exists globally in
time.

It is well known that if one desires to capture the physically relevant solutions of (5),
one can solve the viscous Burgers equation

ut + uux = νuxx , (7a)

u(x, 0) = u0(x). (7b)

By studying the theory for this classical viscous regularization, we may determine the
necessary features of an equation that seeks to remedy the breaking of solutions in the
inviscid case.

Definition 1. A regularization of the inviscid Burgers equation (5a) is an equation of
the form

ut + uux = εF(u, ux , ut , uxx , uxt , utt , . . .) (8)
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satisfying the following criteria:

1. The Cauchy problem for (8) is well posed for all ε > 0. That is, for initial data
u(x, 0) = u0 in a suitable function space, a unique classical solution u(x, t) exists
globally in time.

2. As ε → 0, solutions uε(x, t) of (8) converge strongly to a weak solution u(x, t)
of (5a).

3. This limit u(x, t) is not just any weak solution, but in fact the entropy solution
of (5a).

The basic idea is to solve an equation “Burgers + ε terms” which has smooth classical
solutions that closely approximate discontinuous (weak), physically acceptable solu-
tions of Burgers. It is well known that the viscous regularization, i.e., taking F = uxx in
(8), satisfies the definition we have given, even with rough initial data u0 ∈ L∞. Other
examples that have appeared in the literature include filtered viscosity, F = H−1uxx ,
which has been analyzed in [ST92], [LT01], [LM03], as well as hyper-viscosity, F =
(−1)n+1∂2n

x u, which has been analyzed in [Tad04]. In both cases, proofs of strong con-
vergence to the entropy solution have been given; in the case of hyper-viscosity, it should
be mentioned that an assumption on the L∞-boundedness of the regularized solution is
required.

What is common to all successful regularizations we have seen thus far is that they
involve adding a small amount of dissipation, in various guises, to the inviscid equation.
The regularization (3) that we analyze substitutes filtering for dissipation, as can be seen
by rewriting (3) as follows:

vt +
[
H−1v

]
vx = 0.

We think of the inviscid Burgers equation vt+vvx = 0 as a transport equation with local
transport velocity equal to v itself. Our regularization consists of using a smoothed or
filtered version of v—specificallyH−1v—in place of v. The smoothing property ofH−1

may be seen in physical space, where one finds that H−1v must have two more weak
derivatives than v; the filtering property can be seen in Fourier space, where it is clear
that

Ĥ−1v = v̂

1+ α2k2
.

Historically, it was Leray who, in the context of the incompressible Navier–Stokes equa-
tions, first proposed replacing the nonlinear term (v · ∇)v with a term (u · ∇)v. Here
u = K ε ∗ v for some smoothing kernel K ε . Leray’s program consisted in proving ex-
istence of solutions for his modified equations and then showing that these solutions
converge, as ε ↓ 0, to weak solutions of Navier–Stokes—see [Ler34] for details. The
idea of using a Leray-type regularization in lieu of dissipation, for the purposes of cap-
turing shocks in the Burgers equation, was suggested independently by J. E. Marsden,
K. Mohseni, and E. S. Titi, and perhaps others of whom we are not aware. As described
in [MZM06], initial numerical simulations and physical arguments of K. Mohseni and
H. Zhao led them to suggest a family of models, including (1), as a proper regularization
of the inviscid Burgers equation.
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There is another way to view the regularization (1). Using the definition (2) ofH, we
may verify that

ut + uux = −3

2
α2H−1

(
u2

x

)
x

(9)

is formally equivalent to (1). The right-hand side of (9) represents a nonlinear smoothing
term that differs from standard viscosities, which are all linear in u. Currently, we are
unaware of previous works which have proved that either the filtering approach or the
right-hand side term in (9) may be used to regularize the inviscid Burgers equation, in
the sense of Definition 1. We are also unaware of regularizations that are Hamiltonian
in any sense, unlike (1), which is Hamilton’s equation for a certain nonlocal Poisson
structure.

Of course, there are numerous Hamiltonian PDE that can be written in the form (8)
and “regularize” the Burgers equation in a certain limited sense: the equations

ut + uux + εuxxx = 0 Korteweg–de Vries (KdV) (10)

ut + uux − εuxxt = 0 Benjamin–Bona–Mahony (BBM) (11)

possess smooth classical solutions and hence satisfy criterion 1 of Definition 1. However,
as ε → 0, solutions of these Hamiltonian PDE fail to converge, even weakly, to weak
solutions of the inviscid Burgers equation. The equation

ut + uux + εuuxxx = 0, (12)

the continuum limit of a semidiscrete scheme considered in [GL88], also fails to produce
solutions that converge as ε → 0, even weakly, to weak Burgers solutions. Examining
(11)–(12), one notices that individually taking the O(α2) terms from (1) fails to yield a
satisfactory regularization of the Burgers equation.

Summary of Results

To support the claim made earlier, we will prove that the regularization (1) satisfies
criteria 1 and 2 of Definition 1. We will provide numerical evidence that criterion 3 of
Definition 1 is satisfied.

More specifically, in the present work, we prove well-posedness of the Cauchy prob-
lem for (3), establishing a classical solution vα(x, t) to (3) that exists globally in time,
given initial data v0 ∈ W 2,1(R). We prove that as α → 0, the sequence uα = H−1vα

converges strongly to a function u that is a global-in-time weak solution of the inviscid
Burgers equation. We provide numerical evidence that the resulting limit function u sat-
isfies a form of the Oleinik entropy inequality. Finally, we prove that (1) is Hamiltonian,
with respect to a particular Poisson bracket.

Previous Results on Equation (1)

Equation (1) has appeared previously in the literature, as the b = 0 member of the
b-family described in [DHH03]:

vt + uvx + buxv = 0. (13)
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Various results regarding the complete integrability (for b = 2 and b = 3) and traveling
wave solutions of (13) may be found in [DHH03], [HW03], [HH05], [HS03], [DGH03],
[DGH04], [MN02], [CHT04]. In what follows, we discuss the results from this collection
that specifically deal with the b = 0 case of (13).

Physical motivation for the b-family is provided in [DGH03, DGH04], which show
that (13) is an asymptotically equivalent approximation of the shallow water equations.
In [DHH03], the b-family is realized as the Euler–Lagrange equation corresponding to
a certain Lagrangian density. As the authors point out, this Lagrangian structure breaks
down when b = 0. The authors do propose a Hamiltonian structure that appears well
defined for the b = 0 case, though they do not prove here that the proposed structure in
fact satisfies the requirements for Hamiltonian operators as described in, e.g., [Olv93].

The Hamiltonian structure of the b-family (13) is given by (see [HW03]):

vt = −b2B δH

δv
, H = 1

b − 1

∫
v dx, (14a)

B = v1−1/b∂xv
1/b(∂x − α2∂3

x )
−1v1/b∂xv

1−1/b. (14b)

As the authors of [HW03] state, “when b = 1 the Hamiltonian must be modified; for
b = 0 the operator B can be redefined.” In [HW03], they prove that except in these
special cases, the functional/operator pair given in (14) satisfies the Jacobi identity and
is a valid Hamiltonian structure for the b-family (13). In this paper, we show that the
proper redefinition of (14) in the b = 0 case is also a valid Hamiltonian structure. Hence
(1) is Hamiltonian in a certain sense.

For another clue about why the b = 0 case of (13) is special, let us look at dispersion
relations in the b = 0 versus b > 0 cases. First we consider sinusoidal perturbations
about a constant solution u = u0 and write the dispersion relation for (1):

ω(k) = u0k. (15)

Hence (1) is not a dispersive wave equation. Meanwhile, the dispersion relation for the
whole b-family (13) is

ω(k) = u0k + u0
bk

1+ α2k2
. (16)

The b-family is dispersive for b > 0; furthermore, for the b > 0 members of the
family (13), the zero-α limit is a zero-dispersion limit. We expect that high-frequency
oscillations typical of the zero-dispersion limit of KdV will play a role in the zero-α
limits of the b-family for all b > 0. Again, the b = 0 equation under consideration in
this paper is not dispersive, and we prove that it does not produce oscillations in the
zero-α limit.

Outline of this Paper

We study the initial-value problem of (1) in Section 2 and prove well-posedness of
solutions for certain initial data. Next, we consider the α → 0 limit. In Section 3 we
show that solutions of (1) converge strongly in the zero-α limit to weak solutions of the
inviscid Burgers equation. In Section 4, we provide numerical evidence that the weak
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solution that is selected in the α → 0 limit is indeed the physically relevant, entropy
solution. We discuss the Hamiltonian structure of (1) in Section 5. Finally, in Section 6,
we discuss future directions in which we plan to take this line of research.

2. Initial-Value Problem

In this section we study the existence, uniqueness and regularity of solutions of the
Cauchy problem for (1) (or equivalently, (3), (4)) for certain classes of initial data.
Making use of a particular dilation symmetry, we may restrict attention to the α = 1
system:

vt + uvx = 0, (17a)

u − uxx = v, (17b)

v(x, 0) = v0(x). (17c)

Given a solution u(x, t) of (17a)-(17b), we may construct

ũ(x, t) = u

(
x

α
,

t

α

)
. (18)

Then it is easy to check that ũ solves (1) for any α > 0.

Material Version of the Regularized Equation

To prove the existence and uniqueness of solutions of (17) we shift the view from the
spatial to the material picture. Suppose that (17) holds for a smooth function v(x, t).
Then we may solve (17b) for u and define the associated material map η as the solution
of

∂tη(X, t) = u(η(X, t), t), (19)

subject to η(X, 0) = X . Here, X denotes the Lagrangian coordinate (particle label). It
is clear that (17) becomes, simply,

d

dt
[v(η(X, t), t)] = 0,

which implies

v(η(X, t), t) = v(η(X, 0), 0) = v0(X). (20)

Remark. The curves η(X, t) are commonly called “characteristics.” The condition

∂Xη(X, t) �= 0, (21)

is simply the statement that characteristics do not cross. Provided (21) holds for all X
and t , the map X �→ η(X, t) is a diffeomorphism for each fixed t . Hence, the map η can
be inverted and v, defined by

v(x, t) = v0(η
−1(x, t)),

is a global smooth solution of (17), provided the initial data v0 is smooth.
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Differentiate (20) with respect to X ,

∂xv(η(X, t), t)∂Xη(X, t) = v′0(X), (22)

to observe that the condition (21) is equivalent to the non-blow-up in finite time of
‖vx‖L∞ . Below we will prove that ‖vxx‖L1 cannot blow-up in finite time, which implies
the non-blow-up of ‖vx‖L∞ .

A Priori Estimates

Due to (20), it is clear that, as long as the problem (17) has a smooth solution, it satisfies

‖v‖L∞ = ‖v0‖L∞ . (23)

The Green’s function of the Helmholtz operator (2) with α = 1 is

G(x) = 1

2
exp(−|x |).

Note that

‖G‖L1 = 1 and ‖Gx‖L1 = 1.

We invert (17b) by convolving

u(x, t) = G ∗ v := 1

2

∫
R

exp(−|x − y|)v(y, t) dy. (24)

Young’s inequality guarantees that v ∈ L p implies u ∈ L p. In particular, for v ∈ L∞,
we may use (24) to conclude u ∈ L∞, and because Gx ∈ L1, we know that ux exists
and can be computed via

ux = Gx ∗ v.
Using these facts, the following estimates become readily available:

‖ux‖L∞ ≤ ‖Gx‖L1‖v‖L∞ = ‖v0‖L∞ (25)

‖u‖L∞ ≤ ‖G‖L1‖v‖L∞ = ‖v0‖L∞ (26)

‖uxx‖L∞ = ‖u − v‖L∞ ≤ 2‖v0‖L∞ . (27)

L1 estimate on vx . Differentiate (17a) with respect to x , multiply by sgn(vx ) and inte-
grate over the x domain to obtain:∫

|vx |t dx +
∫
(uvx )x sgn(vx )dx = 0.

The second term in the left-hand side of the equation above is zero. Hence,

‖vx (·, t)‖L1 = ‖v′0‖L1 , for all t > 0. (28)
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L1 estimate on vxx . Differentiate (17a) twice with respect to x , multiply by sgn(vxx )

and integrate over the x domain to obtain:∫
|vxx |t dx = −

∫
(uvx )xx sgn(vxx )dx

= −
∫
(uvxx )x sgn(vxx )dx −

∫
uxxvx sgn(vxx )dx

−
∫

uxvxx sgn(vxx )dx . (29)

The first term in the right-hand side of (29) is zero. We estimate the remaining two terms
as follows:

−
∫

uxxvx sgn(vxx )dx ≤
∫
|uxx ||vx |dx ≤ ‖uxx‖L∞‖vx‖L1 ,

and

−
∫

uxvxx sgn(vxx )dx ≤
∫
|ux ||vxx |dx ≤ ‖ux‖L∞‖vxx‖L1 .

We know that ‖ux‖L∞ , ‖uxx‖L∞ and ‖vx‖L1 are bounded by constants that depend on
the initial data only (see (25), (27) and (28)). Hence, by using the last two estimates in
(29), we have

d

dt
‖vxx‖L1 ≤ C1‖vxx‖L1 + C2,

where C1 and C2 depend only on the initial data. Now, Gronwall’s lemma gives the L1-
boundedness of vxx , for finite times. The Sobolev imbedding (in the notation of [Ada75,
Thm. 5.4])

W 1,1(R)→ L∞(R)

then guarantees the L∞-boundedness of vx , for finite times. As mentioned earlier in
(22), this non-blow-up condition on ‖vx‖L∞ is precisely what is needed to show that
characteristics cannot cross in finite time. Using standard arguments, this implies that
characteristics can be extended uniquely from the initial data for any time interval [0, T ].

For the estimates of this section to make sense, we require that v0 possess the regularity
v0 ∈ C1 ∩ L∞, and also that v0 have two weak derivatives that satisfy v′0, v

′′
0 ∈ L1. By

virtue of the Sobolev imbedding1

W 2,1(R)→ C1
B(R),

it is sufficient to take v0 ∈ W 2,1. Hence we have proved:

Theorem 1. Given initial data v0 ∈ W 2,1(R), there exists a unique global solution
v(x, t) ∈ W 2,1(R) to the initial-value problem (17).

1 In what follows, C1
B(R) = { f ∈ C1(R) such that supx∈R | f (x)| + | f ′(x)| <∞}.
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3. The α→ 0 Limit

Let us now examine in a different context the Cauchy problem

vt + uvx = 0, (30a)

u − α2uxx = v, (30b)

v(x, 0) = v0(x), (30c)

subject to initial data v0 ∈ W 2,1(R). Let vα(x, t) denote the unique solution to the
Cauchy problem, which exists based on the results of Section 2. Now we can formulate
the question: what happens to uα(x, t) = H−1vα(x, t) in the limit as α → 0? We may
think of this limiting process as repeatedly solving the Cauchy problem with fixed initial
data v0 while taking values of α from a sequence {αn}, where αn ↓ 0 as n→∞.

Initial Data

It is important to remember that as we repeatedly solve (30) with decreasing values of
α, the initial data v0 stays fixed. How does this affect uα(x, 0)? To answer this, simply
note that using the Green’s function

Gα(x) := 1

2α
exp(−|x |/α), (31)

we may write

uα0 (x) = (Gα ∗ v0) (x).

Note that ‖Gα‖L1 = 1, while v0 is bounded and continuous, for all α > 0. Then it is a
standard property of convolutions (see [Fol99, Thm. 8.14]) that as α→ 0,

uα0 → v0

uniformly on compact subsets of R.

Conservation Properties/Estimates

Recall from the previous section that η gives particle trajectories corresponding to the
velocity field u. We established in (20) that v is constant along η.

Our next step is use the a priori estimates from the previous section to prove estimates
uniform in α for solutions uα(x, t) to (30) with v0 ∈ W 2,1(R). The uniform L∞ and BV
bounds that we are about to show will enable us to pass to the α→ 0 limit by a standard
conservation law compactness argument; we then establish that the resulting limit is a
weak solution of the inviscid Burgers equation.

Proposition 1. Given initial data v0 ∈ W 2,1(R) for the Cauchy problem (30), the
resulting solution vα(x, t) satisfies

‖vα(·, ·)‖L∞ = ‖v0(·)‖L∞ , (P1)

‖vαx (·, t)‖L1 = ‖v′0(·)‖L1 , (P2)

T.V. vα(·, t) = T.V. v0. (P3)
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Proof. The relations (P1) and (P2) for α = 1 were established in Section 2 (see (23)
and (28)). Clearly, the same proof applies for a general α. As regards (P3), this follows
immediately from (P2) together with the fact that for a smooth function f ,

T.V. f =
∫
R

∣∣ f ′(x)
∣∣ dx .

Proposition 2. Given initial data v0 ∈ W 2,1(R) for the Cauchy problem (30), the
solution vα(x, t) may be used to define the function uα(x, t) = H−1vα(x, t). Then
uα(x, t) satisfies

‖uα(·, ·)‖L∞ ≤ M1, (H1)

‖uα(x + h, t)− uα(x, t)‖L1 ≤ M2|h| for any h ∈ R, (H2)

‖uα(·, t + k)− uα(·, t)‖L1 ≤ M3k, for any k > 0, (H3)

for t ∈ [0, T ]. Here, M1 is independent of α, M2 is independent of t , h, and α, and M3

is independent of t , k and α.

Proof. In what follows we recall the Green’s function Gα defined in (31) and use the
fact that for all x ,

‖Gα(x − y)‖L1 = 1

2α

∫
R

e−|x−y|/α dy = 1.

Then starting with uα = Gα ∗ vα , we use (P1) to estimate

|uα(x, t)| ≤ 1

2α

∫
R

e−|x−y|/α|vα(y, t)| dy

≤ ‖v0‖L∞‖Gα(x − y)‖L1 = ‖v0‖L∞ ,

proving (H1).
To prove (H2), we estimate∫
R

|uα(x + h, t)− uα(x, t)| dx ≤ 1

2α

∫
R

∫
R

e−|x−y|/α|vα(y + h, t)− vα(y, t)| dy dx

=
∫
R

|vα(y + h, t)− vα(y, t)| dy ‖Gα(x − y)‖L1

=
∫
R

|vα(x + h, t)− vα(x, t)| dx . (32)

Now, (H2) follows from (32), the inequality∫
R

|vα(x + h, t)− vα(x, t)| ≤ |h|T.V. vα(·, t),

and (P3).
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Finally, to prove (H3) we start from the following estimate, derived in the same way
as (32): ∫

R

|uα(x, t + k)− uα(x, t)| dx ≤
∫ ∞
−∞
|vα(x, t + k)− vα(x, t)| dx . (33)

By integrating (3) from t to t + k (k > 0), we have∫
R

|vα(x, t + k)− vα(x, t)| dx ≤
∫
R

∫ t+k

t
|uα(x, s)vαx (x, s)| ds dx

≤ ‖uα‖L∞

∫ t+k

t
‖vαx (·, s)‖L1 ds

≤ M1‖v′0‖L1 k, (34)

where we used (P2) and (H1) in the last inequality. Combining (33) with (34), we have
the desired result.

Strong Convergence to a Weak Solution of Burgers

Using the estimates given above, we may prove the following:

Theorem 2. Suppose we solve the Cauchy problem (30) with initial data v0 ∈ W 2,1(R).
Using the solution vα , let us define uα = H−1vα in the usual way. Then, as α → 0,
passing if necessary to a subsequence, there exists a function u(x, t) such that

uα → u in C([0,∞); L1
loc(R)).

The function u is a global weak solution of the initial-value problem (5) for the inviscid
Burgers equation.

Proof. The first part of the theorem concerns compactness, i.e., strong convergence of
uα in the zero-α limit. The three uniform estimates proved in Proposition 2 are precisely
the conditions of the L1 compactness theory for conservation laws. (See [HR02, Thm.
A.8] or [Smo83, Thm. 19.9] for modern accounts of this.) The specific result is that there
exists a subsequence αj → 0 such that {uαj (t)} converges strongly to a function u(x, t),
where u(·, t) ∈ L1

loc(R) for each t ≥ 0. The convergence is in C([0,∞); L1
loc(R)).

For the second half of the theorem, we go back to equation (1), which we repeat here:

uαt + uαuαx − α2uαt xx − α2uαuαxxx = 0. (35)

We wish to prove that the α2 terms

α2uαt xx + α2uαuαxxx ,

converge weakly to 0 as α → 0. Suppose we have shown this; then, we may multiply
(35) by a test function ϕ that is compactly supported inR× [0,∞) and integrate in space
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and time. Now taking α → 0, we will find that the order α2 terms vanish, and we are
left with a function u that satisfies∫ ∞

0

∫
R

uϕt + 1

2
u2ϕx dx dt = 0,

for all compactly supported ϕ. This is precisely the statement that u is a global weak
solution of the inviscid Burgers equation, and would prove the theorem.

For the first α2 term from (35), we have, for any compactly supported ϕ,

α2
∫ T

0

∫
R

uαt xxϕ dx dt = −α2
∫ T

0

∫
R

uαϕt xx dx dt.

Using the convergence of the sequence uα , it is clear that this term converges to 0 as
α→ 0. For the second α2 term from (35), we may derive using integration by parts

α2
∫ T

0

∫
R

uαuαxxxϕ dx dt = 1

4
α2
∫ T

0

∫
R

(uα)2 ϕxxx dx dt − 3

2
α2
∫ T

0

∫
R

uαuαxxϕx dx dt.

(36)
By using the boundedness and the convergence of uα , we conclude that the first term on
the right-hand side of (36) vanishes in the α → 0 limit. Regarding the second term, by
considering the boundedness of uα , it is enough to show that

α2
∫ T

0

∫
K
|uαxx |dx → 0,

for any compact K . We have∫ T

0

∫
K
|α2uαxx | dx =

∫ T

0

∫
K
|uα − vα| dx

=
∫ T

0

∫
K

∣∣∣∣ 1

2α

∫
R

e−|x−y|/αvα(y, t) dy − vα(x, t)

∣∣∣∣ dx dt.

Here, we used uα = Gα ∗ vα to obtain the second equality. Integrating by parts, we get

1

2α

∫
R

e−|x−y|/αvα(y, t) dy = vα(x, t)+ 1

2

∫
R

sgn(y − x)e−|y−x |/αvαy (y, t) dy.

Continuing, we find∫ T

0

∫
K
|α2uαxx | dx dt ≤ 1

2

∫ T

0

∫
K

∫
R

e−|y−x |/α|vαy (y, t)| dy dx dt

= 1

2

∫ T

0

∫
K
|vαy (y, t)| dy dt

∫
R

e−|y−x |/α dx

= α

∫ T

0

∫
K
|vαy (y, t)| dy dt.

From (P2), we conclude that the term

α

∫ T

0

∫
K
|vαy (y, t)| dy dt

is of order O(α) and hence, goes to 0 as α→ 0. This completes the argument.
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4. Entropy/Numerics

Using a standard finite-difference scheme, we solve the initial-value problem (30) numer-
ically with an eye toward checking the Oleinik entropy inequality (6). Here we simply
describe the numerical scheme, deferring discussion of its convergence properties to
future work. Then we discuss various numerical results for both short- and long-time
simulations.

Numerical Scheme

Beginning with system (30), we truncate the spatial domain to [−a, a]. Because the
domain is now finite, we must impose artificial boundary conditions; we impose the
condition that v vanishes for |x | > a. We discretize the domain [−a, a] using an equis-
paced grid with N grid points. Let us denote this grid by xi = −a + (i − 1)�x , where
i = 1, . . . , N , and the grid spacing is given by �x = 2a/(N − 1).

On this discrete domain, we consider the evolution in time of the vector v(t) =
(v1(t), . . . , vN (t)). We will suppose that vi (t) ≈ v(xi , t).

Following [Ise96], we define two basic operators on RN :

z �→ �2
0z,

(
�2

0z
)

k = zk+1 − 2zk + zk−1, (37)

z �→ �0z, (�0z)k =
1

2
(zk+1 − zk−1) . (38)

Here we use the convention that zk = 0 for k < 1 and for k > N . This corresponds to
the artificial boundary conditions discussed above. Note that the operators (37)–(38) are
in fact linear transformations of RN and may be written in matrix form. Now in terms
of the operators (37)–(38), we may write the standard finite-difference approximations
to the first- and second-derivative operators ∂x and ∂2

x :

D1 = 1

�x
�0

[
Id−1

6

(
�2

0

)+ 1

30

(
�2

0

)2
]
+O(�x5), (39)

D2 = 1

�x2

[(
�2

0

)− 1

12

(
�2

0

)2 + 1

90

(
�2

0

)3
]
+O(�x6). (40)

With this notation, it is clear that the semidiscrete form of (30) is

vt = −
[(

Id− α2 D2
)−1

v
]

D1v, (41a)

vj (0) = v(xj , 0), (41b)

where v(x, 0) is the initial data for the continuum problem and where concatenation
of vectors means component-wise multiplication, i.e., (ab)k = akbk . The first-order
ODE (41) can now be solved numerically using the time-stepping algorithm of one’s
choice—we used a high-order explicit Runge–Kutta method.
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u(x,t)

x

-1 -0.5 0 0.5 1.0

0

0.2

0.4

Fig. 1. The numerical solution uα(x, t) of (30) for α = 0.3 with initial data (42).
The tallest curve, with a peak at x = −0.5, is the solution at t = 0. From left to
right, we then have the solutions at t = 1.25, t = 2.5, t = 3.75, and t = 5. As
time passes, the height of the pulse decays while its width increases.

Norm Decay of Solutions

First we present results for the following choice of initial data

v(x, 0) = sech2

(
x + 1/2

1/5

)
, (42)

for α = 0.3. With this choice of initial data, v(x, 0) ∈ W 2,1, so we are within the
bounds of our well-posedness and convergence theory. We solve the problem using
N = 1024 grid points. See Figure 1 for snapshots of the solution u(x, t) at t = 0,
t = 1.25, t = 2.5, t = 3.75, and t = 5. The initial profile does not shock or develop any
singularities. Instead, it decays steadily in a rather similar fashion as the solution of the
viscous Burgers equation (7a). To see this decay in three norms, we use the numerically
computed solution to compute ‖u(·, t)‖L1 , ‖u(·, t)‖L2 , and ‖u(·, t)‖L∞ as functions of
time t . The results are plotted in Figure 2, clearly showing the decay. Here we see that
the L1 norm of u stays constant in time, i.e.,

‖u(·, t)‖L1 = ‖u0‖L1 . (43)

This is a simple consequence of the fact that we chose v0 > 0. For, when v0 > 0, we
know that v(x, t) > 0 for all x ∈ R, t > 0. Then, using u = Gα ∗ v, we may deduce
that u(x, t) > 0 for all x ∈ R, t > 0 as well, so∫

R

u(x, t) dx = ‖u(·, t)‖L1

for all t . The fact that
∫

u is conserved is a simple consequence of the conservation law
form (9), which then explains why we observed (43). Note also from Figure 2 that both
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0
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Fig. 2. ‖u(·, t)‖L1 , ‖u(·, t)‖L2 , and ‖u(·, t)‖L∞ as functions of t for the
solution to (30) with initial data (42) and α = 0.3.

the L2 and L∞ norms of u are strictly decreasing in time. We showed the L∞ decay
property in the previous section—see Proposition 2. However, at this time, we have no
analytical method for deriving a uniform L2 decay law such as what is seen in Figure 2.

Entropy Inequality: Numerical Evidence

In the previous section, we established a basic convergence theory for (1). That is, we
choose initial data v0 ∈ W 2,1, solve (1), and label the solution as uα . Then we know that
a subsequence of uα converges, in the zero-α limit, to a function u. We know one more
thing: this function u is a weak solution of the inviscid Burgers equation (5) with initial
data v0.

At the time of writing, this is where rigorous analysis ends. This is unfortunate, in
light of the fact that there are many weak solutions of the inviscid Burgers equation (5)
with initial data v0—the unique, physically relevant solution, is the one that satisfies the
Oleinik inequality (6).

We will investigate numerically the validity of

sup
x

uαx (x, t) <
C

t
, (44)

where C does not depend on α. Fortunately, there is plenty of numerical evidence that
(44) holds uniformly in α. By implication, this is evidence that the strong limit u of
solutions of (1) does in fact satisfy the Oleinik inequality (6). Let us discuss some of this
numerical evidence.
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Fig. 3. Plot of supx uαx (x, t) as a function of t for three decreasing values
of α, from t = 0 to t = 7.

We repeatedly solve (30) with the initial data (42) using successively smallerα values:
α = 0.4, α = 0.3, and α = 0.2. We then plot the quantity

mα(t) := sup
x

uαx (x, t) (45)

as a function of t for each of the three values of α. First we present Figure 3 which shows
(45) from t = 0 until t = 7. The same quantity (45) from t = 5 until t = 50 is plotted in
Figure 4. Both plots lead one to believe that as α → 0, the curves mα(t) are uniformly
bounded by a curve of the form C /t . The evidence becomes clearer when we consider
the same data on logarithmic axes. Taking the logarithm of both sides of (44), we obtain
for t > 1,

log
(
supx uαx (x, t)

)
log t

<
log C

log t
− 1, (46)

where C must not depend on α. With this in mind, we examine Figure 5, which shows the
same data as Figure 4 now plotted on a log-log scale. The numerically computed slope
of the linear part of this plot is less than−1.25, meaning that the numerically computed
solutions uα(x, t) all satisfy

log
(
supx uαx (x, t)

)
log t

< −1 < −1+ log C

log t
, (47)

for any C > 1. Let us remark that we have run the same numerical test with different
choices of initial data, resolution, and values ofα. In all cases, we find that the numerically
computed solutions satisfy (47).
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Fig. 4. Plot of supx uαx (x, t) as a function of t for three decreasing values
of α, from t = 5 until t = 50.

There is solid numerical evidence that the solutions uα(x, t) satisfy (44). Because we
have not found any evidence that falsifies this claim, we theorize that the limit function
u(x, t) is indeed an entropy solution of the inviscid Burgers equation.

5. Geometric Structure

Consider the functional H : L1(R)→ R defined by

H(v) =
∫
R

v dx, (48)

and the operator

D = −vx
(
∂x − α2∂3

x

)−1
vx . (49)

This functional/operator pair is the b = 0 case of the Hamiltonian structure given in
[DHH03] for the b-family (see (13)). Using these two objects, we write the infinite-
dimensional generalization of Hamilton’s equation:

vt = D
δH

δv
. (50)

Here δH /δv is the functional derivative, defined by〈
δH

δv
, δv

〉
(v) = d

dε

∣∣∣∣
ε=0

H (v + εδv) ,

where 〈· , ·〉 is the natural pairing.
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Fig. 5. Plot of log
(
supx uαx (x, t)

)
as a function of log t for three decreasing

values of α, from t = 5 until t = 50.

Let us now show that (50) is precisely (1). Define

u(x, t) := (Gα ∗ v) (x, t),

so that Hu = v where H = Id − α2∂2
x as in (2). It is clear from (48) that δH /δv = 1.

Using this in (50) yields

vt = −vx
(
∂x − α2∂3

x

)−1
vx = −vx u,

which was what was desired. This calculation shows that the regularized equation (1) is
Hamiltonian, assuming of course that D is a valid Hamiltonian operator. The operator
D is Hamiltonian if the induced bracket {·, ·}, defined by

{F,G} =
∫
R

δF

δv
D
δG

δv
dx, (51)

is a Poisson bracket.

Definition 2. A Poisson bracket on a manifold M is a skew-symmetric, bilinear opera-
tion { , } on C∞(M) satisfying both

1. the Jacobi identity {F, {G, H}} + {H, {F,G}} + {G, {H, F}} = 0 and
2. the Leibniz identity {FG, H} = {F, H}G + F{G, H},
for all F , G, and H ∈ C∞(M).
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Lemma 1. The bracket { , } induced by D is skew-symmetric.

Proof. Because the operator L = ∂x−α2∂3
x has only odd-ordered derivatives, integration

by parts gives

〈 f,Lg〉 = −〈L f, g〉,
where 〈 , 〉 is the natural pairing

〈 f, g〉 =
∫
R

f g dx .

Hence we write L∗ = −L, which implies
(
L−1

)∗ = −L−1. We use this and the definition
of D to obtain

{F,G} = −
∫
δF

δv
vxL

−1

(
vx
δG

δv

)
dx

= −
∫ (

L
−1
)∗ (δF

δv
vx

)
vx
δG

δv
dx

=
∫

L
−1

(
vx
δF

δv

)
vx
δG

δv
dx

= −{G, F}.

Lemma 2. The bracket { , } induced by D satisfies the Jacobi identity.

Proof. Directly verifying the Jacobi identity for (51) requires copious amounts of al-
gebra, so we use the multi-vector formalism and Schouten bracket described in [MR99,
Chap. 10]. Let us give a sketch of the proof first: using the bi-vector B defined by

B = 1

2
∂x ∧D∂x , (52)

we realize the Poisson bracket as

{F,G} = iB (dF ∧ dG) . (53)

We will prove that the Schouten bracket of B with itself is zero. Then, by the Jacobi-
Schouten identity (see [MR99, Thm. 10.6.2]), we know that the Jacobi identity holds for
the bracket { , }. First let us verify (53) by direct computation:

iB (dF ∧ dG) = 1

2

∫
δF

δv
D
δG

δv
dx − 1

2

∫
δG

δv
D
δF

δv
dx

=
∫
δF

δv
D
δG

δv
= {F,G},

where we have used skew-symmetry (Lemma 1). Next we use the definition of D and
L = ∂x − α2∂3

x to write

D∂x = −vxL
−1(vx∂x ),
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which implies

−v−1
x Lv−1

x D∂x = ∂x .

Here we mean simply v−1
x = 1/vx . Using this, we compute the Schouten bracket:

[∂x ∧D∂x , ∂x ∧D∂x ] = [∂x ∧D∂x ,−v−1
x Lv−1

x D∂x ∧D∂x ]

= −
∫
R

−v−2
x ∂x (D∂x ) ∧ Lv−1

x D∂x ∧D∂x

+ v−1
x L(−v−2

x )∂x (D∂x ) ∧D∂x ∧D∂x dx .

The second term vanishes because D∂x ∧D∂x = 0. For the first term, we evaluate

Lv−1
x D∂x = ∂x (v

−1
x D∂x )− α2∂3

x (v
−1
x D∂x )

= −v−2
x vxxD∂x + v−1

x ∂x (D∂x )− α2∂3
x (v
−1
x D∂x ).

Since D∂x ∧D∂x = 0 and ∂x (D∂x ) ∧ ∂x (D∂x ) = 0, we are left with

[∂x ∧D∂x , ∂x ∧D∂x ] = −α2
∫
R

v−2
x ∂x (D∂x ) ∧ ∂3

x (v
−1
x D∂x ) ∧D∂x dx .

The only contributions from the ∂3
x term that will matter are those that involve either

∂2
x (D∂x ) or ∂3

x (D∂x ). With this in mind, we continue the computation:

= −α2
∫
R

v−2
x ∂x (D∂x ) ∧ (−3v−2

x vxx∂
2
x (D∂x )+ v−1

x ∂3
x (D∂x )) ∧D∂x dx

= −α2
∫
R

−3v−4
x vxx∂x (D∂x ) ∧ ∂2

x (D∂x ) ∧ (D∂x )

+v−3
x ∂x (D∂x ) ∧ ∂3

x (D∂x ) ∧ (D∂x ) dx .

Integrating the second term by parts to move one derivative off the ∂3
x (D∂x ) term, we

find that the entire expression cancels, proving that [B, B] = 0 as required.

Lemma 3. The bracket { , } induced by D satisfies the Leibniz identity.

Proof. We will use the fact that the Leibniz rule holds for functional derivatives:

δ(FG)

δv
= δF

δv
G + F

δG

δv
.

The proof of this consists of a simple calculation combined with the observation that
F(v) and G(v) do not depend explicitly on x . Using this, we evaluate

{FG, H}(v) =
∫
R

δ(FG)

δv
(v)D

δH

δv
(v) dx

=
∫
R

δF

δv
(v)G(v)D

δH

δv
(v)+ F(v)

δG

δv
(v)D

δH

δv
(v) dx

= {F, H}(v)G(v)+ F(v){G, H}(v),
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where again we have used the fact that F(v) and G(v) are x-independent real numbers.
As v was arbitrary, we have shown that the Leibniz identity holds.

Theorem 3. The bracket { , } induced by D is a Poisson bracket.

Proof. By linearity of functional derivatives, it is clear that (51) is bilinear. Then, the
preceding lemmas have established that the bracket is skew-symmetric and satisfies the
Jacobi and Leibniz identities.

Casimirs

It happens to be the case that the bracket (51) defined using the operator (49) has no
nontrivial Casimirs. Let us quickly verify this. Suppose there exists a function G such
that for all F , we have

{F,G} = 0.

By definition (51) of the bracket, this would imply that∫
R

δF

δv
D
δG

δv
dx = 0,

for all F . The only way this can happen is if in fact

D
δG

δv
= 0.

This reads (
∂x − α2∂3

x

)−1
(
vx
δG

δv

)
= 0.

Now applying
(
∂x − α2∂3

x

)
to both sides, we obtain

δG

δv
= 0,

so the only Casimirs are trivial. This is unfortunate—if we had even one nontrivial
Casimir, we might use it to prove stability of solutions via the energy-Casimir method.
As things stand, deciding the stability of solutions of (1) is likely to be very challenging.

6. Future Directions

At this point, it should be clear that one problem of immediate interest is to prove either
that the limit u = limα→0 uα satisfies the entropy condition, or demonstrate an initial
condition v0 that leads to failure of the entropy condition. Besides this immediate issue,
there are several projects of longer-term interest suggested by the current work.



636 H. S. Bhat and R. C. Fetecau

Extension to Higher Dimensions

Consider the vector Burgers equation:

ut + (u · ∇)u = 0, (54)

in either R2 or R3. Is it possible that the system

vt + (u · ∇) v = 0,

u− α2�u = v

regularizes the vector Burgers equation (54), just as (3) regularizes the scalar Burgers
equation?

Extension to One-Dimensional Gas Dynamics

Consider one-dimensional isentropic gas dynamics:

ρt + (ρu)x = 0, (55a)

(ρv)t +
(
ρu2 + p

)
x = 0, (55b)

where p = p(ρ). Might it be possible to regularize this system using a mechanism
similar to that of (1) ? One candidate system that comes to mind is

ρt + (ρu)x = 0, (56a)

(ρu)t + (ρuv + p)x = 0, (56b)

u − α2uxx = v. (56c)

Suppose there is zero-α convergence of (ρα, uα) to weak solutions of (55). Then is (56)
Hamiltonian in some sense?

Rough Initial Data

It is important to note that both standard and filtered viscosities select the correct entropy
solution even in the case of discontinuous initial data, where u0 ∈ L∞ only. This allows
one to legitimately use these viscous regularizations to solve Riemann problems. It would
be interesting to see whether we can solve Riemann problems directly using (1). That is,
what happens to (3) for initial data v0 ∈ L∞ ?

Other Smoothing Kernels

Another idea is to replace the Helmholtz operator with another operator. For example,
we could attempt to regularize Burgers’ equation via

vt + uvx = 0, (57)
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where u and v are related in any number of ways. One interesting possibility is

û = v̂

1+ α|k| .

Now v is, roughly speaking, the “square root” of the Helmholtz operator H applied to
u. Hence u is only one derivative smoother than v, whereas in (1), u is two derivatives
smoother than v. How smooth does u have to be, relative for v, for (57) to genuinely
regularize the Burgers equation?

Geometric Structures

Finally, it would be interesting to determine where the Hamiltonian structure (48)–(49)
comes from. The Hamiltonian functional (48) is linear in the field variable and therefore
does not have the meaning of a kinetic energy. Similarly, what is the meaning of the
nonlocal operator in (49)? Is there a Lagrangian structure that yields (1)? Answering
these questions will give us physical insight into why our model works the way it does.
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