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Abstract
We consider a Leray-type regularization for the isentropic Euler equations
for a γ -law gas, and we investigate the existence of smooth solutions for the
regularized system. The technique we use is the weakly nonlinear geometrical
optics (WNGO) asymptotic theory. The WNGO theory applied to our system
of equations predicts shock formation in finite time for γ �= 1 and suggests
existence of global smooth solutions for γ = 1. We also perform numerical
computations and show that the WNGO predictions are correct.

Mathematics Subject Classification: 35L67, 35L65

1. Introduction

In this paper, we consider the following system of equations:

ρt + uρx + ρvx = 0, (1a)

vt + uvx +
px

ρ
= 0, (1b)

v = u − α2uxx, (1c)

where α is a positive parameter. When α = 0 (i.e. v = u) the system represents the 1D
isentropic compressible Euler equations. Here, ρ denotes the mass density, v the velocity and
p = p(ρ) the pressure of the gas. We assume that p(ρ) is given by γ law

p = κργ , (2)

where κ > 0 and γ > 0 are constants.
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The goal of this work is to investigate whether or not the system (1a)–(1c) regularizes
the 1D isentropic compressible Euler equations. The first aspect one needs to investigate is
the global existence of smooth solutions for system (1a)–(1c). Provided the well-posedness
for system (1a)–(1c) is established, the next question that could be addressed is whether the
solutions of (1a)–(1c) converge in some sense, as α → 0, to solutions of the 1D compressible
Euler equations. The results of this paper deal with the first aspect only, leaving the second
question for future work.

The idea of using a system like (1a)–(1c) in attempting to regularize the compressible
Euler equations goes back to Leray [Ler34]. Working in the context of the incompressible
Navier–Stokes equations, Leray first proposed replacing the nonlinear term (v · ∇)v with a
term (u · ∇)v. Here u = Kε ∗ v for some smoothing kernel Kε . Leray’s program consisted of
proving existence of solutions for his modified equations and then showing that these solutions
converge, as ε ↓ 0, to weak solutions of Navier–Stokes—see [Ler34] for details. More recently,
the Leray model has been used as a subgrid scale model of 3D turbulence—see [CHOT05].
We also mention that Leray-type ideas were recently used to regularize the Burgers equation
(see [MZM06, BF06]). In fact, the Leray regularization of the Burgers equation will play a
central role in the subsequent analysis.

We borrow these ideas and use them for compressible fluids. Equations (1a) and (1b) are
obtained from the compressible Euler equations by replacing the convective velocity v with a
smoothed version of it, u, where u = H−1v. Here, H−1 represents the inverse of the Helmholtz
operator

H = Id − α2∂xx. (3)

Using Green’s function of H, we have an explicit formula for u in terms of v:

u(x, t) = 1

2α

∫ ∞

−∞
exp(−|x − y|/α)v(y, t) dy. (4)

We will see ((7) below) that the Leray system (1a)–(1c) agrees with compressible Euler
on the linear level. Only nonlinear wave steepening is different. The compressible Euler
equations are genuinely nonlinear [Lax73] for any γ > 0, and therefore small-amplitude
solutions develop shocks in finite time [Joh74]. The wave steepening mechanism of the Leray
system (1a)–(1c) is different. Asymptotics and numerics show that for γ > 1 a shock forms
in finite time, while for γ = 1 the slope grows exponentially in time but remains finite at
any time.

We use the asymptotic method weakly nonlinear geometric optics (WNGO) [HK83,
MR84] to predict shock formation or lack thereof in the Leray system. Many studies
have shown that WNGO correctly predicts shock formation in borderline situations. For
example [AHPR93] it correctly predicts breakdown of radial disturbances for compressible
Euler in 3D but not in 4D. In our case, the predictions of WNGO are in detailed quantitative
agreement with numerical computations.

The WNGO treatment of system (1a)–(1c) is presented in section 2. Section 3 contains
the numerical results as compared with the WNGO predictions.

The conclusions that can be drawn from our study of the Leray system (1a)–(1c) are as
follows.

1. For γ �= 1 the system (1a)–(1c) fails to have global smooth solutions and therefore does not
regularize the equations for γ -law gas dynamics. Both WNGO theory and the numerics
show that the blow-up rate for solutions of (1a)–(1c) is slower than that for solutions of
the Euler equations.
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2. For γ = 1 the system does not develop shocks in the first order terms of the expansion.
Both WNGO theory and the numerics suggest that the slope of the amplitude increases
exponentially fast but does not become infinite in finite time.

2. Weakly nonlinear geometrical optics

We take a small perturbation of a constant solution of (1a)–(1c) and then study the resulting
system for the perturbation using the WNGO approach [HK83, MR84].

We can write (1a) and (1b) as(
ρ

v

)
t

+

(
u ρ

κγργ−2 u

) (
ρ

v

)
x

= 0, (5)

where u and v are related by (1c). Now consider (ρ0, 0) a constant solution of (1a)–(1c), take
ρ = ρ0 + ρ ′, v = 0 + v′ (and correspondingly, u = 0 + u′) and plug these expressions into (5).
After expanding the nonlinear terms in Taylor series around (ρ0, 0) and truncating the series
at the second order we obtain(

ρ ′

v′

)
t

+

(
0 ρ0

κγ ρ0
γ−2 0

) (
ρ ′

v′

)
x

+

(
u′ ρ ′

κγ (γ − 2)ρ0
γ−3ρ ′ u′

) (
ρ ′

v′

)
x

= 0. (6)

To simplify notation, we delete the primes in (6) and rename (ρ ′, v′) as (ρ, v). Hence, we will
study (

ρ

v

)
t

+ A

(
ρ

v

)
x

+ B

(
ρ

v

)
x

= 0, (7)

and the matrices A and B are given by

A =
(

0 ρ0

κγ ρ0
γ−2 0

)
,

B(ρ, v) =
(

u ρ

ϕ(ρ0)ρ u

)
,

with

ϕ(ρ0) = κγ (γ − 2)ρ0
γ−3.

The linearization matrix A in (7) is the same as it would have been for the isentropic
compressible Euler equations [CF76]. Therefore the eigenvalues λ1 = −c0 and λ2 = c0

(with c0 = √
p′(ρ0) =

√
κγ ρ0

γ−1) and the corresponding eigenvectors r1 = (ρ0, −c0)
T and

r2 = (ρ0, c0)
T are the same as for the compressible Euler equations [Smo83]. The leading

order nonlinearity is represented by B. Compressible Euler differs by having v instead of u

on the diagonal of B, which leads to finite time breakdown (in Euler) for all small-amplitude
localized or periodic initial data.

For the present one dimensional situation, WNGO is little more than the method of multiple
scales applied to estimating the slowly changing shape of a wave under the influence of
weak nonlinearity [KC96]. If we neglect the nonlinear term in (7), the general solution is
a superposition of left and right-moving waves: (ρ, v)T = G1(x + c0t)r1 + G2(x − c0t)r2.
With B �= 0, waves with amplitude ε will change shape on a time scale of order 1/ε. We
take this into account by adding dependence on a slow time variable τ = εt . The dependence
of the leading order term on the slow variable is determined by the requirement that the first
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correction be bounded for times of order 1/ε. The WNGO ansatz is(
ρ

v

)
= εg1(x + c0t, εt)r1 + εg2(x − c0t, εt)r2 + ε2m1(x, t, εt)r1 + ε2m2(x, t, εt)r2 + O(ε3).

(8)

We denote the characteristic variables ξ1 = x +c0t and ξ2 = x −c0t . After plugging the ansatz
(8) into (7), the order O(ε) term gives an identity,

(c0r1 + Ar1)g1,ξ1(ξ1, τ ) + (−c0r2 + Ar2)g2,ξ2(ξ2, τ ) = 0.

Here and in what follows, we use comma subscripts to denote differentiation. At the order
O(ε2) we obtain

g1,τ (ξ1, τ )r1 + g2,τ (ξ2, τ )r2 + m1,tr1 + m2,tr2 + m1,xAr1 + m2,xAr2

+

( −c0f1 + c0f2 ρ0g1 + ρ0g2

ϕ(ρ0) (ρ0g1 + ρ0g2) −c0f1 + c0f2

) (
g1,ξ1(ξ1, τ )r1 + g2,ξ2(ξ1, τ )r2

) = 0, (9)

where f1, g1 and f2, g2 are related as u and v in (1c), i.e. gi = Hfi , i = 1, 2 with H as in (3).
We project equation (9) on r1 and r2, respectively. In order to do this we need to express the
last term in the LHS of (9) in this basis. Thus we perform the multiplication and obtain(

g1,ξ1ρ0c0(−f1 + f2 − g1 − g2) + g2,ξ2ρ0c0(−f1 + f2 + g1 + g2)

g1,ξ1 [ϕ(ρ0)ρ0
2(g1 + g2) − c0

2(−f1 + f2)] + g2,ξ2 [ϕ(ρ0)ρ0
2(g1 + g2) + c0

2(−f1 + f2)]

)
.

This expression can be simplified. Note that

ϕ(ρ0)ρ0
2 = κγ (γ − 2)ρ0

γ−1

= (γ − 2)c0
2.

Hence, the last term in the LHS of (9) reads

c0

(
ρ0[g1,ξ1(−f1 + f2 − g1 − g2) + g2,ξ2(−f1 + f2 + g1 + g2)]

c0[g1,ξ1 ((γ − 2)(g1 + g2) + f1 − f2)) + g2,ξ2 ((γ − 2)(g1 + g2) − f1 + f2))]

)
.

Write this resulting vector in the {r1, r2} basis, i.e. write it as

ar1 + br2.

After some algebra, we obtain

a = −c0

2

[
g1,ξ1 (2f1 − 2f2 + (γ − 1)(g1 + g2)) + g2,ξ2(γ − 3)(g1 + g2)

]
and

b = c0

2

[
g1,ξ1(γ − 3)(g1 + g2) + g2,ξ2 ((γ − 1)(g1 + g2) − 2f1 + 2f2)

]
.

Now, by projecting (9) on the first eigenvector r1 we get

− (m1,t − c0m1,x) = R1(x, t, τ ), (10)

where

R1(x, t, τ ) = g1,τ (x + c0t, τ ) − c0

2
[g1,ξ1 (2f1 − 2f2 + (γ − 1)(g1 + g2))

+ g2,ξ2(γ − 3)(g1 + g2)]. (11)

We remind the reader that in this equation, g1 and f1 are functions of ξ1 = x + c0t and τ = εt ,
while g2 and f2 are functions of ξ2 = x − c0t and τ .

The general solution to (10) is

m1(x, t, τ ) = h1(x + c0t) −
∫ t

0
R1(x + c0(t − s), s, τ ) ds,
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with h1 an arbitrary function. Using (11), we evaluate the last integral as follows:∫ t

0
R1(x + c0(t − s), s, τ ) ds

= t

(
g1,τ (ξ1, τ ) − c0f1(ξ1, τ )g1,ξ1(ξ1, τ ) − c0

2
(γ − 1)g1(ξ1, τ )g1,ξ1(ξ1, τ )

)

+ c0g1,ξ1(ξ1, τ )

∫ t

0
f2(x + c0t − 2c0s, τ ) ds − c0

2
(γ − 1)g1,ξ1(ξ1, τ )

×
∫ t

0
g2(x + c0t − 2c0s, τ ) ds

−c0

2
(γ − 3)g1(ξ1, τ )

∫ t

0
g2,ξ2(x + c0t − 2c0s, τ ) ds︸ ︷︷ ︸

I

− c0

2
(γ − 3)

∫ t

0
(g2g2,ξ2)(x + c0t − 2c0s, τ ) ds︸ ︷︷ ︸

II

. (12)

Following [MR84], we make the following assumptions on g1 and g2:

1. gi and gi,ξi
are bounded functions of ξi , where i = 1, 2.

2. The averages

ḡi (τ ) = lim
L→∞

1

2L

∫ L

−L

gi(ξ, τ ) dξ, 1 � i � 2,

exist and

1

L

∫ L

0
gi(ξ + η, τ) dξ = ḡi (τ ) + o(1) as L → ±∞,

uniformly in −∞ < η < ∞.

The mi , i = 1, 2, are assumed to be smooth functions of their arguments, bounded in x and
having at most sublinear growth in t as t ± ∞. This assumption makes the perturbation
expansion (8) formally valid for times t of order at least ε−1.

Integrals I and II from (12) are easily seen to be integrals of derivatives of, respectively,
g2 and (g2)

2. Evaluating these integrals and using assumption 1, one finds that I and II yield
terms that are uniformly bounded in time. Hence,∫ t

0
R1(x + c0(t − s), s, τ ) ds = t

(
g1,τ (ξ1, τ ) − c0f1(ξ1, τ )g1,ξ1(ξ1, τ )

−c0

2
(γ − 1)g1(ξ1, τ )g1,ξ1(ξ1, τ ) + c0g1,ξ1(ξ1, τ )

1

−2c0t

∫ −2c0t

0
f2(x + c0t + z, τ ) dz︸ ︷︷ ︸

III

−c0

2
(γ − 1)g1,ξ1(ξ1, τ )

1

−2c0t

∫ −2c0t

0
g2(x + c0t + z, τ ) dz︸ ︷︷ ︸

IV

)
+ bounded terms. (13)

We apply assumption 2 to integrals III and IV from (13) and replace these integrals by barred
quantities. Now, to suppress the linear growth of m1 in time, we require

g1,τ − c0f1g1,ξ1 − c0

2
(γ − 1)g1g1,ξ1 + c0f̄2(τ )g1,ξ1 − c0

2
(γ − 1)ḡ2(τ )g1,ξ1 = 0. (14)
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After projecting (9) on the second eigenvector r2 and carrying out similar computations we
obtain the following equation for g2:

g2,τ + c0f2g2,ξ2 +
c0

2
(γ − 1)g2g2,ξ2 − c0f̄1(τ )g2,ξ2 +

c0

2
(γ − 1)ḡ1(τ )g2,ξ2 = 0. (15)

Recall that equations (14) and (15) should be coupled with

gi = Hfi, i = 1, 2, (16)

with H as in (3). Note that

f1∂ξ1g1 = f1∂ξ1(f1 − α2∂2
ξ1
f1)

= ∂ξ1

(
1
2∂ξ1f1 − α2f1∂

2
ξ1
f1 + 1

2α2(∂ξ1f1)
2
)
,

and hence, equation (14) can be written in conservation law form:

∂τg1 − c0∂ξ1

(
1
2∂ξ1f1 − α2f1∂

2
ξ1
f1 + 1

2α2(∂ξ1f1)
2 + 1

4 (γ − 1)g2
1 − f̄2(τ )g1

+ 1
2 (γ − 1)ḡ2(τ )g1

) = 0. (17)

From (17) we infer

∂τ ḡ1 = 0, i.e. ḡ1is a constant.

It then follows that f̄1 is a constant. Similarly, ḡ2, f̄2 are constants as well.

Analysis. Based on the previous observation, the barred coefficients in equations (14) and
(15) are constant and thus the analysis of the two equations is greatly simplified. We will
consider the equation for the right-moving wave only, i.e. (15) coupled with (16) for i = 2.
The results we derive clearly apply to g1 as well.

Case γ = 1. For γ = 1 the system (15), (16) reduces to

g2,τ + c0f2g2,ξ2 − c0f̄1g2,ξ2 = 0, (18)

where

g2 = Hf2.

Note that up to a change of variables, this is precisely the Leray-type regularization of the
Burgers equation that was first proposed in [MZM06] and later analysed in [BF06]. In [BF06]
it is shown that the Cauchy problem for (18) is well-posed for all α > 0: a classical solution
gα

2 (ξ, τ ) to (18) exists globally in time, given initial data in W 2,1(R). Therefore, at first order
in the asymptotic expansion, there are no shocks that develop in finite time and this suggests
that (1) has global smooth solutions. Motivated in part by this suggestion, the work of [Fet07]
has recently established that (1a)–(1c) (with p given by the γ law (2) with γ = 1) does in fact
have global smooth solutions, validating the WNGO prediction.

The negative infimum − infξ vξ (ξ, τ ) increases exponentially in time. This can be seen
from the following argument. Ignore the translation term and consider the long time behaviour
for the equation4

vt + uvx = 0, (19)

where v = u − α2uxx . The long time behaviour for (18) should be similar to that for (19).
Define

s(t) = vx(ζ(t), t),

4 In what follows, we abuse notation and use (x, t) instead of (ξ, τ ).
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where ζ(t) satisfies

vx(ζ(t), t) = inf
x

vx(x, t).

Hence, vxx(ζ(t), t) = 0. Now differentiate (19) with respect to x once and evaluate the
resulting equation at x = ζ(t) to obtain

d

dt
s(t) = −ux(ζ(t), t)s(t).

We argue that we can replace ux(ζ(t), t) by a constant in the previous equation and yet recover
the correct behaviour of s(t) for long times. The reason is that the infimum of ux does not
blow up and saturates at some value of order O(α−1). One can see this by differentiating (4)
and using the fact that v remains uniformly bounded for all times.

Therefore, we examine instead

d

dt
s(t) = Cs(t),

where C > 0 is a constant. A trivial integration yields

s(t) = s(0)eCt , (20)

which justifies the assertion above.
The numerical results presented in section 3 confirm the WNGO predictions and the

validity of (20).
Case γ �= 1. For γ �= 1 equation (15) has a Burgers-like nonlinear term, c0

2 (γ − 1)g2g2,ξ2

that produces finite time blow-up in the first derivative g2,ξ2 , as long as the initial slope g2,ξ2(0)

is negative for at least one point. Therefore, the original system (1a)–(1c) exhibits finite time
shock formation as well.

We will briefly investigate the finite time blow-up in the equation for g2. For the Burgers
equation, vt + vvx = 0, the infimum infx vx(x, t) blows up like O(1/(t − T )), where T is the
time where the shock forms. Now consider the equation

vt + uvx + vvx = 0, (21)

where v = u−α2uxx . The shock formation for (15) should be of the same type as that for (21).
We use the same notations for s(t) and ζ(t) as above. By differentiating (21) with respect

to x once and evaluating the resulting equation at x = ζ(t) one obtains

d

dt
s(t) = −ux(ζ(t), t)s(t) − s(t)2.

An argument similar to the one used in the γ = 1 case enables us to replace ux(ζ(t), t) by a
constant. Hence, we examine

d

dt
s(t) = Cs(t) − s(t)2,

where C > 0 is a constant. An integration yields

C

s(t)
= 1 − e−C(t−T ),

where T is a constant of integration which also represents the blow-up time. We Taylor expand
the exponential term in the right-hand side around t = T and ignore the terms of third order
and higher. After some trivial algebra we obtain

1

s(t)
≈ (t − T ) − 1

2
C(t − T )2. (22)
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Figure 1. Near-linear dependence of log[− infx vx(x, t)] on t , for solution of (1a)–(1c) with γ = 1
and one-wave initial data (23).

The quadratic correction means that the blow-up time for (21) is greater than that for the
Burgers equation. The term uvx slows down the break-up of the solution.

To conclude, for γ = 1, the WNGO analysis suggests existence of smooth solutions for
the original system (1a)–(1c). The negative infimum of the slope vx is expected to increase
exponentially in time. For γ �= 1, the WNGO analysis predicts shock formation and the
approximate behaviour of infx vx(x, t) near the shock is given by (22). In section 3 we
confirm numerically all these predictions.

3. Numerics

In this section we present numerical results that validate the WNGO perturbation theory
developed in section 2.

We solve numerically the system (1a)–(1c) on the interval [0, 1] with periodic boundary
conditions using a pseudospectral method and N = 16384 grid points. For all computations
we use the γ law (2) with κ = 0.4, and either γ = 1 or γ = 1.4.

One-wave initial data. Consider initial data that is a perturbation of the constant state (ρ0, 0)T

in the direction of the second eigendirection r2 = (ρ0, c0)
T:(

ρ

v

)
(x, 0) =

(
ρ0

0

)
+ ε exp

(−((x − 0.3)/0.05)2
) (

ρ0

c0

)
, (23)

with ε = 0.01, ρ0 = 0.5 and c0 =
√

κγ ρ0
γ−1. We consider two values for γ :

1. γ = 1. We solve for ρ and v and examine the quantity

log
[
− inf

x
vx(x, t)

]
. (24)

Figure 1 indicates that (24) is very close to a straight line, especially for t large.
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Supposing that log[− infx vx(x, t)] = a1t + a0 for positive constants a1 and a0, we find
that

inf
x

vx(x, t) = − exp(a1t + a0).

This confirms the WNGO results for γ = 1 (see (20)), which hold that v steepens exponentially
fast, but for any finite t , the slope vx remains finite.

2. γ = 1.4. Again solving for ρ and v, we examine the quantity

q1(t) = 1

infx vx(x, t)
. (25)

A plot of q1(t) versus t is presented in figure 2. From the plot, it is clear that q1(t) is concave and
that, roughly speaking, it depends quadratically on t , consistent with the WNGO results—see
(22). To make a closer comparison with WNGO theory, we solve

vτ + c0uvx + c0
γ − 1

2
vvx = 0, (26a)

v(x, 0) = exp(−((x − 0.3)/0.05)2). (26b)

This scalar PDE is simply (15), where we have ignored translation terms given by constant
multiples of vx . Note that the initial data in (26a) and (26b) is chosen to be the function v(x, 0)

from (23) rescaled by a factor of (εc0)
−1. Having computed numerically the solution v(x, τ )

of (26a) and (26b), we examine the quantity

q2(τ ) = 1

εc0 infx vx(x, τ )
. (27)

Recall that we also have an algebraic expression (see (22)) for the blow-up behaviour of
solutions of (21). Analogously, one can derive such a formula for solutions of (26a) and obtain

1

infx vx(x, τ )
≈ c0

2
(γ − 1)(τ − εT ) − c2

0

4
(γ − 1)C(τ − εT )2,

where C is a constant of integration of order 1/α and εT is the blow-up time. Here we rescaled
the blow-up time T by ε to account for the slow time variable τ = εt present in (26a).

To compare this expression with q1(t), we must rescale by (εc0)
−1, just as we did for (27).

This gives the following algebraic approximation for the blow-up:

q3(τ ) = 1

2ε
(γ − 1)(τ − εT ) − c0

4ε
(γ − 1)C(τ − εT )2. (28)

A nonlinear least-squares optimizer is used to find parameters C and T that minimize the L2

distance between q3(εt) from (28) and q1(t) from (25). To two decimal places, we find that
C = 18.77 and T = 20.11.

Now we compare the three functions q1, q2 and q3 that were obtained from the numerical
results for the original system (1a)–(1c), the numerics for the scalar PDE (26a) yielded by
WNGO and the algebraic expression for the blow-up in (26a), respectively. The three curves
are plotted in figure 2.

To quantify the differences between the three curves, we compute the relative L2 errors
between q1(t) and, respectively, q2(εt) and q3(εt). We find that

‖q1(t) − q2(εt)‖L2

‖q1(t)‖L2
= 9.11 × 10−3

and
‖q1(t) − q3(εt)‖L2

‖q1(t)‖L2
= 1.35 × 10−3.
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Figure 2. Close agreement of 1/ inf vx for a solution of (1a)–(1c) with γ = 1.4, a solution of the
scalar PDE (26a) and the algebraic expression (28) for the blow-up in (26a). We used the one-wave
initial data (23) for (1a)–(1c). The corresponding initial data for (26a) is given by (26b).

These numbers are consistent with the fact that in figure 2, the three curves are nearly
indistinguishable. The only discernable difference one would expect from the L2 errors is
that q2(εt) should be about 10 times further away from q1(t) than q3(εt) is from q1(t). This
can be seen by examining figure 2 closely.

Overall, figure 2 shows excellent agreement between numerics and WNGO theory.

Two-wave initial data. Next we take initial data that has components in both eigendirections:(
ρ

v

)
(x, 0) =

(
ρ0

0

)
+ ε

(
exp(−((x − 0.4)/0.05)2)

exp(−((x − 0.3)/0.05)2)

)
, (29)

with ε = 0.01 and ρ0 = 0.5. We again consider two values of γ , and construct plots just as in
the one-wave case.

1. γ = 1.
Because we chose the initial data to have components in both eigendirections, the time
evolution of the solution features wave interactions. In fact, each interaction corresponds
to a spike in the plot shown in figure 3, where again we have plotted log[− infx vx(x, t)] as
in (24). Having explained the reason for the spikes, we may focus on the overall behaviour
of the underlying curve, which compares quite well with the curve shown in figure 1.
This time, the underlying behaviour appears to consist of a long-period, small-amplitude
oscillation about a straight line. That is to say, in the two-wave case, the numerics
suggest that

inf
x

vx(x, t) = − exp(a1t + a0 + small-amplitude, slow, periodic function of t).

Once again this supports the WNGO findings that vx does not blow up in finite time, but
that v does steepen exponentially fast.

2. γ = 1.4.
The spikes present in figure 4 are again due to wave interactions, which were not present
in the one-wave case shown in figure 2. Behind these spikes is a curve indicating that in
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Figure 3. log[−infxvx(x, t)] versus t for (1a)–(1c) with γ = 1.0 and two-wave initial data (29).
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Figure 4. 1/ inf vx(x, t) versus t for (1a)–(1c) with γ = 1.4 and two-wave initial data (29).

the two-wave case, 1/ inf vx has the same concavity and near-quadratic dependence on
t that we saw in the one-wave case. This indicates a finite time blow-up, again confirming
the predictions of WNGO theory.

References

[AHPR93] Anile A M, Hunter J K, Pantano P and Russo G 1993 Ray Methods for Nonlinear Waves in Fluids
and Plasmas (Pitman Monographs and Surveys in Pure and Applied Mathematics vol 57) (Harlow:
Longman Scientific & Technical)

[BF06] Bhat H S and Fetecau R C 2006 A Hamiltonian regularization of the Burgers equation J. Nonlinear Sci.
16 615–38

http://dx.doi.org/10.1007/s00332-005-0712-7


2046 H S Bhat et al

[CF76] Courant R and Friedrichs K O 1976 Supersonic Flow and Shock Waves (Applied Mathematical Sciences
vol 21) (New York: Springer) (reprint of the 1948 original)

[CHOT05] Cheskidov A, Holm D D, Olson E and Titi E S 2005 On a Leray-α Model of Turbulence Proc. R. Soc.
Lond. Ser. A 461 629–49

[Fet07] Fetecau R C On a regularization of the isentropic Euler equations for an isothermal gas Preprint
[HK83] Hunter J and Keller J B 1983 Weakly nonlinear high frequency waves Commun. Pure Appl. Math.

36 547–69
[Joh74] John F 1974 Formation of singularities in one-dimensional nonlinear wave propagation Commun. Pure

Appl. Math. 27 377–405
[KC96] Kevorkian J and Cole J D 1996 Multiple Scale and Singular Perturbation Methods (Applied Mathematical

Sciences vol 114) (New York: Springer)
[Lax73] Lax P D 1973 Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves

(Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics
No 11) (Philadelphia, PA: Society for Industrial and Applied Mathematics)

[Ler34] Leray J 1934 Essai sur le mouvement d’un fluide visqueux emplissant l’space Acta Math. 63 193–248
[MR84] Majda A and Rosales R 1984 Resonantly interacting weakly nonlinear hyperbolic waves: I. A single

space variable Stud. Appl. Math. 71 149–79
[MZM06] Mohseni K, Zhao H and Marsden J E 2006 Shock regularization for the Burgers equation 44th AIAA

Aerospace Sciences Meeting and Exhibit (Reno, NV, January 2006) AIAA Paper 2006-1516
[Smo83] Smoller J 1983 Shock Waves and Reaction-Diffusion Equations (Grundlehren der Mathematischen

Wissenschaften vol 258) (New York: Springer)

http://dx.doi.org/10.1002/cpa.3160360502
http://dx.doi.org/10.1002/cpa.3160270307
http://dx.doi.org/10.1007/BF02547354

	1. Introduction
	2. Weakly nonlinear geometrical optics
	3. Numerics
	 References

