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Abstract

This work explores the connectionist network BrbrNet and gives a comprehensive formal analysis of its
operation. BrbrNet (Legendre, Sorace, and Smolensky 2006) is a connectionist implementation of the
syllabification of words in Imdlawn Tashylhiyt Berber (ITB). Numerical simulations suggested that
BrbrNet correctly syllabified most input strings of segments, given special initial conditions for the
network, but there was no proof offered of the formal soundness of it. Indeed, an example of an input
where BrbrNet converges to the wrong syllabification was subsequently identified (Christo Kirov,
personal communication). We provide an alternate set of parameters for which BrbrNet converges for
all allowed inputs. The proof of soundness for these parameters highlights the similiarity between the
dynamics of BrbrNet and the originally proposed serial syllabification algorithm for ITB (Dell and
Elmedlaoui 1985). We go on to discuss the feasibility of BrbrNet and similar models as a realistic
component of language production.

1. Introduction

One outstanding challenge in linguistics and cognitive science is determining how language is
implemented in the brain. At the level of linguistic analysis, language appears to be discrete and
symbolic; at the level of neurology, the brain consists of a network of billions of neurons with
continuously varying activations. One particular proposal for the unification of these two levels is the
Integrated Connectionist/Symbolic (ICS) Cognitive Architecture, as presented in The Harmonic Mind
(Smolensky and Legendre 2006). A test case for which Smolensky and Legendre’s proposal is well-
developed is the syllabification of Imdlawn Tashlhiyt Berber (ITB), a system first analysed in Dell and
Elmedlaoui (1985). In Legendre, Sorace, and Smolenksy (2006) a connectionist network BrbrNet is
described that implements at the level of connectionist units the phenomena of ITB syllabification.
Moreover, the workings of BrbrNet can simultaneously be understood at both the symbolic and the
connectionist level: either as the finding of an optimal output for satisfying a ranked list of constraints,
or as the changing of the activations in a network of nodes. What unifies the two levels of analysis is the
idea of Harmony. The correct output of BrbrNet for a given input is the one that maximizes harmony.
At the symbolic level, the most harmonic candidate is the one that best satisfies the hierarchy of ranked
constraints; at the connectionist level, it is defined as a mathematical function of the activations of the
nodes in the network.

Syllabification of a word in ITB depends only upon the sonority of the segments in the word. Dell and
Elmedlaoui (1985) model the relative sonority of segments by locating them on an 8-point scale which
we show in Table 1. Accordingly, their work and all subsequent work on ITB syllabification following it,
including ours, is completely dependent on the concept of sonority. However, we remain agnostic on
whether or not sonority is an innate part of the language facility. For us, the sonority scale is “a
statement of the relative inclination of the segments of a language to be the nucleus of their particular
syllable” (Goldsmith and Larson 1990).

Legendre, Sorace, and Smolensky (2006) provide extensive evidence that BrbrNet correctly implements
ITB syllabification as described by Dell and Elmedlaoui (1985). However, a problem remains in the
analysis of BrbrNet: the winning output must be the most harmonic of all candidates in order to



reproduce the correct linguistic behavior. But in a harmony-maximising connectionist network such as
BrbrNet, the system goes to the most harmonic among the candidates accessible from the initial
conditions and not the most harmonic overall, as we shall see below. In other words, the symbolic
nature of language requires outputs that are global maxima of harmony, while connectionist systems in
general only output local maxima of harmony. This mismatch leads to a challenge for BrbrNet and other
connectionist implementations of symbolic systems.

To demonstrate this problem, we start with a simple example of syllabificiation in ITB: we consider a
word with two segments /gl/ ‘bust’ (Lahrouchi 2010). Syllabification in this case consists in assigning
each segment in the word the role of nucleus or the role of margin, where we use the term margin to
denote either an onset or a coda. The constraints relevant for an OT analysis (Prince and Smolensky
1993/2004) are ONSET and HNuC.

(1) ONSET: A non-initial syllable must have an onset.
(2) HNuc: A higher sonority nucleus is more harmonic than one of lower sonority.

(Note that following Prince and Smolensky (1993/2004), we use a non-standard version of the constraint
ONSET, which allows onset-free initial syllables. See McCarthy and Prince (1993) for a treatment of the
same phenomena with standard constraints.) ONSET is ranked higher than HNUC, which prevents both
segments of /gl/ from being nuclei at the same time, regardless of the input. According to the sonority
hierarchy introduced in Dell and Elmedlaoui (1985), which we show in Table 1, the segment /1/ is more
sonorous than /g/. So the effect of HNUC for this particular input is to make the nucleus be /1/ and not
/g/, resulting in /g/ forming the onset. Following the notation of Dell and ElImedlaoui (1985) and
Smolensky and Legendre (2006), we will denote this syllabification by [gL], using a capital letter to
indicate a syllable nucleus and a lower-case letter to indicate a syllable margin.

Table 1. Sonority index for the segments of ITB

Sonority Class Segments | Sonority Index
voiceless stops t, k 1
voiced stops b,d, g 2
voiceless fricatives s, f, x 3
voiced fricatives Z, Y 4
nasals m, n 5
liquids Lr 6
high vocoids iy, uw/w 7
low vowel a 8

In contrast to the static OT analysis of the syllabification of /gl/, BrbrNet is a connectionist network
whose dynamics compute the correct syllabification. The syllabification is computed using two coupled
nodes, each corresponding to one of the input segments. Each node can take on any activation
between 0 and 1. The final states of the nodes determine the syllabification: a node having activation 0
indicates a margin and a node having activation 1 indicates a nucleus. Let x, be the activation of the /g/



node and let x, be the activation of the /I/ node at a given time. The activations are restricted to lie
between 0 and 1, so that the state of the system at any time can be viewed as a point within a unit
square, as shown in Figure 1. The effect of the dynamics specified above is for the system to maximize
the harmony

(3) H(x,,x,) ==-256xx, + x, +7x,

This Harmony function consists of three terms, each of which has a phonological interpretation. The
first term —256x,x, is never positive, and is maximized when it has value zero. This can only occur
when either x, or x, is zero, which corresponds to the constraint ONSET. The second term, x,, is
maximized when x, is 1, and the third term, 7x,, is maximized when x, is one. The fact that the
coefficient of the third term is larger than the coefficient of the second term corresponds to the
constraint HNuc.

Once initial activations are selected, the activations of the nodes will change in time to increase H until
it reaches a state where H cannot increase further without leaving the square 0 < x,,x, < 1. Figure 1

shows the space of possible states for BrbrNet together with trajectories of the system for different
initial conditions.
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Figure 1. The state space of BrbrNet for the input /gl/.

The horizontal axis corresponds to the activation of the first node x, and the vertical axis corresponds to
the activation of the second node x,. There are two local harmony maxima within the square. One at
(0,1) corresponding to the syllabification [gL] has harmony 7, and the other at (1,0) corresponding to
the syllabification [G]] has harmony 1. The (0,1) state has the highest harmony of all states in the
square, and is therefore the correct output. Indeed, if the system starts out in state (0,0), as is intended



for BrbrNet, the system will converge to (0,1). This is shown by the arrows on the left side of the square.
(The trajectory does not deviate sufficiently from the line x, =0 for it to be visible on this plot.)
However, depending on where the system is started initially, different outcomes are possible. The thin
lines with arrows in the box show the trajectory of the system from different starting points. Whenever
the initial condition is above the dashed line in the figure, the system will converge to (0,1), which is the
correct syllabification for the input /gl/. Whenever the initial condition is below the dashed line, it will
converge to (1,0), which is the incorrect syllabification.

If we think of syllabification as the process of selecting nuclei for syllables to form around, then it is
natural to start with no nuclei, just margins, which corresponds to the initial activations (0,0).

When we assume that the system starts at (0,0), BrbrNet computes the correct output for this input.
Indeed, BrbrNet, with the original parameters and an initial condition of all activations 0, produces the
correct output for all input strings of 4 or fewer segments. But as we shall see, there are strings with
more segments in which erroneous output is generated. It turns out that for these problematic
sequences, trajectories started at the state of all activations 0 converge to a local maximum of harmony
(asis (0,1) in this example) instead of the global maximum of harmony ( (1,0) in this example).

In what follows we will explain how local harmony maxima lead to problems for BrbrNet with its original
parameters. We have identified new parameters for which BrbrNet always outputs the correct
syllabification and we will outline the proof of the soundness of BrbrNet with these new parameter
settings.

In Section 2 we review the basic facts of syllabificiation in ITB and present how the system is modeled in
both the Optimality Theory and Harmonic Grammar frameworks. In Section 3 we give a detailed review
of BrbrNet and then show how it breaks down on particular examples for the original parameters. In
Section 4 we provide the proof of soundness of BrbrNet for a different set of parameters. In Section 5
we discuss the neurological feasibility of BrbrNet with these new parameters, as well as the relation
between BrbrNet and the next generation of ICS models (Smolensky, Goldrick, and Mathis 2010).

2. Syllabification in Imdlawn Tashlhiyt Berber
2.1 The Dell-EImedlaoui syllabification algorithm

We begin by describing in more detail the basic phenomena of syllabification in ITB as reported by Dell
and Elmedlaoui (1985, 1988). ITB is a variety of the Tashylhiyt dialect of Berber spoken in the Imdlawn
valley in the Western Higher Atlas (Dell and Elmedlaoui 1985). Tashylhiyt (1ISO 939-3: shi), also known as
Shilha or Tachelhit, is a dialect of Berber spoken by about 3 million speakers in Morocco and Algeria
(Lewis 2009).

In Table 2 below we show the syllabification of several words in ITB (Dell and EImedlaoui 1985). The
input to syllabification is a string of segments from the ITB segmental inventory. The second column
shows the sonority profile of the input strings, determined using Table 1. The third column of Table 2
shows the syllabification of the input segment strings: dots indicate syllable breaks, capital letters
indicate syllable nuclei, and lower-case letters indicate onsets or codas.

Table 2. Imdlawn Tashlhiyt dialect of Berber

Segment String | Sonority Output Gloss




Profile Syllabification
ildi 7627 I1.dI ‘pull’ 3 m. sg.
tldi 1627 tL.dI ‘pull’ 3 f. sg.
trglt 16261 tR.gLt ‘lock’ 2 sg. perfective
trglas 162683 tRg.1As ‘lock’ 3 f. sg. perfective,
with dat. 3 m. sg. object
tsti 1317 tS.tl ‘select’ 3 f. sg.

The
syllabification of the input string of segments can be determined by applying the Dell-Elmedlaoui
algorithm, which we show here. In the input string segments are unsyllabified. As the algorithm
proceeds, segments are assigned the role of nucleus, onset, or coda.

Dell-Elmedlaoui Syllabification Algorithm (1985)

1. Input string of segments. Segments are initially not assigned a syllabification.
Let the index k equal 8.

3. Going from left to right, find the first segment with sonority index k from among the unsyllabified
segments that are not preceded by a syllabified segment. Assign this segment the role nucleus.

4. If this segment is not the first in the string, assign the segment before it the role onset.

5. Repeat steps 3 and 4 until all unsyllabified segments of index k are preceded by a syllabified
segment.

6. If kisnotalready 1, decrease k by 1 and return to step 3.

7. Assign all remaining unsyllabified segments the role of coda.

The algorithm starts with the highest sonority value, 8, and scans from left to right in the string until it
finds a segment of that sonority. Each time a segment of sonority 8 is identified, as long as it is not
preceded by a syllabified segment, it is assigned the role of nucleus. The segment before it, if there is
one, is then assigned the role of onset. When all segments with sonority 8 have been syllabified, the
procedure is repeated with sonority level 7 (excluding segments that have already been syllabified), and
then with sonority level 6, and so forth down to sonority level 1. When this is finished, all that remains
in the string are isolated unsyllabified segments that are preceded by nuclei. These are syllabified as
codas. Below we provide an example of the workings of the algorithm taken from Legendre, Sorace, and
Smolenksy (2006).

Table 3. Dell-ElImedlaoui algorithm syllabifying /txznt/ ‘you (sg.) stored’

a. | t X3 z4 n5 t (input)

b. | t| X3 z4 ns t; no segments at sonority level 8

c. | t1 X3 z4 ns t no segments at sonority level 7

d. | t| X3 z4 ns t no segments at sonority level 6

e.| t X3 Z4 N5 t; on scan at sonority level 5 (steps 3 and 4)

.z N current syllabification

f. | t1 X3.24 n5 t no eligible segments at sonority level 4

g. | t X3.z4 ns t on scan at sonority level 3 (steps 3 and 4)
t X .z N current syllabification

h. | .t; X3.z4 ns t; no segments at sonority level 2

i. | .t] X3.z4 ns t; no eligible segments at sonority level 1

j. | .t X3.Z4 ns ty. parse codas
t X .z Nt.
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2.2 Optimality Theory

Prince and Smolensky (1993/2004: Ch 2) show how to analyze Dell and ElImedlaoui’s description of ITB’s
syllabification using Optimality Theory (OT). As we describe in the introduction, their initial analysis uses
just two constraints: ONSET and HNuC, where ONSET is ranked higher than HNuc. Subsequently Prince and
Smolenksy (1993/2004: Ch 8) show how HNuc can be decomposed into a family of related constraints
on a fixed scale: HNuc is subsumed by a family of constraints *C /v, for i running from 1 through 8. The
constraint *C /v, indicates that segments of sonority level i are not to be assigned onset or coda (i.e.
C=consonant).

(4) *C /vi: A segment of sonority i is not parsed as an onset or coda.
Ranking the constraints in the following order describes ITB:

(5) ONSET >> *C /v >>*C /v, >> ... >> *C [v,>>*C /v,

The constraints can be seen interacting in the following tableau taken from Legendre, Sorace, and
Smolensky. (2006). The input is /txznt/ ‘you (sg.) stored’ (Dell and Eldemlaoui 1985), which corresponds
to sonority profile [13451].

(6) OT: Optimality Theory Grammar for Berber Syllabification

/txznt/ HNuc

/13451/ ONSET *C/vs *C/vy *C/v; *C/v, *C/v,
a. = .tX.zNt. * *ok
b. .T.xZ.Nt. *| * *
c. .TxZnT. *| *

d.  .Tx.zNt. * *1 *

Recall that the version of ONSET we use allows initial syllables without onsets. Hence the only candidate
form shown that violates ONSET is b. Since there are no segments in the input string of sonority 6, 7, or
8, the corresponding constraints *C /v, etc. do not play a role. The candidate c. is ruled out since it
violates *C /v, by not having /n/ form a nucleus. Finally, although both candidates a. and d. violate

*C /v, by not having /z/ form a nucleus, candidate d. loses by violating *C /v, by having /t/ instead of
/x/ as a nucleus in the first syllable.

2.3 Harmonic Grammar

We briefly introduce Harmonic Grammar (HG), which provides the bridge between Optimality Theory
(OT) and connectionist models in the ICS Cognitive Architecture. HG is another constraint-based theory
of grammar that is closely related to OT (Legendre, Miyata, and Smolenksy 1990; Pater 2009). As in OT,
phonological patterns are governed by the interaction of violable constraints. Unlike in OT, where
constraints are ranked and strict domination indicates that satisfying a higher-ranked constraint is
always preferred to satisfying any number of lower-ranked constraints, in HG each constraint is given a
weight and several constraints with lower weights may “gang up” and overrule a constraint with a
higher weight.




In HG (Legendre, Sorace, and Smolensky 2006), for each selection of constraints ¢,and weights w, we

define the harmony of a potential output x to be

H(x) = E wc,(x).

In the above expression, ¢,(x) is defined to be —1 when x violates the constraint i once and 0 if it
does not violate it. (In general, if constraint i is violated m times, then ¢,(x) = -m.) If w, > w; then

violating constraint i incurs a greater penalty than violating constraint j. The output of HG for a given
input is the string x that maximizes the harmony H(x). An example of this is the string [0 1] which

maximized the harmony H(x)=-256x,x, + X, + 7x, in the introduction.

Any phonological system that can be modeled by OT can also be modeled by HG (Prince and Smolenksy
1993/2004; Prince 2002), given a bound on the number of times any form can violate each constraint.
All that is necessary is to assign each constraint a weight in the appropriate manner. It is sufficient that
the weight of each constraint be assigned so that the weight of a higher ranked constraint exceeds the
sum of the weights of all the constraints ranked lower than it, factoring in multiple violations of a
constraint by a form. This typically involves weights that grow exponentially in magnitude with the
number of constraints in the system. We show here the HG implementation of syllabification in ITB

(Legendre, Sorace, and Smolenksy 2006).

(7) HG: Harmonic Grammar for Berber Syllabification

H(X) = WonserConser (X) + E pici(x)

k=1,...8

a. ONSET: A non-initial syllable must have an onset. Weight=w .. = 2%,
b. *C/v,: Segment with sonority kK must not be a syllable margin. Weight= 2k 1.

/txznt/ HNuc

/13451/ ONSET *C/vs *C/v, *C/vs *C/v, *C/vq

Weight 2° 21| 2*-1 2° -1 2° -1 2'—1 | Harmony
a. 2 .tX.zNt. -1 ) -17

b. .T.xXZ.Nt -1 -1 -1 -264

c T.xZ.nT. -1 -1 -38

d. .Tx.zNt. -1 -1 -1 -23

As with the OT analysis in the previous subsection, candidate a. is the winner since it has the highest
value for the harmony. The weights have been chosen to yield the same outputs as the OT constraint
ranking. In particular, after p, is chosen arbitrarily to be 1, p,,, is chosen to be 1 greater than twice p,.
This ensures that the Harmony gained by assigning a more sonorant segment to the role of nucleus is
greater than that of assigning any two less sonorant segments that role. The weight w . only needs
to be greater than p, to guarantee that ONSET is ranked higher than the other constraints (Legendre,

Sorace, and Smolensky 2006: 381). The ratio of the largest weight to the smallest weight is 28 An

analogous HG analysis of a similar system with K sonority levels would require a ratio of 2K,




3. BrbrNet

BrbrNet is a connectionist implementation of syllabification in ITB that builds on the HG implementation
shown above (Legendre, Sorace, and Smolensky 2006). Connectionism is a broad computational
paradigm for the simulation of cognitive processes (Rummelhart, McClelland, and the PDP Research
Group 1986). Connectionist models consist of networks (sometimes called artificial neural networks)
that are comprised of nodes and connections. At any given point in time, each node has an activation
value associated with it. The connections are links between pairs of nodes, and each connection has a
specified weight that may be positive or negative. The state of the network is determined by the
activation of each of the nodes. The activation of each node changes over time as determined by the
activation of all nodes connected to it and the weights of those connections. If node A is connected to
node B by an excitatory connection (meaning one with positive weight), then greater activation of A
leads to greater activation of B. If node A is connected to node B by an inhibitory node (meaning one
with negative weight), then greater activation of A leads to less activation of B.

Within the ICS program, Smolensky and Legendre (2006) demonstrate how, just as OT can be
implemented by HG, HG can be implemented in a connectionist network. This latter step is illustrated in
detail using the example of BrbrNet. An important precursor to BrbrNet is described in Goldsmith and
Larson (1990); see Legendre, Sorace, and Smolensky (2006: 389) for a discussion.

In Figure 2 below we show a schematic picture of BrbrNet. BrbrNet consists of a sequence of nodes,
each node connected to the adjacent nodes by an inhibitory connection. Initially the activation of all the
nodes is set to 0. The input string is fed into BrbrNet through input connections to each of the nodes. If
the ith segment of the input string has sonority k then D, is the input to node i. The state of the
system evolves over time: the activation of each node changes in response to the excitatory signal from
the input and the inhibitory signal from adjacent nodes. Eventually the system reaches equilibrium and
each node has either activation 0 or activation 1. An activation of 1 for the ith node indicates that the i
th segment is parsed as a nucleus. An activation of 0 for the ith node indicates that the ith segment is
parsed as an onset or a coda.
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Figure 2. Schematic diagram of BrbrNet

As an example, in Figure 2 we show the syllabification of the word /amdlu/ ‘cloud’ (provided by
Abdelkrim Jebbour, personal communication). The word has sonority profile /85267/. The string of
inputs to the nodes is then [ p, ps p, p p;]. If the network correctly syllabifies this input, the
equilibrium values of the nodes at equilibrium will be [ 1 0 1 0 1], which implies the syllabification
[A.mD.1U].

The details of how BrbrNet works are as follows. We denote the activation of the ith node at time ¢ by
x,(t). We describe the dynamics of the node activations x,,...,x,, where N is the number of segments
in the input string. At time ¢ =0 we have x,(0) =0 for all i, which indicates that none of the
segments are syllabified yet. Suppose segment i has sonority k. X, is pushed upwards by the input p,
and pushed downwards by inhibitory connections with the other nodes. Furthermore, each node’s
activation is constrained to be between 0 and 1. We can write the update rules for the nodes as

x = x,(Ore(py —wx, (1) —wx,, (1))



x, if0sx =<1,
x(t+1) =11, ifx" >1,
0, ifx" <0.

Here k is the sonority of the ith input segment and X" is an intermediate value of X, used in the

calculation. The first equation updates the activation of x; by adding a contribution due to the input
and subtracting a contribution due to competition with other nodes. The second equation shows how
the activation is adjusted so that it remains within [0,1]. We have adopted the convention that x, =0
and x,,, =0 forall time, where N is the length of the input string, which allows us to treat all nodes in
a uniform manner. The true dynamics of BrbrNet are obtained by taking the limit as T goes to 0.
BrbrNet is an example of Brain-State-in-a-Box (BSB) dynamics (Anderson et al. 1977; Golden 1986,
Cohen and Grossberg 1983). The “box” in its name refers to the constraint that, for all i, X; must
remain between 0 and 1 for all time. The space of possible states for the system corresponds to a box in
N dimensional space.

We have now laid out the architecture of the BrbNet. What remains to be set are the values of the
parameters w and p,,...,, p,. W is the strength with which adjacent nodes are prevented from both
taking activation 1, and so it corresponds to the constraint ONSET. The parameter p, is the force with
which the activation of a node with sonority k is pushed up, and thus corresponds to the constraint
*C/vk. The parameter values used in Legendre, Sorace, and Smolensky (2006) are w = 28, Dy = 2k 1
for k =1,...,8, which corresponds to the weights of the constraints which we stated for the HG

grammar of ITB syllabification. A consequence of this is that if we define the Harmony of the system to
be

N-1 N
H(x) = waixm + Epixi
il il

then for any syllabification of the input string corresponding to an x consisting of Os and 1s, the
Harmony value is identical to the value given by the Harmony of the HG grammar given in Subsection
2.3.

An important feature of BrbrNet is that, starting from any initial condition, BrbrNet is guaranteed to
increase the harmony. Since the dynamics of BrbrNet are confined to a box, the system will therefore
converge to a local maximum of harmony. Since the harmony is a convex function of the activations, any
local minima are located at the corners of the box. The final values of [ x,, x,..., x,, ] will always be a
string of Os and 1s and so can be interpreted as a candidate syllabification of the input. In other words, it
is an assignment of the role of nucleus or margin to each segment. However, the correct syllabification
of any ITB word depends on converging to a global maximum of harmony. It is not at all true that
Harmony-maximizing systems always converge to the global maximum of the harmony. In fact, starting
a system sufficiently close to any local maximum will result in the system converging to that local
maximum. In order to demonstrate that BrbrNet converges correctly for all inputs, it is necessary to
show that it always converges to the global maximum assuming an initial state of all zero activation.

Legendre, Sorace, Smolensky (2006) conjectured that, with these parameter values, BrbrNet would

syllabify all strings of segments correctly when starting at zero activation. They performed computer
simulations demonstrating that this was so for all strings of length 4 or less. However, subsequently
Christo Kirov (personal communication) discovered a string of length 5 that BrbrNet did not syllabify

10



correctly: [34787], corresponding to the input string /fzway/. (/fzway/ is not an attested word of ITB to
the best of our knowledge.) More generally, some longer strings containing this string as a substring are
also not syllabified correctly. In Figure 3 we show the activation values versus time for this input. The
numbers in the figure indicate the sonority of the segment whose activation is plotted. The two nodes
corresponding to segments with sonority 7 have nearly indistinguishable activations over time so we
have plotted only one of them.
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Figure 3 Dynamics of syllabification of input string /fzway/ with sonority profile [34787] by BrbrNet
with the original parameters.

The correct syllabification of the stringis [0 10 1 0 ]. However, as can be seen in the Figure 3, the
syllabification that results from the original parameter valuesis [ 1 0 0 1 0], which violates HNuc. As
desired, since the segment 8 has the highest sonority, its activation remains highest for all time, and it
converges to 1. Once the activation of the 8 segment reaches 1, the activation of the two 7 segments
rapidly converges to zero. However, there is an intermediate time at which the activations of the 7
nodes are still relatively large. Normally the 4 node would always have greater activation than the 3
node, and so the 4 node would form the nucleus. But because the activation of the 7 node is so high
during intermediate times, the 4 node is inhibited for long enough that the 3 node is able to grow large.
The result is that by the time the activation of the 7 node goes to zero, the activation of the 3 node is so
far ahead of the activation of the 4 node that the inhibitory connections (BrbrNet equivalent of ONSET)
forces the 4 node’s activation to 0, overcoming the effect of the input p, . The 3 node’s activation then

goes to 1, giving the erroneous activation pattern.
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We propose an alternative set of parameters for BrbrNet and present a proof that BrbrNet computes
the correct syllabification for all input strings with these parameters. The values are shown in Table 4
where they can be compared to the original values of Legendre, Sorace, and Smolensky (2006). Figure 4
shows how the activations of the nodes change over time for these values for the same input string as
we considered above. As before, the activation of the 8 node converges to 1, and the activation of each
7 node converges to 0. Again there is a period of time in which the 3 node has greater activation than
the 4 nodes. However, in contrast to the previous case the 3 node only reaches an activation of 10® by
the time the first 7 node is forced to 0. Though greater than the 4 node’s activation, the activation of
the 3 node is so small that the 4 node is able to surpass it and form the nucleus.

e

Activation

10" 10" 10" 10™ 10°

Time

Figure 4. Dynamics of syllabification of input string [34787] by BrbrNet (new parameters.)

Table 4. Parameter values for BrbrNet

Parameter | Legendre et al.’s values | Our values

w 256 27,329,871,550

Ds 255 54,659,743,099
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Py 127 13,664,935,775
Ps 63 3,416,233,944
Ds 31 465,701,011
D, 15 41,104,127

Ps 7 850,506

D, 3 2,953

Py 1 1

As can be seen from Table 4, our parameters take a much larger range of values than the original
parameters for BrbrNet. One way to get a feeling for what these parameter values mean dynamically is
to consider what happens if a word is inputted to the system with a single segment of sonority k. Since
there is no inhibition between adjacent nodes, the activation x of the node grows with rate p,. This
gives that x(¢) = p,t, and x =1at time 1/p, and later. Given our values of the p,, segments of
sonority 8 will syllabify on the order of 55 billion times faster than segments of sonority 1.

We discuss the feasibility of such time scales in Section 5, but in the meantime comment that some sort
of discrepancy in time scales is necessary for BrbrNet to correctly syllabify all inputs, though probably
not as great as a discrepancy as we have used. As we detail in the discussion of our main result below,
for the string /34787/ it is necessary that segment /3/ not grow too much before /787/ have completely
syllabified. In general, segments with a given sonority must move very little during the period of time in
which all the higher sonority segments syllabify. For this reason we argue that the operation BrbrNet is
quite similar to the original Dell-Elmedlaoui algorithm, in that segments of higher sonority are syllabified
long before the activations of lower sonority segments move very far from 0.

4, Soundness of BrbrNet for New Parameters

The theorem below gives conditions on the parameters w and p,,...,p, so that BrbrNet outputs the
correct syllabification when initialized with all activations 0. The result is more general in that applies to
any syllabification system similar to ITB’s that has K levels of sonority. As in Legendre, Sorace, and
Smolensky (2006), we only consider BrbrNet applied to input strings with no sonority plateaus, that is,
no two adjacent segments with the same sonority. We define the correct output to be the one
generated by the Dell-EImedlaoui algorithm, or equivalently by the OT or HG analyses presented earlier.

Main Theorem. Let s,,...,s, be a string of sonority values between 1 and K. Let the dynamics of the
corresponding node activations x,,...,x, be given by

dx,
Z =P, - W('xi—l + xi+l)'

subject to the constraints 0 < x, <1, for i =1,...,N, where x, = x,,,, =0.
Let x,(0) =0 forall i,

Let w >0 be arbitrary. Let p,,...,p, satisfy p, <2w,

13



Dy < Py /4 fork=12,...K-1,

and

P s%for k=2..K-2,
wk+2

where

5 4 5

fe=——t— f,  =——+
K 3p. 2w’ T 3p. 2w

and

2 5
t,=t,,+—+_—, fork=1...K-2.
. 2w

Then BrbrNet converges to the correct output for all input strings without a sonority plateau.

The auxiliary parameters #, have an important interpretation. We say that a segment i is correctly
syllabified by time 1 if, at time 7 and all times later, x, takes the correct value of either 0 or 1. In the
proof of the Main Theorem below we will see that 7, is the time by which all segments of sonority k or
higher and all their neighbors are correctly syllabified.

Taking K = 8, the parameters we give above in Table 4 satisfy the conditions of this theorem, thus
demonstrating that BrbrNet with these parameters computes the correct syllabification of all input
strings in ITB without sonority plateaus.

The proof of the Main Theorem follows four steps which we detail in the four subsections below. In
Step 1 we show that any substring of length three of the input string, / grs /, where r > g,s syllabifies
correctly to [0 1 0] within a certain amount of time depending on p, and w. In Step 2 we show that any
substring / gr / with ¥ > g whose neighbor to the right is a segment with higher sonority that has
already correctly syllabified to 0 will syllabify to [0 1] within a certain amount of time also depending on
p, and w. The same result holds for substrings / gr / with g > r whose neighbor to the left is a
segment with higher sonority that has already been correctly syllabified to 0. In Step 3 we show that
certain isolated segments, which we call trough segments, not handled in steps 1 and 2 are also
syllabified correctly. In Step 4 we put these results together with the bounds on how fast the
syllabification of different segments occur to show that the entire string syllabifies correctly, thus
proving the Main Theorem.

4.1 Step 1: Correct syllabification of peak triples.

We define a peak triple to be a substring of segments i —1, i, i +1, with sonorities / grs / such that
r >q,s. We show that the output of BrbrNet for such substrings is [0 1 0], yielding the correct
syllabification, independent of what the neighboring segments may be.

Our argument uses the concept of a trapping region (Strogatz 1994). A trapping region is a portion of
state space such that if the system enters there, then the system will inevitably converge to the desired
final state, in this case [0 1 0]. Below we will show that the set of all x,_|,x,,x,,, such that

1 1
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is a trapping region, and that this region can be used to prove convergence for peak triples.

The principal result for peak triples is Theorem 4 below. Its proof requires three lemmas: Lemma 1 uses
the Taylor expansion of the activations about ¢ =0 to obtain upper bounds on X,_;and x,,, and lower
bounds on x;.In Lemma 2 we use Lemma 1 to show that x,_,, x,, x,,, enters the trapping region within
time 1/(2w). In Lemma 3 we show that once x, |, x,, x,,, enters the trapping region, it will soon
converge to the correct syllabification of the substring.

Lemma 1. Let the dynamics of the x, be as given in the Main Theorem. Then for all T,,t =0,

X (T +1) < x, (7)) +1p,

1
x.(ty + 1) = t[-wx,_ (t,) - wx,,,(T,) + p,] - Etzw(pq +p,)

Xty +1t)=x,,(t,) + Ip,.

Proof: From the equation for x; we have

dx,,
7 =-—WX,_, — WX, +pq,
dx;
e T W D
% =—Wx, — WX, , +

d = i w2 T D,

By Taylor’s theorem, for some s€&|0,¢] we have

dx,
dlt_l (Ty +8) = X, () + 1p,, .

x_(ry+t)=x,_(T)+1

Likewise

X,y +1t)=x,,(t,) + 1p,.

Now
d2x< dxl dxl 2

L=—w——w—" =w[x,, +2x,+X,,]-wp, —wp, =-w(p, +p,),
dt2 dt dt 2 2 pq p pq p

and so, using Taylor’s Theorem again, for some s €[0,7]

2

dx. 1 ,d°x,
(T +1) =x,(T)+1—(T)) + 1 :
x,(Ty +1) = x,(7)) d (Ty) 2 Tan

(T, +9)

1
= t[-wx, (7,) —wx,, (T,)+ p,]1- Etzw(pq +D,),
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as required, where we have used the fact that x,(7,)=0.

Lemma 2. Let p, =4max(p,,p,). Then x,_,, x, X,,, isin the trapping region at time t=1/(2w).
Proof: The result follows by using Lemma 1 with #=1/(2w) and 7, =0.

Lemma 3. Let 2w = p,. Let p, z4max(p,,p,). If (x,_,X;,X,,,) is in the trapping region at time T, then
X, (1) =x,,,(1) =0,

x,(1)=1,

4 2
forall tzt, + —+—.
3p, w

Proof: For all x,_,, x;, x,,,, in the trapping region we have

i+17

&— wx WX, +p < w& w&+
dr inl int P, = S S P,
1 N 3 0
E = — > .
4Pr P, 4Pr
and
dx, |
g =-WX, , —WX;+p,
14 P, P
s-w-—+p =-—"+-—"+=0,
aw T Pi=T4 Ty
and likewise
%50.
dt

So when the system enters the trapping region it stays in the trapping region. The bound on the
derivative of x; above shows that it takes at most time 4/(3p,) toreach 1 once itis in the trapping

region. Once x, has reached 1 we have

LB w<lw T
g SPeTUERN T

so X, , goes to zero within time 2/w, and the same goes for x,,,.

Theorem 4. Let segments i —1, i, i+1 have sonorities /qrs/ with r > q,s. Suppose 2w = p,

4 5
p, z4max(p,,p,). Then forall t =—+_—we have x, (1) = x,,,(1) =0 and x,(1) = 1.

3p,

i+l

Proof: This follows from Lemmas 2 and 3.
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4.2 Step 2: Correct syllabification of shoulder pairs.

We define a shoulder pair to be a pair of adjacent segments that are (1) adjacent to a segment that is
already correctly syllabified to 0, and (2) form a monotonically rising or falling sonority sequence with
the already syllabified segment. The two possibilities for a shoulder pair / gr/ are either that it is part of
a larger substring / grs / where g < r < s and the segment with sonority s is already syllabified to 0, or
that it is part of a larger substring / pqgr/ where p < g < r and the segment with sonority p is already
syllabified to 0. We consider the first case since the second case follows by symmetry. We assume the
shoulder pair segments have indicesi —1, 7, so that we need to show that eventually x, ,(#) =0 and
x,(t)=1.

The argument here is very similar to the argument in Step 1, but with an added wrinkle: by the time the
segment to the right of the shoulder pair has syllabified, x, ; and x; may no longer be 0. This is what
caused a problem for the string /34787/ in the original version of BrbrNet. In order for an argument like
that in Step 1 to work for a shoulder pair we need to be able to show that x,_ , has not become too large
by the time the segment to the right has syllabified to zero. This puts a constraint on the P, that is

Pk
2wt

in the statement of the Main Theorem.

satisfied by the requirement p, | =< 7
+

k+2

We define the trapping region for a shoulder pair to be all x, |, x; such that

P &
2w 4w

The principal result for shoulder pairs is Theorem 7 below. Its proof uses Lemmas 5 and 6 which are
analogous to Lemmas 2 and 3 above. Lemma 5 shows that when the shoulder pair enters the trapping
region it will correctly syllabify within a given time. Lemma 6 shows that the shoulder pair will
eventually enter the trapping region if the adjacent segment to the right has syllabified quickly enough.

Lemma 5. Let 2w = p_and p, = 4pq. If x,_,,x, is in the trapping region at time T, then y, ,(¢) =0,

2 2
v,(t)=0, forall t =7, +T where T=—+—.

p, W

Proof: The proof is very similar to that of Lemma 3. For all x,_,, x,, in the trapping region we have

&_ wx. . + < —-Ww Pr + —l >0

d i1t D= w b, zpr ’

and

dxi_l = —WX. 2_W-x‘+p S—W&‘l'p S—&+&=O
dt " Y 4w "7 44

So when the system enters the trapping region it stays in the trapping region. The bound on the
derivative of x; above shows that it takes at most time 2/p, to reach 1 once it is in the trapping region.
Once x, has reached 1 we have
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dx, | 1 w
dt

so X, , goes to zero within time 2/w, and the same goes for x,,,.

r_pr—l

Lemma 6. Suppose that p, = p, , forall k. Suppose x, (t,) = 1 > . Then x.
w

i-1°

X, isin the

trapping region at time ¢ =T, + T where T = 2—
w

Proof: The proof is very similar to that of Lemma 2. Using Lemma 1 we have

x, (T, +7) = x,_,(T,) +p PP Py
! 2w 2w
<P Py P P
2w 2w 2w 2w
On the other hand
X(T + D) 2o -wx, (T) + p ]‘lfzwp sr|-Lry Py —lrzwp 1
l - " 2 1 2 2 r 2 r—
1 1 1, p, 1 1 P,
= — | T—-——TW >— 4 |— =—— > ,
2w; |:2 2 ]pr—l 4W |:4W 8W :|pr—l 4W
as required.

Theorem 7. (a) Let segment i have sonority r, and let segment i — 1 have sonority q, where r > q.

pr_pr—l

Suppose x,,,(s) =0 forall s=7,.Suppose (1) 2w =p, (2) p, = 4pq7 (3) T, =< (4) p, = p,_, for

r-1

2 5
all k. Then forall t =27, +—+2— we have x, (1) =0 and x,(t) =1.
b, W

(b) Let segment i have sonority q, and let segment i+ 1 have sonority r, where q > r. Suppose

MM} Do 2 D,y forall k.
2w

r-1

X, ,(s)=0forall s=7,.Suppose (1) 2w =p, (2) p, = 4pq (3) T, <

2 5
Then forall t =T, +— + > we have x,, (t)=0and x,(t)=1.
w

r

Proof: Part (a) follows from Lemmas 5 and 6. Part (b) follows by symmetry.
4.3 Step 3: Correct syllabification of a trough segment.

We define a trough segment to be an unsyllabified segment which is of lower sonority than both its
neighbors and such that both its neighbors have already syllabified in Step 1 or Step 2. Its neighbors
must have both been syllabified to O, or else the trough segment would already have been syllabified.
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Hence the trough segment node eventually receives no inhibition from its neighbors and its activation is
just pushed up to 1, as required.

Lemma 8. Let segmentsi —1, i, i +1 have sonorities /qrs/, where r < q,s. Suppose segments i —1 and
i +1 are correctly syllabified to 0 by time T. Then segment i will correctly syllabify to 1 by time T+1/p,.

Proof: When x; , and x,,, are 0 we have dx;/dt = p,, and so the result follows.
4.4 Step 4: Correct syllabification of the entire string.

Now we consider the input string as a whole. Using induction we show that the whole string syllabifies
correctly. Step 1 shows that any peak triples syllabify correctly. Step 2 shows that any shoulder pairs
syllabify correctly whether they are adjacent to a peak triple or another shoulder pair. These two steps
show the correct syllabification of the majority of the input string; all that remains is isolated trough
segments that are syllabified by Step 3.

Lemma 9. Let t, for k =1....,K be defined as in the Main Theorem. Then for k =1,...,K, all segments of
sonority k or greater and all their neighbors are correctly syllabified by time t,.

Proof. We use induction to show that the claim is true for all k, starting with the base case k = K. Since
there are no sonority plateaus, any segment with sonority K forms a peak triple with its two neighbors.
Therefore, by Theorem 4, all segments with sonority K and their neighbors are correctly syllabified by

_ 4 5
time 1, =—+_—.
3py 2w

Now suppose that the claim is true for a given k +1. We will show that it follows for k.

Consider a given segment of sonority k. If it has already been syllabified by time t,, then we are done,
since t, > t,,,. So we assume the segment has not been syllabified by time ¢, ,. There are three cases:
(1) The segment has two unsyllabified neighbors in which case the segment and its neighbors form a
peak triple. (2) The segment has one unsyllabified neighbors in which case the segment forms a shoulder
pair with its other neighbor. (3) The segment has no unsyllabified neighbors in which case it’s a trough
segment.

4

In case (1), Theorem 4 shows immediately that the segment will syllabified by time 3— + 2—which is
P =W

less than or equal to 7, for all k. This follows from the definition of ¢, in the Main Theorem and

2 5 4 5
— +

In case (2), we need to apply Theorem 7 with T, = 7, ,. Confirming condition (3) of Theorem 7 requires

Pr — Pia

Lo =
2wp, ,

which follows from the conditions of the Main Theorem. Hence Theorem 7 shows that the segment will
be syllabified by time
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2
Lyt —+- =1,
P 2w

as required.

In case (3), we apply Lemma 8, which states that once the neighbors of the segment are correctly
syllabified to O, it will take at most an additional time of 1/ p, for the segment to syllabify as a 1. This
makes for an upper bound of ¢, ., +1/p, <t,for the time until a trough segment with sonority k to
syllabify.

This completes the inductive step, showing that all segments of sonority k or higher, and their
neighbors, are syllabified by time 7,.

Proof of the Main Theorem: This is now a straightforward consequence of Lemma 9.

We comment here that Lemma 7 and its proof show that the process of BrbrNet syllabifying an input is
very similar to the Dell-Elmedlaoui algorithm. In both processes, segments with the highest sonority and
their neighbors are dealt with first before lower sonority segments are given an opportunity to form a
nucleus. In BrbrNet, when the activations of higher sonority segments are going to 1, the activations of
lower sonority segments are changing, but move only negligibly far from zero. A parallel computational
procedure in which all peak triples are syllabified simultaneously is conceivable, but this is not what
BrbrNet does.

4. Discussion

As discussed in Section 3, our parameter values for BrbrNet imply that the segment /a/, with sonority
index 8, syllabifies 55 billion times faster than /t/ with a sonority index of 1. We discuss here why we
believe this is not neurologically plausible.

To get an estimate of how fast a node corresponding to the segment /a/ would have to go from an
activation of 0 to an activation of 1, we need to estimate at what rate speakers must syllabify words.
Pellegrino, Coupé, and Marsico (2011) estimate rates of syllable production in speech for various
languages to vary roughly between 5 and 8 syllables per second. Assuming that speech in ITB occurs
within that range, and that few words in ITB contain more than 5 syllables, we make the conservative
estimate that a speaker is able to produce a word in about 1 second. If speakers are performing the
syllabification task on a word-by-word basis, then they must be able to syllabify a word within one
second.

The slowest part of BrbrNet is the syllabification of segments such as /t/ and /k/ with sonority index 1.
Assuming this takes one second, then the segment /a/ must syllabify within 2x10 ™ seconds, which is
much smaller than the time scales at which neurological processes occur. For example, Newell (1989)
provides estimates of various neurological time scales: organelles in cells operate on the time scale of
0.1ms, neurons on the scale of 1ms, and neural circuits on the scale of 10ms. Newell uses these figures
to put constraints on how many serial operations may be performed within one second, but we may use
them to constrain the speed of one component of a parallel process. If we take the 1ms time scale of a
neuron to be the fastest that a connectionist unit can go from 0 activation to full activation, then this
can only happen 1000 times faster than the slowest process in a calculation. Thus our parameters are
completely unreasonable.
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In contrast, with Legendre, Sorace, and Smolensky’s parameters, /a/ only needs to syllabify 255 times
faster than /t/. So /a/ only needs to be syllabified within about 4ms, which is on the border of what is
possible with Newell’s estimates of timescales. If we assume that making the parameter values only
moderately more disparate than Legendre, Sorace, and Smolensky’s is sufficient and that calculations
are performed on the scale that neurons operate, then BrbrNet becomes a plausible mechanism for the
implementation of ITB syllabification.

BrbrNet is no longer a neurologically plausible model, though, if we consider phonological systems with
many more constraints. Even with Legendre et al.’s more moderately growing parameters, the range of
scale of the parameter weights grows exponentially with the number of constraints. If there were
another two levels of sonority added to BrbrNet, the most sonorous nodes would have to syllabify over
a 1000 times faster than the least sonorous nodes, which is no longer possible with neurons. The
problem becomes worse with more realistic phonological systems encompassing dozens or even
hundreds of constraints (Ashley et al. 2010). The architecture of BrbrNet cannot be generalized in a
neurologically plausible way to systems containing more than a dozen constraints.

However, BrbrNet is not the current state of the art in the implementation of phonological systems in
neural networks. The next generation of ICS model as given in Smolensky, Goldrick, and Mathis (2010),
called Gradient Symbol Processing, shares only some aspects of architecture with BrbrNet. Gradient
Symbol Processing, like BrbrNet, can be viewed as a connectionist implementation of HG or OT. Unlike
BrbrNet, in which information about the syllabification of a segment is stored in a single node,
distributed representations of discrete variables are used. Distributed representations are desirable and
more realistic in connectionist models for various reasons (Smolensky, Goldrick, and Mathis 2010: 10).
The architecture of Gradient Symbol Processing has two components: Optimization and Quantization.
The Optimization aspect roughly corresponds to the type of Harmony maximizing dynamics we see in
BrbrNet. The Quantization aspect is what enforces the output of discrete variables despite the use of
distributed representations. A further important difference of Gradient Symbol Processing with BrbrNet
is that stochastic forcing, rather than special initial conditions, is used to ensure that the system enters a
state of maximum Harmony. In the light of our analysis and discussion of BrbrNet, this next
development in the ICS Cognitive Architecture poses two natural challenges (1) Obtain a proof of
soundness for Gradient Symbol Processing, (2) Investigate whether Gradient Symbol Processing can be
developed for systems with many constraints without encountering the timescale problems we have
described here.
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earlier drafts. The authors were supported by a Canadian National Science and Engineering Research
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List of Abbrevations

ITB Imdlawn Tashlhiyt Berber

HG Harmonic Grammar

oT Optimality Theory

ICS Integrated Connectionist/Symbolic
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