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Abstract

We discuss the long-time numerical simulation of Hamiltonian sys-

tems of ordinary differential equations. Our goal is to explain the

ability of symplectic integration schemes such as Störmer-Verlet to

compute accurate long-time averages for these systems in the context

of molecular dynamics. This paper introduces a weakened version of

ergodicity that allows us to study this problem. First, we demonstrate

the utility of the weakened ergodicity definition by showing that it is

a property of Hamiltonian systems robust to perturbations. Second,

we study what the weakened ergodicity of a Hamiltonian system im-

plies about numerical simulations of the system. In the case where

a numerical method is volume-conserving and approximately energy-

conserving, we show that long-time averages are approximated well

for sufficiently small step lengths.

1 Introduction

In the field of molecular dynamics researchers simulate physical systems over
long time intervals using numerical integration. Given the length of the time
intervals and the size of time steps used, trajectories of the systems are not
accurately computed [1]. Despite this, it is believed in many circumstance
that the simulations provide reliable information about long-time averages
of quantities, as well as qualitative behaviour [17]. Standard arguments from
the numerical analysis of ordinary differential equations do not explain this
performance [7].

In many cases of interest, the physical systems being simulated are be-
lieved to be ergodic. To introduce this term, we define two sorts of averages.
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For any segment of a trajectory, we can consider the average of a function
of the state variables along that segment. The limit of this average as the
length of the segment goes to infinity is called an ergodic or long-time aver-
age. Alternatively, we can take the average of the function over the entire
state-space of the system, which is known as the ensemble or state-space av-
erage. In general, long-time averages will depend on the initial condition
chosen to generate the trajectory, and will not necessarily equal the state-
space average. However, we say that a system is ergodic if, for almost all
initial conditions, the long-time average is equal to the state-space average
[18].

Here we will focus on Hamiltonian systems of ordinary differential equa-
tions. Given a Hamiltonian function, we select an initial condition and nu-
merically approximate the solution to the resulting differential equations with
a one-step method. Since energy is conserved, we take the state-space of our
system to be all states with a particular energy. This set has a natural
invariant measure induced by the Liouville measure [9].

If the Hamiltonian system is ergodic on the energy level set, then we can
make the following non-rigorous argument to explain the accurate compu-
tation of long-time averages. Under the postulate of ergodicity, long-time
averages for the original system are equal to the corresponding state-space
averages. The numerical method applied to the system is another dynamical
system with (approximately) the same state-space. If the numerical method
is also ergodic (with a nearby invariant measure) then we expect its long-
term averages to be equal to the corresponding state-space average as well.
By this argument, the long-term averages of the original system and of its
numerical approximation should be (approximately) the same for almost all
initial conditions.

We could proceed by trying to make the steps of the above argument rigor-
ous for at least some set of ergodic Hamiltonian systems and some numerical
methods. Unfortunately, there is a serious problem with this approach. The
difficulty stems from the large mismatch between the concept of ergodicity as
it is used in the physics community and as it is used in the mathematics com-
munity [16]. For the physicist, ergodicity is a property that is postulated of a
system in order to make many analytical and computational tasks tractable.
The postulate is seldom justified from first principles. Instead, calculations
for a system are performed assuming ergodicity. Then if theoretical predic-
tions agree with experiments (actual or numerical), this is taken as evidence
that the assumption is valid. Over the years, physicists have accumulated
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extensive experience about which systems at which energies are well modeled
by the assumption of ergodicity [19, 9].

For the mathematician, the justification of this assumption has posed a
difficult task. Starting with the work of Sinai [15], there has been a long tra-
dition of rigorously establishing ergodicity for specific Hamiltonian systems
[18]. However, the majority of the systems for which ergodicity has been
proved are billiard systems, which form a small subset of of the systems of
interest to physicists. To the best of our knowledge, the only examples of
physically realizable Hamiltonian systems of ODEs that are ergodic on some
energy level set are given in [5] and [8] and are both quite specific in their
construction. Ergodicity has not been proved for any system that has been
seriously investigated with molecular dynamics simulations.

More troubling than the paucity of examples in this area is the number
of negative results. The papers [4, 20] show that some of the ergodic billiard
systems mentioned above are not ergodic for a range of energies when the
billiard collisions are replaced by a soft collision of arbitrary stiffness. In [11],
it is shown that generic Hamiltonian systems are not ergodic for any dense set
of energies. Liverani [10] uses KAM theory to argue that interacting particle
systems are not ergodic for sufficiently high energies. Although these results
are not conclusive, it seems possible that the vast majority of Hamiltonian
systems of physical interest are not ergodic in the strict mathematical sense
of the word.

If we wish to perform a mathematically rigorous analysis of molecular dy-
namics based on the concept of ergodicity, we face a difficulty. The physical
concept of ergodicity does not yet have a rigorous formulation. However, a
theory based on the mathematical definition of ergodicity faces two problems.
The first is that it is in danger of being irrelevant, since likely none of the sys-
tems one would want to apply the theory to are, in fact, ergodic. The second
is that even if we restricted ourselves to mathematically ergodic Hamiltonian
systems, we probably could not carry through the program: it is very unlikely
that the perturbations induced in these systems by numerical approximation
would result in ergodic systems according to the mathematical definition.

The first goal of this paper is to break this impasse by reviving a weakened
definition of ergodicity which appears implicitly in Khinchin [9]. We believe
that this mathematically precise definition is weak enough to hold true for
many systems of physical interest, whilst still being strong enough to be
of practical use. In particular, we will show that this definition is stable
under perturbations of the dynamics. The second goal of this paper is to
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justify long-term simulation in molecular dynamics by using this definition
to prove theorems on the ability of certain numerical methods to accurately
approximate the long-time averages of the original system.

First we formally state the traditional mathematical definition of ergod-
icity. Let Σ be a measure space with probability measure µ and let S(t) be
a measure-preserving flow on it. We denote the integral of a function f over
Σ with respect to measure µ by

Ef(u) = f̄ =

∫

u∈Σ

f(u) dµ(u).

We say that S(t) is ergodic if for all integrable functions f : Σ → R

lim
T→∞

1

T

∫ T

0

f(S(t)u) dt = f̄ (1.1)

for µ-almost all u ∈ Σ. There is an analogous definition for maps rather than
flows: Let S be a measure-preserving map from Σ to itself. We say that S is
ergodic if, for all integrable f : Σ → R,

lim
n→∞

1

n

n−1
∑

i=0

f(Siu) = f̄ . (1.2)

See, for example, [23].
A consequence of the above definitions of ergodicity is that for all bounded

measurable f

E

∣

∣

∣

∣

lim
T→∞

1

T

∫ T

0

f(S(t)u) dt− f̄

∣

∣

∣

∣

= 0 (1.3)

in the case of ergodic flows and

E

∣

∣

∣

∣

∣

lim
n→∞

1

n

n−1
∑

i=0

f(Siu) − f̄

∣

∣

∣

∣

∣

= 0 (1.4)

in the case of ergodic maps.
Building on (1.3) and (1.4) we can weaken the definition of ergodicity. The

new definition depends on a parameter δ and a particular function f : Σ → R.
For flows, we say that a µ-preserving flow S(t) on Σ is δ-ergodic with respect
to f if

E

∣

∣

∣

∣

lim
T→∞

1

T

∫ T

0

f(S(t)u) dt − f̄

∣

∣

∣

∣

≤ δ. (1.5)
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For maps, we say that a µ-preserving map S on Σ is δ-ergodic with respect
to f if

E

∣

∣

∣

∣

∣

lim
n→∞

1

n

n−1
∑

i=0

f(Siu) − f̄

∣

∣

∣

∣

∣

≤ δ. (1.6)

We can now state the main result of our paper.

Main Theorem (Theorem 3.2) If a measure-preserving flow on
a state-space is δ-ergodic with respect to a function f , then given
any ε > 0, any sufficiently small perturbation of the flow with the
same invariant measure and state-space will be (δ + ε)-ergodic
with respect to f .

See Section 3 for a formal statement and proof. We will extend this theorem
to the case of Hamiltonian flows with perturbed state-spaces and invariant
measures later in Section 3, and to perturbations due to numerical discretiza-
tion in Section 4.

The motivation for the above definitions of δ-ergodicity is a discussion
of ergodicity by Khinchin in [9, p. 62]. After considering the difficulty of
justifying the assumption of ergodicity for Hamiltonian systems, he discusses
the possibility of requiring ergodicity to hold for only some special functions
of interest. As an example of this, he goes on to prove that if a function
f is nearly constant on the state space Σ then all measure-preserving flows
are δ-ergodic with respect to f in the sense above for some small δ. For
completeness, we will provide a proof of this statement in Subsection 3.1.

An example of the situation of a nearly constant f can be obtained by
considering a gas of many particles in a rectangular container. Here we let Σ
be the set of all states with a particular energy, and µ be the invariant mea-
sure on Σ induced by the Liouville measure (see below). Let f be the fraction
of the total number of particles that are in the left half of the container. This
quantity will be nearly equal to 1/2 for almost all accessible states in Σ, and
so Khinchin’s theorem shows that (1.5) holds with this f for some small δ.
Indeed, in any system of many components with short-range interactions, we
expect that functions that are expressible as an average over all components
in the system will have this property; see, for example, [13, 9].

However, these considerations are not sufficiently general to explain the
utility of the ergodic hypothesis in all cases of interest. Continuing with the
above example of the gas, consider the function of state that is 1 when a
distinguished particle is on the left half of the box, and 0 otherwise. For

5



approximately half of all states of the system, the function has value 1, for
the other half, 0. The average of this function over the state-space is 1/2.
Since the function is not nearly constant, the above discussion does not apply.
However, we still expect that for any trajectory we examine, the particle will
spend about half its time on the left-hand side of the box. We expect this
because a gas in a box is one of many physical systems for which experience
has shown the physical hypothesis of ergodicity to be justified. (As we have
discussed, it is probably not ergodic in the formal, mathematical sense.) In
the next section we will bolster these claims with some numerical experiments
on a simple model of such a gas.

We now formally describe the Hamiltonian framework for our study. Let
H : R

2n → R be a smooth function. Allow it to define the flow of a differential
equation in R

2n via
du

dt
= −J∇H(u),

where

J :=

[

0 I
−I 0

]

. (1.7)

We use S(t) to define the flow map induced by these equations. A property
of Hamiltonian systems is that H(S(t)u) = H(u) for all t ∈ R. So we let our
state-space be Σ = {u ∈ R

2n|H(u) = E} for some energy E.
If S(t) is viewed as a flow on all of R

2n, then by Liouville’s theorem
the standard Lebesgue measure (Euclidean volume) is invariant under it.
However, (for sufficiently smooth H) the flow restricted to Σ has an invariant
measure given by

dµ(u) := C
dS(u)

‖∇H(u)‖
, (1.8)

where C is some constant and dS is surface area on Σ [9]. Here we will always
consider compact Σ and choose C so that µ(Σ) = 1. The measure µ has the
important feature that for any function f : R

2n → R the expectation of f on
Σ with respect to the measure µ is given by [9]

Ef(u) = lim
δE↓0

∫

H(v)∈[E,E+δE]
f(v) dv

∫

H(v)∈[E,E+δE]
dv

. (1.9)

In addition to energy, Hamiltonian systems often have other trivial con-
served quantities such as momentum. Σ may be further restricted to factor
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out these. So when we talk about a Hamiltonian system being ergodic, we
usually mean on a particular energy surface, with particular choices of con-
served quantities.

We begin in Section 2 with some numerical experiments on a simple two-
dimensional model of a gas. We will demonstrate some of the phenomena
we hope to explain, examining numerically computed ergodic averages for
a variety of functions, with different initial conditions and simulation step-
lengths. In particular, we will consider two functions that are nearly constant
in Khinchin’s sense, and two that are not.

The remainder of the paper is devoted to analytical results about dynam-
ical systems and algorithms. In Section 3 we will consider situations where
δ-ergodicity can be shown to hold with respect to some function f . In Sub-
section 3.1 we provide a proof of Khinchin’s result of [9] for the case of a
nearly constant function f . In Subsections 3.2 and 3.3 we prove that if we
make a small perturbation of an ergodic system, we will obtain a δ-ergodic
system with a small δ. This provides us with a wide variety of provably
δ-ergodic systems, which can be obtained by perturbing ergodic system such
as billiard systems.

In Section 4 we will consider the simulation of δ-ergodic systems with
numerical integrators. First we will consider the (unrealistic) situation of an
integrator that conserves both phase-space volume and energy. We will show
that the weakened ergodicity property is conserved in this situation. Then
we consider the more realistic case of an integrator that conserves phase-
space volume exactly, and energy approximately, over long periods of time.
A shortcoming of the results is that the stepsize required in the proof of
the theorem must be small enough that trajectories are accurately estimated
over long, though finite, periods of time.

In a recent work, Reich [14] also considers the long-term simulation of
Hamiltonian systems. There results are obtained under the strong assump-
tion of uniformly hyperbolic dynamics [22], but with a more moderate re-
striction on stepsize. The present work relaxes the assumptions to just those
of δ-ergodicity, though at the cost of much smaller stepsizes.
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2 Ergodic Averages for a Lenard-Jones Sys-

tem: Numerical Experiments

In order to introduce some of the phenomena we will explore in this paper,
we present the results of some simple, yet fairly typical, molecular dynamics
calculations. We will perform several long-term simulations of a Hamiltonian
system, with different initial conditions, and demonstrate the apparent con-
vergence of ergodic averages to ensemble averages for four different functions
f . Two of these functions will be what we refer to as nearly constant.

The system we will consider is a model of N = 400 monatomic atoms
interacting on a two-dimensional periodic domain. Each atom has position
qi ∈ [0, R]2 and momentum pi ∈ R

2. The Hamiltonian is given by

H(q, p) =
N
∑

i=1

V (‖qi − qj‖) +
N
∑

i=1

‖pi‖
2

2m
,

V (r) =
(σ

r

)12

−
(σ

r

)6

.

We fix m = 1, σ = 0.2, R = 6. The dynamics are Hamiltonian with periodic
boundary conditions in the configuration space. The inter-particle forces are
truncated so that particles do not interact if their centres are more than
distance 5σ away from each other, as is standard practice [1].

The equations are integrated using the Störmer-Verlet scheme, which for
separable Hamiltonians is [6]

pi+1/2 = pi − ∆t
∂H

∂q
(qi),

qi+1 = qi + ∆t
∂H

∂p
(pi+1/2),

pi+1 = pi+1/2 − ∆t
∂H

∂q
(qi+1).

This is a symplectic and time-reversible method method [7]. As a conse-
quence of the former property, it conserves state-space volume: the method
has the same invariant measure on [0, 6]2 ×R

2 as the original flow. However,
unlike the flow, it does not conserve the energy function H.
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We will consider four different functions of state:

F1(q, p) :=
‖p1‖

2

2m
,

F2(q, p) :=
1

N

N
∑

i=1

‖pi‖
2

2m
,

F3(q, p) := 1A(q1),

F4(q, p) :=
1

N

N
∑

i=1

1A(qi).

Here we use 1A to denote the indicator function of A on [0, R]2, where A
denotes the left half of the periodic domain. The function F1 gives the
kinetic energy of particle 1. Function F2 gives the average kinetic energy of
all the particles, which corresponds to temperature. Functions F3 is one if
particle 1 is located in the set A and is zero otherwise. Function F4 is the
fraction of all the particles that are in A at a particular time. For this many
(N = 400) particles, functions F2 and F4 can be considered nearly constant
functions in Khinchin’s terms, as we shall see.

We perform simulations with four different initial conditions, denoted by
ICi, i = 1, . . . , 4. With IC1 and IC2 the particles are initially placed on a
square periodic lattice with lattice spacing 0.3 units, which means that the
particles are uniformly spaced over the entire domain. With IC3 and IC4 the
particles are placed on a square periodic lattice with spacing 21/6σ units. (At
this distance apart, two particles at rest are in equilbrium.) With regards to
initial momenta, for IC1 and IC3 both x and y velocities are selected from
a standard normal distribution. For IC2 and IC4 the 200 particles with the
largest y values are given velocities [1, 0]T , and the remainder [−1, 0]T . In
each case the velocities are first translated together so that total momentum
is zero (if necessary), and then velocities are scaled together so that the total
energy H is 100. We summarize these initial conditions in Table 1.

We denote the flow of the Hamiltonian system by S(t), and the map given
by the numerical method by Ŝ∆t. We estimate the ergodic averages of the
original system

1

T

∫ T

0

Fi(S(t)(ICj)) dt,
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Initial q Initial pi

IC1 uniformly spaced lattice Gaussian
IC2 uniformly spaced lattice ±1
IC3 tight packed lattice Gaussian
IC4 tight packed lattice ±1

Table 1: Summary of the four different sets of initial conditions.

with the ergodic averages of the numerical method

1

n

n−1
∑

k=0

Fi(Ŝ
k
∆t(ICj)).

Figure 2.1 shows the computed ergodic averages of the four functions
versus T = n∆t with the four different initial conditions, using a step length
of ∆t = 0.001. For an ergodic system, we would expect that the ergodic
average of Fi should converge to the ensemble average of Fi with increasing
T for each initial condition. For functions F1, F2, F4 we observe the expected
convergence. For F3 it looks as though convergence will occur, though the
plot is not conclusive. For all initial conditions the slowest convergence is for
F3 and the fastest for F4.

Figure 2.2 shows the same data, over the same time interval, but with a
steplength ∆t = 0.0005. The plots are not qualitatively different from the
previous ones. Thus, increasing the accuracy of the trajectories does not
appear to change the ergodic behaviour of the simulation.

These results are consistent with the following picture of the situation:
the flow of the underlying Hamiltonian system is δ-ergodic with respect to
the four functions Fi for a small value of δ. The numerical method, despite
not having the same invariant state-space as the flow, yields approximately
the same ergodic averages over long periods of simulation. The subsequent
sections of this paper will help establish the plausibility of these claims.

The four initial conditions we have considered are highly unrepresentative
of the state-space of the system, which is why the initial values of F2 and
F4 are not at all close to their ensemble average of 1/2. To show that these
functions are indeed nearly constant, we need to look at the distribution
of each function applied to points randomly drawn from the state space
according to the invariant measure. It is difficult to randomly generate such
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Figure 2.1: Ergodic averages of the functions versus T for four different initial
conditions. ∆t = 0.001.
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Figure 2.2: Same as previous figure, but with ∆t = 0.001.
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Figure 2.3: Histograms of the four functions sampled over the state-space.

points so instead we will assume that numerical trajectories run long enough
yield points with the correct statistics. Accordingly, we begin by running the
simulation with ∆t = 0.001 for 5 × 105 steps starting from IC1. After this,
we run for an additional 5× 105 steps with the same steplength, but storing
the function values of the state of the system after each step. In Figure 2.3
we show histograms of the functions values for each of the four functions.
Assuming that after the initial run the computed trajectory samples the
state-space with the correct density reasonably accurately, these plots show
how the functions are distributed. The functions F1 and F3 show great
variations, but the distribution of F2 and F4 have standard deviations less
than 0.03 of their means, and thus could be considered nearly constant with
δ ∼ 0.03. If N were increased with density and average energy kept constant,
these standard deviations would converge to 0 like N−1/2 [9].

Later in this paper we will consider the time T it takes for an ergodic
average to converge to its limit within a tolerance of some δ > 0, for most
initial conditions. This is not what one observes in Figures 2.1 and 2.2, as
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Figure 2.4: Computed ergodic averages versus time for the four functions,
with initial conditions taken from end of MD simulation of length T = 102

started with IC1. ∆t = 0.0005.

the initial conditions are quite atypical of the entire state-space. To get more
representative trajectories, we run a simulation from IC1 for time 100 with
∆t = 0.0005, and then take that as our initial condition for the computa-
tion of ergodic averages. Figure 2.4 shows the ergodic averages for the four
functions with these initial conditions for increasing times.

We observe that for the two nearly constant functions, F2 and F4, the
ergodic average is never far from the ensemble average, and would not be
even with T = ∆t. For the other two functions it still takes a considerable
duration of time for the ergodic averages to converge, even with these initial
conditions. This sharp difference in rate of convergence will have a large
effect on the strength of our theoretical results in Section 4.

The number of papers featuring molecular dynamics simulations of Lenard-
Jones systems is immense. However, the seminal references are [12] and [21],
both of which are contained in [3]. An interesting numerical investigation
of a Lenard-Jones system with ergodicity as its primary focus is [16]. Both
[16] and [1] contain the results of molecular dynamics simulations showing
the rapid divergence of trajectories, and thus establishing the unreliabilty of
individually computed trajectories in these situations.
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3 δ-Ergodic Systems

There are two approaches to using the weakened ergodicity definition (1.5) of
the Introduction. We may simply postulate that the system we are working
with is δ-ergodic with respect to some f of interest. Working from this
assumption, we may infer what we can about the system and numerical
approximations of it. Alternatively, we may try and prove that the system
is indeed δ-ergodic for some δ and f .

In this section we consider a few situations where the latter is possible.
In Subsection 3.1 we consider the situation where the function f of interest
is nearly constant over most of the state-space. In Subsection 3.2 we will
consider the case in which the state-space and invariant measure of the orig-
inal system and the perturbed system are identical. In these two cases our
results are stated for very general flows, not necessarily arising from differ-
ential equations. In Subsection 3.3 we will consider the situation when the
state-space as well as the flow is perturbed. Here we will state results only
for the situations when the flow is induced by a Hamiltonian function and
the perturbed flow arises from a perturbation of the Hamiltonian.

3.1 Nearly Constant Function f

Frequently in statistical mechanical applications we are not interested in
functions of state that depend upon only one particle, but functions which
are averages taken over all the particles in the system. A classic example
of this is temperature, which is related to the average kinetic energy of all
particles. We showed two examples of such functions in Section 2: F2 and
F4. Typically, these functions are nearly constant for most accessible states
[13, 9]. We will show that under these circumstances any measure-preserving
flow is weakly ergodic.

Let Σ be a compact manifold in R
m with the Borel σ-algebra M. We

let µ be a probability measure on (Σ,M). We let E denote the expectation
of a function on Σ with respect to µ. One way to formalize the hypothesis
of a nearly constant function f is to assume E|f(u) − f̄ | is small, where
f̄ := Ef . This covers the possibility of f being close to its average on most
of state-space, as well as it being far from its average on a small portion of
state-space.

Theorem 3.1 Suppose
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1. f : Σ → R is bounded and measurable with E|f(u) − f̄ | ≤ δ.

2. S(t) is a µ-preserving flow on Σ.

Then

E

∣

∣

∣

∣

lim
T→∞

1

T

∫ T

0

f(S(t)u) dt − f̄

∣

∣

∣

∣

≤ δ. (3.10)

That is, S(t) is δ-ergodic with respect to f .

Proof By Birkhoff’s Ergodic Theorem [23, 9] the limit

lim
T→∞

1

T

∫ T

0

f(S(t)u) dt

is defined for almost all u. So the quantity on the left of (3.10) is defined.
Accordingly,

E

∣

∣

∣

∣

lim
T→∞

1

T

∫ T

0

f(S(t)u) dt − f̄

∣

∣

∣

∣

≤ E lim
T→∞

1

T

∫ T

0

|f(S(t)u) − f̄ | dt

= lim
T→∞

1

T

∫ T

0

E|f(S(t)u) − f̄ | dt

where we have used the Bounded Convergence Theorem. Since S(t) is µ
invariant we can remove the S(t) from the last expression. So the quantity
of interest is less than or equal to

lim
T→∞

1

T

∫ T

0

E|f(u) − f̄ | dt = E|f(u) − f̄ | ≤ δ

as required. 2

An application of the Markov inequality gives

µ

{

u :

∣

∣

∣

∣

lim
T→∞

1

T

∫ T

0

f(S(t)u) dt − f̄

∣

∣

∣

∣

≥ α

}

≤
δ

α

which is precisely Khinchin’s result in [9] but with a better constant.
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3.2 Perturbations of Ergodic Flows: Same State-Space

As before, Σ is a compact manifold in R
m, with induced Borel σ-algebra M.

We let µ be an arbitrary probability measure on (Σ,M). We will use E to
denote expectation with respect to the measure µ on Σ. We let Σ have the
metric it inherits from the norm on R

m, which is denoted by | · |.
Suppose we have an ergodic measure-preserving flow S(t) on Σ that leaves

µ invariant. Suppose Sγ(t), γ > 0 are perturbations of the flow that also act
on Σ and have the same invariant measure. Without assuming that the Sγ(t)
are ergodic, what can we say about long-time averages of the perturbed flow?
In the following, we will show that if S(t) is a δ-ergodic flow with respect to
a function f and ε > 0, then Sγ(t) is (δ + ε)-ergodic with respect to f for
sufficiently small γ.

Theorem 3.2 Let Σ be a compact manifold in R
n. Suppose

1. f : Σ → R is Lipschitz-continuous.

2. S(t) is a µ-preserving flow on Σ that is δ-ergodic with respect to f .

3. For each γ > 0, Sγ(t) is a µ-preserving flow on Σ such that for all
T ∈ [0,∞)

lim
γ→0

sup
t∈[0,T ]

E|Sγ(t)u − S(t)u| = 0.

Then for all ε > 0 there is a γ0 > 0 such that if γ ≤ γ0 then

E

∣

∣

∣

∣

lim
T→∞

1

T

∫ T

0

f(Sγ(t)u) dt − f̄

∣

∣

∣

∣

≤ δ + ε, (3.11)

where f̄ = Ef(u). That is, for any ε > 0, Sγ(t) is (δ + ε)-ergodic with respect
to f for sufficiently small γ.

Remark: The third hypothesis above is implied by the assumption
that for all T ∈ [0,∞)

lim
γ→0

(

sup
u∈Σ

sup
t∈[0,T ]

|Sγ(t)u − S(t)u|

)

= 0. (3.12)

(Recall that Σ is compact.) Though stronger than the stated hypothesis,
(3.12) is perhaps simpler.

17



Proof For each γ > 0 Birkhoff’s Ergodic Theorem implies that

lim
T→∞

1

T

∫ T

0

f(Sγ(t)u) dt

exists for µ-almost all u. Accordingly the quantity on the left of (3.11) is
defined. Moreover, since f is bounded on Σ we have

E

∣

∣

∣

∣

lim
T→∞

1

T

∫ T

0

f(Sγ(t)u) dt − f̄

∣

∣

∣

∣

= lim
T→∞

E

∣

∣

∣

∣

1

T

∫ T

0

f(Sγ(t)u) dt − f̄

∣

∣

∣

∣

,

so that the latter limit also exists. Thus if we can show that

E

∣

∣

∣

∣

1

T

∫ T

0

f(Sγ(t)u) dt − f̄

∣

∣

∣

∣

≤ δ + ε

for a sequence of times T that go to infinity, we will be done.
Since S(t) is δ-ergodic with respect to f

lim
T→∞

E

∣

∣

∣

∣

1

T

∫ T

0

f(S(t)u) dt − f̄

∣

∣

∣

∣

≤ δ.

Choose a T such that

E

∣

∣

∣

∣

1

T

∫ T

0

f(S(t)u) dt − f̄

∣

∣

∣

∣

< δ + ε/2.

Now given this T , for any γ

E

∣

∣

∣

∣

1

T

∫ T

0

f(Sγ(t)u) dt −
1

T

∫ T

0

f(S(t)u) dt

∣

∣

∣

∣

≤
1

T

∫ T

0

E|f(Sγ(t)u) − f(S(t)u)| dt

≤ F sup
t∈[0,T ]

E|Sγ(t)u − S(t)u|,

where F is the Lipschitz constant of f on Σ. Thus by hypothesis, we can
choose a γ0 such that for γ ≤ γ0

E

∣

∣

∣

∣

1

T

∫ T

0

f(Sγ(t)u) dt −
1

T

∫ T

0

f(S(t)u) dt

∣

∣

∣

∣

≤ ε/2.

So for γ ≤ γ0

E

∣

∣

∣

∣

1

T

∫ T

0

f(Sγ(t)u) dt − f̄

∣

∣

∣

∣

≤ δ + ε.

18



This gives us a result for a particular time interval [0, T ]. For integer multiples
mT of the time T , we obtain

E

∣

∣

∣

∣

1

mT

∫ mT

0

f(Sγ(t)u) dt − f̄

∣

∣

∣

∣

= E

∣

∣

∣

∣

∣

1

m

m
∑

i=1

1

T

∫ T

0

f(Sγ((i − 1)T + t)u) dt − f̄

∣

∣

∣

∣

∣

≤
1

m

m
∑

i=1

E

∣

∣

∣

∣

1

T

∫ T

0

f(Sγ((i − 1)T + t)u) dt − f̄

∣

∣

∣

∣

.

Since the measure µ is invariant under the flow of Sγ(t), we can replace
Sγ((i − 1)T + t) with Sγ(t) in the last expression. So

E

∣

∣

∣

∣

1

mT

∫ mT

0

f(Sγ(t)u) dt − f̄

∣

∣

∣

∣

≤
1

m

m
∑

i=1

E

∣

∣

∣

∣

1

T

∫ T

0

f(Sγ(t)u) dt − f̄

∣

∣

∣

∣

= E

∣

∣

∣

∣

1

T

∫ T

0

f(Sγ(t)u) dt − f̄

∣

∣

∣

∣

≤ δ + ε.

Since mT → ∞ as m → ∞ we have established our result. 2

Taking the case where δ = 0 gives the following result:

Theorem 3.3 Let the assumptions 1 and 3 of Theorem 3.2 hold. Let S(t)
be an ergodic µ-preserving flow on Σ. Then for any ε > 0, Sγ(t) is ε-ergodic
with respect to f for sufficiently small γ. Alternatively, we may write

lim
T→∞

1

T

∫ T

0

f(Sγ(t)u) dt → f̄ .

in L1 as γ → 0. 2

Remarks: The hypotheses make quite minimal assumptions about the
ergodic properties of the flow S. In particular, no mixing or hyperbolicity
assumptions are used. The cost of this is that truly minuscule values of γ are
needed to obtain a reasonably small ε. For example, consider a case where
S is ergodic (δ = 0) and is generated by a vector field on the manifold Σ.
Suppose the Sγ are generated by perturbations of size O(γ) in the vector
field. In general, S(t)u and Sγ(t)u will differ on the order of γ exp(Ct) for
some constant C. By analogy with the Central Limit Theorem, we might
assume that

E

∣

∣

∣

∣

1

T

∫ T

0

f(S(t)u) dt− f̄

∣

∣

∣

∣

= O(T−1/2).
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So in the proof of Theorem 3.2 we need a T of order ε−2. The second part
of the proof requires that we choose a γ small enough so that perturbed
trajectories closely agree within ε of the original trajectories over time T .
This would require a γ on the order of ε exp(−CT ), Putting this together we
find that γ depends on ε like

γ ∼ ε exp[−Cε−2]

for some C. For most practical situations this would lead to a γ far too small
to explain the prevalence of apparently ergodic behaviour. We discuss this
point further with regards to numerical integrators in Subsection 4.2. We will
attempt to address this point in future work by making stronger assumptions
on the flow of the unperturbed Hamiltonian system.

3.3 Perturbations of Ergodic Flows: Perturbed State-

Space

A very strong assumption in Theorem 3.2 is that the perturbed flows have the
same state-space Σ and invariant measure µ as the original flow. In general
we do not expect this to happen. Here we will consider the situation where
the original system is the flow of an autonomous Hamiltonian system on
an energy level-set, and the perturbed system is obtained by perturbing the
Hamiltonian function. The arguments here can be applied to more general
situations as well.

In particular, let our flow S(t) be generated by a Hamiltonian function
H : R

2n → R via the system of differential equations du/dt = −J∇H(u),
where J is the 2n × 2n constant matrix defined in (1.7). We take the state-
space to be

Σ := {u ∈ R
2n|H(u) = E}

for some energy E. Thus, Σ is invariant under the induced flow S(t) and has
an invariant measure µ given by (1.8).

Suppose the perturbed flows Sγ(t) are generated by perturbed Hamilto-
nians Hγ : R

2n → R, such that Hγ → H as γ goes to zero. For each γ, the
state-space of the perturbed flow is

Σγ := {u ∈ R
2n|Hγ(u) = E}.

For each sufficiently small γ, Σγ will have a probability measure µγ invariant
under Sγ(t), corresponding to the Liouville measure.
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More formally, we define our Hamiltonian function H(u) and perturbed
Hamiltonian functions Hγ(u) through a function H(u, γ), by letting Hγ(u) :=
H(u, γ) and H(u) := H(u, 0). We make the following assumptions on H(u, γ)
and a corresponding energy level E:

Assumptions 3.4 The function H(u, γ) : R
2n × [0,∞) → R and the value

E ∈ R satisfy
(i) H is C2 (twice continuously differentiable) and ∇2

uH is locally Lipschitz
(ii) Σ := {u : H(u, 0) = E} is bounded
(iii) ∇uH(u, 0) 6= 0 on Σ

These assumptions guarantee that Σ is a compact manifold, as is Σγ for
sufficiently small γ. Moreover, as is shown in the appendix in Lemma A.1,
Σ and Σγ are isomorphic for small enough γ.

In the following theorem the symbol E (Eγ) will denote integration over
Σ (Σγ) with measure µ (µγ). Also note that though S(t) leaves Σ invariant,
and Sγ(t) leaves Σγ invariant, we view both as flows on all of R

2n.

Theorem 3.5 Suppose

1. H and E satisfy Assumptions 3.4

2. f : R
2n → R is locally Lipschitz-continuous.

3. The flow S(t) generated by H is δ-ergodic with respect to f on (Σ, µ).

Then for all ε > 0 there is a γ0 > 0 such that if γ ≤ γ0 then

Eγ

∣

∣

∣

∣

lim
T→∞

1

T

∫ T

0

f(Sγ(t)u) dt − f̄γ

∣

∣

∣

∣

≤ δ + ε

where f̄γ := Eγf . That is, Sγ(t) is (δ + ε)-ergodic with respect to f on Σγ for
sufficiently small γ.

Proof First note that the vector field that generates S(t) is J∇uH(u, 0)
and the vector field that generates Sγ(t) is J∇uH(u, γ). By Assumptions 3.4
the latter vector field converge to the former for every u ∈ R

2n as γ → 0.
Thus, for each u ∈ R

2n and T > 0,

lim
γ↓0

sup
t∈[0,T ]

‖Sγ(t)u − S(t)u‖, (3.13)
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and this will occur uniformly on bounded sets in R
2n.

From here, the proof is similar to that of Theorem 3.2. Choose a T such
that

E

∣

∣

∣

∣

1

T

∫ T

0

f(S(t)u) dt − f̄

∣

∣

∣

∣

< δ + ε/3. (3.14)

Define

g(u) :=

∣

∣

∣

∣

1

T

∫ T

0

f(S(t)u) dt − f̄

∣

∣

∣

∣

and for any γ

gγ(u) :=

∣

∣

∣

∣

1

T

∫ T

0

f(Sγ(t)u) dt − f̄γ

∣

∣

∣

∣

,

for u ∈ R
2n in a neighbourhood of Σ. Expression (3.14) implies that Eg(u) <

δ + ε/3. We will show that for small enough γ, Eγgγ(u) < δ + ε. To do this
observe

|Eg(u) − Eγgγ(u)| ≤ |Eg(u) − Eγg(u)| + |Eγ[g(u) − gγ(u)]|.

By Lemma A.2 the first term on the right can be made smaller than ε/3 with
a small enough γ. To show that the second term can be made smaller than
ε/3 as well, note

|Eγ [g(u) − gγ(u)]| ≤ Eγ |g(u) − gγ(u)|

≤ sup
u∈Σγ

∣

∣

∣

∣

1

T

∫ T

0

f(Sγ(t)u) − f(S(t)u) dt

∣

∣

∣

∣

+ |f̄ − f̄γ|

≤ F sup
u∈N

sup
t∈[0,T ]

‖Sγ(t)u − S(t)u‖ + |Ef(u) − Eγf(u)|

where N is a neighbourhood of Σ, and F is the Lipschitz constant of f on
N . The first term can be made small by 3.13 and the second term can be
made small by Lemma A.2.

We have now shown that

Eγ

∣

∣

∣

∣

1

T

∫ T

0

f(Sγ(t)u) dt − f̄γ

∣

∣

∣

∣

≤ δ + ε

for small enough γ. As before we can go from this result on [0, T ] to the
result on [0, mT ], and then to the limit as T → ∞. 2
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4 Numerical Approximations

We now consider the numerical integration of Hamiltonian flows that are δ-
ergodic with respect to some f . The first subsection considers the situation
of integrating a system with a volume- and energy-conserving integrator.
Here the results are particularly clear and easy to prove. We then consider
the more important case of integrators that conserve phase-space volume
exactly, and energy approximately, over long time intervals. The Störmer-
Verlet method, used in Section 2, falls into this class when applied to many
Hamiltonian systems of interest.

4.1 Volume- and Energy- Conserving Integrators

In this section we will consider the situation in which a numerical integrator
is applied which conserves both the Hamiltonian function (energy) and the
phase-space volume. Since no general purpose integrator for Hamiltonian
systems is known that preserves both these quantities, the purpose of this
subsection is primarily to prepare us for the next subsection in which we
consider symplectic methods.

As before, we consider a Hamiltonian system with Hamiltonian function
H and let

Σ = {u ∈ R
2n|H(u) = E} (4.15)

for some energy E. We denote the flow induced by the Hamiltonian by
S(t). We let Ŝ∆t denote a one-step integrator with constant step length,
and Ŝi

∆t the composition of this map with itself i times. Given an initial
value u ∈ R

2n, Ŝ∆tu is an approximation to S(∆t)u. Moreover, Ŝi
∆tu is an

approximation to S(i∆t)u, for i ≥ 0.
We remark that if we assume that the approximate map Ŝ∆t is ergodic

on Σ in addition to the assumptions below, then immediately for µ-almost
all initial conditions numerically computed ergodic averages are equal to f̄ .
However, we will not make this assumption about the numerical method.

Theorem 4.1 Let H : R
2n → R, and E ∈ R. Suppose

1. ∇H is locally Lipschitz and the set Σ defined by (4.15) is a compact
manifold

2. f : R
2n → R is locally Lipschitz,
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3. S(t) is δ-ergodic with respect to f on (Σ, µ) for some δ ≥ 0,

4. Ŝ∆t, ∆t > 0 is a family of volume-preserving isomorphisms of R
2n that

leave Σ invariant and such that for any T > 0

lim
∆t→0

E sup
0≤i≤bT/∆tc

‖Ŝi
∆tu − S(i∆t)u‖ = 0.

Then for all ε > 0, there is a ∆t0 such that for all ∆t ≤ ∆t0,

E

∣

∣

∣

∣

∣

lim
n→∞

1

n

n−1
∑

i=0

f(Ŝi
∆tu) − f̄

∣

∣

∣

∣

∣

≤ δ + ε.

In other words, Ŝ∆t is (δ + ε)-ergodic with respect to f , for sufficiently small
∆t.

Remark: The fourth hypothesis merely states that Ŝ∆t is a convergent
numerical method, though with some uniformity in u required.

Proof Since Ŝ∆t is µ-preserving, as in Theorem 3.2 it suffices to show that
for sufficiently small ∆t

E

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

f(Ŝi
∆tu) − f̄

∣

∣

∣

∣

∣

≤ δ + ε

for some n which may depend on ∆t.
Choose a T0 large enough so that

E

∣

∣

∣

∣

1

T

∫ T

0

f(S(t)u) dt − f̄

∣

∣

∣

∣

≤ δ + ε/2, (4.16)

for all T ≥ T0. Now choose a ∆t0 ≤ T0/2 such that whenever ∆t ≤ ∆t0, and
n is an integer such that n∆t ≤ 2T0 then

E

∣

∣

∣

∣

∣

1

n∆t

∫ n∆t

0

f(S(t)u) dt−
1

n

n−1
∑

i=0

f(Ŝi
∆tu)

∣

∣

∣

∣

∣

≤ ε/2. (4.17)
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This is possible for the following reasons. For any such n we can write
∣

∣

∣

∣

∣

1

n∆t

∫ n∆t

0

f(S(t)u) dt −
1

n

n−1
∑

i=0

f(Ŝi
∆tu)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

1

n∆t

∫ n∆t

0

f(S(t)u) dt −
1

n

n−1
∑

i=0

f(S(i∆t)u)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

f(S(i∆t)u) −
1

n

n−1
∑

i=0

f(Ŝi
∆tu)

∣

∣

∣

∣

∣

The expectation of the first term yields

E

∣

∣

∣

∣

∣

1

n∆t

∫ n∆t

0

f(S(t)u) dt−
1

n

n−1
∑

i=0

f(S(i∆t)u)

∣

∣

∣

∣

∣

≤
1

n

n−1
∑

i=0

E

∣

∣

∣

∣

1

∆t

∫ ∆t

0

f(S(t + i∆t)u) dt − f(S(i∆t)u)

∣

∣

∣

∣

≤ E

∣

∣

∣

∣

1

∆t

∫ ∆t

0

f(S(t)u) dt− f(u)

∣

∣

∣

∣

≤ FE sup
t∈[0,∆t]

‖S(t)u − u‖ ≤ FC∆t

for some constant C, which converges to zero as ∆t goes to zero. (F is the
Lipschitz constant of f on Σ). The expectation of the second term is

E

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

f(S(i∆t)u) −
1

n

n−1
∑

i=0

f(Ŝi
∆tu)

∣

∣

∣

∣

∣

≤ FE sup
0≤i≤n

‖Ŝi
∆tu − S(i∆t)u‖

≤ FE sup
0≤i≤b2T0/∆tc

‖Ŝi
∆tu − S(i∆t)u‖

which converges to zero as ∆t goes to zero by the fourth hypothesis. Thus
there is some ∆t0 such that the bound (4.17) holds for all ∆t ≤ ∆t0 and for
all n∆t ≤ 2T0.

Now for any ∆t ≤ ∆t0 there is an integer n such that T := n∆t ∈
[T0, 2T0]. So by (4.16) and (4.17)

E

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f(Ŝi
∆tu) − f̄

∣

∣

∣

∣

∣

≤ δ + ε

as required. 2
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4.2 Volume-Conserving and Approximately

Energy-Conserving Integrators

We now relax the assumption of energy conservation which we used in the
previous subsection. We replace it by an assumption that on long time-
intervals the integrator keeps the energy of the system within a narrow range
of the initial energy.

The most important class of volume-preserving integrators are the sym-
plectic integrators, such as the Störmer-Verlet method described in Section 2.
In many cases they can be shown, using backward error analysis, to ap-
proximately conserve energy over long time intervals [2]. Suppose we are
integrating a Hamiltonian system of differential equations with Hamiltonian
function H and we are using a symplectic integrator Ŝ∆t with steplength
∆t. In many situations it is possible to prove that for each ∆t there is a
perturbed Hamiltonian H∆t ≈ H with induced flow S∆t(t) such that

‖Ŝ∆tu − S∆t(∆t)u‖ ≤ C∆t exp[−D/∆t],

for constants C, D, [2, 14, 6]. This in turn implies that

H∆t(Ŝ
n
∆tu) = H∆t(u) + O(e−h0/2∆t)

and
H(Ŝn

∆tu) = H(u) + O(∆tp) (4.18)

for n∆t ≤ e−h0/2∆t.
Here, we will not explicitly use any backward error analysis. Rather, we

will assume that the energy error satisfies uniform bounds over long time
intervals, as in (4.18). Our reasons for this are two-fold. Firstly, energy
conservation of this kind has been shown to exist for symplectic integrators in
situations where backward error analysis is not valid, [6, Ch. XIII]. Secondly,
our theorem applies to volume-conserving integrators that are not symplectic
as long as they show a similar energy-conservation property.

We note that there is another class of integrators for which a backward
error analysis has been developed: time-reversible integrators [6]. These
integrators can also be shown to nearly conserve energy over long periods
of time, as well as perform well at computing long-time averages. However,
our present theory does not apply to them, since they are not, in general,
volume-conserving.
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We face a new technical difficulty in this subsection. In the previous
subsection, the exact energy conservation of the integrator implied that it
had an energy level set as an invariant domain. In the present case, it may
be that even over short times there will be no non-trivial invariant sets. So
we must resort to an approximate invariance. We want to define sets Σ such
that Σ\Ŝn

∆tΣ has small measure relative to Σ for large n. In general this is
impossible to do if Σ has co-dimension one, as it does for energy level-sets.
Accordingly, our theorem will apply to sets Σ of the following form. We let

Σ := {u ∈ R
2n|H(u) ∈ [E1, E2]}. (4.19)

We let µ be the volume measure restricted to Σ and normalized so that
µΣ = 1. Thus for functions g defined on Σ we define

Eg :=

∫

Σ

g(u)du/vol (Σ).

For other sets A of non-zero volume in R
2n we define

EAg :=

∫

A

g(u)du/vol (A).

The flow S(t) leaves Σ and µ invariant. Although S(t) cannot be ergodic
on Σ due to energy conservation, it can be δ-ergodic with respect to some
f— especially if E1 and E2 are close. In particular, it is not difficult to show
that if S(t) is δ-ergodic with respect to a continuous f on the set of all states
of energy E1 then for all ε > 0 it is (δ + ε)-ergodic on Σ for small enough
E2 − E1.

Theorem 4.2 Let H : R
2n → R, and E1 < E2 ∈ R. Suppose

1. ∇H is locally Lipschitz and

{u ∈ R
2n|H(u) = E}

is a compact manifold for all E in an open neighbourhood of [E1, E2].

2. f : R
2n → R is a locally Lipschitz

3. the flow S(t) generated by H is δ-ergodic on (Σ, µ) with respect to f .
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4. Ŝ∆t, ∆t > 0 is a family of volume-preserving maps on R
2n such that

for any T > 0

lim
∆t→0

sup
0≤i≤bT/∆tc

‖Ŝi
∆tu − S(i∆t)u‖ = 0.

uniformly over bounded sets in R
2n.

5. there exists constant C, exponent p > 0, and times T∆t, with T∆t → ∞
as ∆t → 0 such that

|H(Ŝn
∆tu) − H(u)| ≤ C∆tp

when n∆t ∈ [0, T∆t].

It follows that, for all ε > 0, there is a ∆t0 and a Tmin such that if ∆t ≤ ∆t0
and n∆t ∈ [Tmin, T∆t] then

E

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

f(Ŝi
∆tu) − f̄

∣

∣

∣

∣

∣

≤ δ + ε.

Proof We begin by assuming that |f | is bounded and has supremum fmax.
The conclusion for arbitrary f follows by the compactness of the energy level
sets.

Choose a T such that

E

∣

∣

∣

∣

1

T

∫ T

0

f(S(t)u) dt − f̄

∣

∣

∣

∣

< δ + ε/6.

Now choose ∆t1 such that if ∆t ≤ ∆t1 and ñ = bT/∆tc then

E

∣

∣

∣

∣

∣

1

ñ

ñ−1
∑

i=0

f(Ŝi
∆tu) − f̄

∣

∣

∣

∣

∣

< δ + ε/3. (4.20)

This is possible by an argument similar to that used in the proof of Theo-
rem 4.1.
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Fixing ∆t, for any n let n = ñK + r where K and r are nonnegative
integers and r < ñ. Then

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

f(Ŝi
∆tu) − f̄

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

n

ñK−1
∑

i=0

f(Ŝi
∆tu) +

1

n

ñK+r−1
∑

i=ñK

f(Ŝi
∆tu) − f̄

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

1

ñK

ñK−1
∑

i=0

f(Ŝi
∆tu) − f̄

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(

1

ñK
−

1

n

) ñK−1
∑

i=0

f(Ŝi
∆tu)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n

n−1
∑

i=ñK

f(Ŝi
∆tu)

∣

∣

∣

∣

∣

Some straightforward manipulation yields that

E

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

f(Ŝi
∆tu) − f̄

∣

∣

∣

∣

∣

≤
1

K

K−1
∑

J=0

E

∣

∣

∣

∣

∣

1

ñ

ñ−1
∑

i=0

f(Ŝi+Jñ
∆t u) − f̄

∣

∣

∣

∣

∣

+ 2fmax
ñ

n
. (4.21)

Now suppose n∆t ≥ Tmin (which we have not yet determined). Working with
the second term we obtain:

2fmax
ñ

n
≤ 2fmax

T

n∆t
≤ 2fmax

T

Tmin

.

So if we let Tmin = 6fmaxT/ε, the second term on the right of (4.21) will be
less than ε/3 whenever n∆t ≥ Tmin.

It remains to bound the first term on the right of (4.21). For each J

E

∣

∣

∣

∣

∣

1

ñ

ñ−1
∑

i=0

f(Ŝi+Jñ
∆t u) − f̄

∣

∣

∣

∣

∣

= EΣJ

∣

∣

∣

∣

∣

1

ñ

ñ−1
∑

i=0

f(Ŝi
∆tu) − f̄

∣

∣

∣

∣

∣

,

where ΣJ = ŜJñ
∆t Σ. We need to show that the expression on the right is close

to that in (4.20). Lemma 4.3 below allows us to do this. We let

g(u) :=

∣

∣

∣

∣

∣

1

ñ

ñ−1
∑

i=0

f(Ŝi
∆tu) − f̄

∣

∣

∣

∣

∣

which is less than fmax for all u. Let Emax be the maximum value of H(Ŝn
∆tu)

over all u ∈ Σ and all n∆t ≤ T∆t, and Emin be the minimum. Let B = {u ∈
R

2n|H(u) ∈ [Emin, Emax]}. Now choose a ∆t2 such that when ∆t < ∆t2,
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vol(B) ≤ (1 + ε/6fmax)vol(Σ). This is possible by the fifth hypothesis, since
both Σ and ΣJ are subsets of B. The idea is that since B converges to Σ as
∆t goes to 0, ΣJ must converge to Σ. Then Lemma 4.3 shows that

|EΣJ
g(u) − EΣg(u)| ≤ ε/3. (4.22)

Putting this together with (4.20), we have that if ∆t ≤ ∆t0 := min(∆t1, ∆t2)
and n∆t ≤ T∆t

1

K

K−1
∑

J=0

E

∣

∣

∣

∣

∣

1

ñ

ñ−1
∑

i=0

f(Ŝi+Jñ
∆t u) − f̄

∣

∣

∣

∣

∣

≤
1

K

K−1
∑

J=0

[

EΣ

∣

∣

∣

∣

∣

1

ñ

ñ−1
∑

i=0

f(Ŝi
∆tu) − f̄

∣

∣

∣

∣

∣

+ ε/3

]

= EΣ

∣

∣

∣

∣

∣

1

ñ

ñ−1
∑

i=0

f(Ŝi
∆tu) − f̄

∣

∣

∣

∣

∣

+ ε/3

≤ δ + 2ε/3.

Combining this with (4.21) gives that if ∆t ≤ ∆t0 and n∆t ∈ [Tmin, T∆t] then

EΣ

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

f(Ŝi
∆tu) − f̄

∣

∣

∣

∣

∣

≤ δ + ε,

as required. 2

Lemma 4.3 Let B be a subset of R
2n with finite volume. Let g : R

2n → R

satisfy supu∈B |g(u)| ≤ G. Let A, A∗ ⊂ B, vol(A) = vol(A∗), and vol(B) ≤
(1 + γ)vol(A). Then

|EAg − EA∗g| ≤ 2Gγ.

Proof

|EAg − EA∗g| =
1

vol (A)

∣

∣

∣

∣

∫

A

g −

∫

A∗

g

∣

∣

∣

∣

≤
1

vol (A)

{
∣

∣

∣

∣

∫

A

g −

∫

B

g

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

A∗

g −

∫

B

g

∣

∣

∣

∣

}

≤
1

vol (A)
2G(vol (B) − vol (A))

≤ 2Gγ,

as required. 2
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Remarks: The remarks after Theorem 3.3 apply here as well. The proof
works by choosing a time T over which the values of f on Σ are well sampled
by trajectories of the system. Then a step-size ∆t is chosen such that the
numerical trajectory approximates the true trajectory over this time. Thus,
accurate computation of long-time averages is only guaranteed when the
trajectories are accurately computed over long periods of time. This is not the
regime in which most MD calculations are performed. Typically, computed
and actual solutions to the equations diverge rapidly.

More quantitatively, for the theorem to work, we expect that T = ε−2

is required; see the remarks after Theorem 3.3. The error of an rth order
numerical integrator over a time interval T goes like ∆tr exp(CT ) for some
C > 0. So the theorem requires

∆t ∼ exp[−Cε−2/r],

which results in a ∆t that must decrease extremely fast with respect to ε.
However, the situation is more optimistic in the case of a nearly con-

stant f , as in Theorem 3.1, and as illustrated by the functions F2 and F4 in
Section 2. Suppose that

E|f(u) − f̄ | ≤ δ.

In this case the time T in Theorem 4.2 can be taken to be an arbitrarily small,
and ∆t1 can be taken to be arbitrarily large. The only restriction on step-
size is provided by the demands of energy conservation; that is, ∆t ≤ ∆t2 in
the theorem. This is in line with computational practice, where the largest
stepsize that yields stable energy is used. More quantitatively, suppose the
system is being integrated over a long time interval T . The maximum energy
error over this period goes like ∆tp for some p. This is required to be smaller
than a constant times ε. So the theorem requires

∆t ∼ ε1/p.

This is similar to the restriction on step length that would result from accu-
racy considerations.
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A Appendix

In the following H(u, γ) is a given function by which we define H(u) :=
H(u, 0) and Hγ(u) = H(u, γ). Given an E ∈ R, Σ is the set of all u with
H(u) = E and Σγ is the set of all u with Hγ(u) = E.

Lemma A.1 Let H(·, ·) : R
2n × R → R and E ∈ R satisfy Assumptions

3.4. There is a γ0 > 0 and a family of continuous bijective Pγ : R
2n → R

2n,
γ ∈ [0, γ0) defined in a neighbourhood of Σ such that

1. Hγ(Pγu) = H(u) wherever Pγ is defined.

2. Pγ converges to the identity uniformly on Σ as γ → 0

3. det∇Pγ converges to 1 uniformly on Σ as γ → 0

Thus Σ and Σγ , as defined above, are isomorphic for γ ∈ [0, γ0) .

Proof We will construct the maps Pγ from the solution to an ordinary
differential equation. Let

h(v, γ) = −‖∇vH(v, γ)‖−2∂H

∂γ
(v, γ)∇vH(v, γ)

which is Lipschitz continuous for u in a neighbourhood of Σ (that is, for γ
sufficiently small). Let Pγ(u) be the solution v(γ) to the initial value problem

dv

dγ
= h(v, γ), v(0) = u.

The flow of this differential equation is defined in a neighbourhood of Σ and
for sufficiently small γ > 0. Observe that

d

dγ
H(v(γ), γ) = ∇vH(v(γ), γ)T dv

dγ
+

∂H

∂γ
(v(γ), γ)

which is zero due to our choice of h(v, γ). So

H(Pγu, γ) = H(u, 0)

wherever Pγ is defined. In particular

Hγ(Pγu) = H(u) = E
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for all u ∈ Σ. Moreover, by standard theorems Pγu depends continuously on
u. This establishes items 1 and 2.

The matrix-valued function ∇Pγ satisfies the variational equation

d

dγ
∇Pγu = ∇uh(Pγu, γ), ∇P0u = I.

Some checking shows that this right-hand-side is Lipschitz continuous under
the stated assumptions. Thus, uniformly in u, ∇Pγu converges to I as γ → 0.
This establishes item 3. 2

Lemma A.2 Let g be a continuous function R
2n → R. Let H, Hγ, Σ, Σγ , Pγ

be as defined in the previous theorem. Let E (Eγ) denote taking an average
with respect to the Liouville measure for H (Hγ) on Σ (Σγ). Then

lim
γ↓0

|Eg(u) − Eγg(u)| = 0.

Proof Let v = Pγu, dv = | det∇Pγu|du. Then

Eγg(v) = lim
δE↓0

∫

Hγ(v)∈[E,E+δE]
g(v)dv

∫

Hγ(v)∈[E,E+δE]
dv

= lim
δE↓0

∫

H(u)∈[E,E+δE]
g(Pγu)| det∇Pγu|du

∫

H(u)∈[E,E+δE]
| det∇Pγu|du

= lim
δE↓0

∫

H(u)∈[E,E+δE]
g(Pγu)| det∇Pγu|du

∫

Hγ(v)∈[E,E+δE]
du

× lim
δE↓0

∫

Hγ(v)∈[E,E+δE]
du

∫

Hγ(v)∈[E,E+δE]
| det∇Pγu|du

=
Eg(Pγu)| det∇Pγu|

E| det∇Pγu|
.

Since | det∇Pγ | converges uniformly to 1 on Σ and Pγu converges uniformly
to u, this last quantity converges to Eg(u) as γ ↓ 0, as required. 2
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