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Abstract.

In molecular dynamics Hamiltonian systems of differential equations are numerically
integrated using the Stormer-Verlet method. One feature of these simulations is that
there is an unphysical drift in the energy of the system over long integration periods.
We study this energy drift by considering a representative system in which it can be
easily observed and studied. We show that if the system is started in a random initial
configuration, the error in energy of the numerically computed solution is well modeled
as a continuous-time stochastic process: geometric Brownian motion. We discuss what
in our model is likely to remain the same or to change if our approach is applied to
more realistic molecular dynamics simulations.

AMS subject classification (2000): 37M15, 37TM05, 65G99

Key words: Hamiltonian systems, symplectic numerical methods, modified Hamilto-
nian, shadow Hamiltonian, backward error analysis, molecular dynamics

1 Introduction

In the field of molecular dynamics researchers perform simulations of systems
modeling materials or molecules at the microscopic scale [1, 4]. Though there
are many different models considered in molecular dynamics, here we restrict
ourselves to one particular class: autonomous Hamiltonian systems of ordinary
differential equations (ODEs). In this case, there are two important properties of
solutions of the system. Firstly, total energy, given by the Hamiltonian function,
is conserved along trajectories. Secondly, the flow map is symplectic over any
time interval. As a consequence of this latter condition, phase-space volume is
conserved by the flow. (See, for example, [7].)

Approximate solutions to these systems of ODEs are typically computed by
the Stormer-Verlet scheme [15]. This one-step method preserves the symplectic
nature of the flow of the ODEs [8]. Unfortunately, neither this method nor
any other known symplectic numerical method conserves energy exactly along
trajectories. However, although it does not conserve energy, the Stérmer-Verlet
method and other symplectic methods have been observed to maintain system
energy in a narrow band about the true energy for extremely long periods of
time. That is, the energy of the system fluctuates about some reasonable value
with very little apparent long-term drift. However, over longer time periods
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there is a slow drift in the energy away from this range. Indeed, the stepsize
used for the simulations may be the largest one for which this drift is acceptably
large over the interval of simulation.

Researchers have attained a partial understanding of the phenomenon of long-
time energy stability through the method of backward error analysis. When
a symplectic integrator of order p is applied to a Hamiltonian system with an
analytic Hamiltonian one can construct a modified Hamiltonian function which
is O(h?) close to the original Hamiltonian function. It can be shown that the
numerically computed solution conserves this modified Hamiltonian very well
over long periods of time: the error is exponentially small in the stepsize over
time intervals exponentially long in the stepsize. This can then be used to show
that over long time intervals the energy of the numerically computed solution
remains within O(h?) of the true energy. However, since the numerical method
does not conserve the modified Hamiltonian exactly there is generally a slow yet
systematic drift in the true energy over very long time intervals [2, 11, 7).

An additional source of errors in energy is the use of non-smooth, and there-
fore non-analytic, Hamiltonian functions. Non-smooth Hamiltonians are often
introduced in the truncation of interaction potentials. This is done to avoid
having to compute negligible forces between distant particles. In this case the
exponentially accurate modified Hamiltonian does not exist, and energy error
polynomial in h appears to accumulates whenever the system passes over the
non-smooth region [14].

In order to understand how energy drift due to these two sources occurs and
accumulates, we study a simple model system in which the issues are particularly
clear. We consider a one-dimensional system of particles on a periodic domain
interacting through a non-smooth potential. When particles are far from each
other they do not interact and undergo linear motion. However, when two
particles overlap they exert a strong repelling force on each other. We have
chosen the force to be linearly dependent on the amount of overlap. We can state
analytically what will happen for such a collision when computed by the Stormer-
Verlet method. This together with simple (though difficult to justify rigorously)
statistical assumptions allows us to make precise statistical predictions about
long-term energy drift in the system. We test these assumptions with numerical
experiments and show that they are valid for a wide range of system parameters.
In our system the energy drift is due entirely to the non-smoothness of the
potential; the standard backward error analysis yielding a modified Hamiltonian
does not apply.

Before we formally introduce our model system we begin in Section 2 by con-
sidering a one-dimensional system where a point particle collides with a wall and
the interaction is mediated by the piecewise linear repulsive potential. We give
an explicit formula for how the energy of the particle changes when the resulting
trajectory is computed by the Stormer-Verlet method. Specifically, we derive an
explicit expression for the difference in the energy of the system before and after
the collision as a function of the relative position of the particle with respect to
the wall, the velocity of the particle, the steepness of potential, and the step-
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size. A simple change of variables enables us to compute what happens when a
collision between two identical particles is governed by this same potential.

In Section 3 we consider our model system of many particles in a one dimen-
sional domain that interact through the potential we studied in Section 2. We
make a few reasonable assumptions about the statistical distributions of the
particles and the collisions occurring in the system in order to make predictions
about long-term energy drift. Assuming a particular distribution on the initial
positions and momenta of the particles we derive two stochastic process models
for the energy. The first models the energy change versus the number of collisions
that have occurred as a random walk. Assuming a large number of particles, we
then derive the second model: a diffusion process in continuous time.

In Section 4 we present the results of numerical experiments testing our results.
We first perform some simple tests to confirm that our statistical assumptions
are consistent with what is observed numerically. Then energy statistics from
simulations are compared to predictions made by the continuous time model
developed in Section 3. Four sets of experiments are presented investigating
the validity of the model over the ranges of four system parameters: time step,
number of particles, number density and temperature. The numerical results
demonstrate situations where the models are inaccurate due to the invalidation of
assumptions for certain parameter choices and time scales and provides concrete
examples where the model works well.

In Section 5 we discuss the relation between the present study and energy
drift in more realistic molecular dynamics simulations. In particular, we sketch
how our ideas could be applied to a system of particles interacting through the
analytic Lenard-Jones potential in two or three dimensions. We believe that,
though the same methodology would apply, the resulting stochastic model could
be very different.

There are two related works, [9] and [6], that study a similar problem in
the context of non-symplectic symmetric integration of Hamiltonian systems.
In particular, the former [9] considers the energy drift during non-symplectic
reversible integration of a Hamiltonian system. There they show that over long
trajectories (T < h~2™, where h is the time-step and m is the order of the
method) the error in energy is on the order of VT rather than on the order of T
as would be expected from a naive error analysis. As in our work, total energy
is modeled by a random diffusion process. However, the justification for the
random model is different from ours, being based on the numerical trajectory
approximately sampling all of phase space.

2 A Single Collision

We investigate the effect of applying the Stormer-Verlet method to integrate
the collision between a particle and a soft wall modeled as a piecewise linear
restoring force. We will exactly describe the total numerical error in energy
introduced by the integrator during a collision, as a function of a few parameters.
The situation presented here is equivalent to the collision of a pair of particles
in one dimension via a change to centralized coordinates, a fact we shall use in
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the following section.
The position and momentum of the particle is described by a Hamiltonian
system with H piecewise smooth, but only once (globally) differentiable:

(paQ) = (_Hlep)v
2.1 2 2
=y H(p,q) =V(g) +T(p) = %M«o} + %,

where 14(z) = 1 if z € A and 0 otherwise. Applying the Stérmer-Verlet
method with stepsize h to this separable Hamiltonian system, we obtain the

map (Pnt1,qn+1) = Pn(pn, gn) defined by

h .
Pniy =Pn = 5V (an)
(2-2) Gn+1 = Gn + hT/(anr%)

h
Pnt1 = Pnyl — EV/(Qn—H)'

We have chosen an interaction potential of this form because we can obtain
closed expressions for the relative energy change per collision due to the integra-
tor. An added benefit is that the initial velocity of the particle will not enter into
the expression at all, a consequence of the linearity of the forces in the ¢ < 0
region. The potential is not itself physically realistic for atomistic molecular
dynamics, though it is frequently used in simulations of granular material: see
[10] for a typical example.

For the Hamiltonian (2.1), phase space is divided into two regions in which
H is quadratic: one on either side of the line ¢ = 0. Since this implies that
the ODEs are linear in each region, we can explicitly construct an exact shadow
Hamiltonian for which ®; computes the solutions exactly — that is, with not
even an exponentially small error [7]— as long as the numerical trajectory stays
in just one of the regions. Note that it is not possible to define a shadow
Hamiltonian for the entire state space, since the original Hamiltonian function
does not have a second derivative along the line ¢ = 0.

Since ®;, is exact in the forceless region ¢ > 0, we seek an expression for
the error in energy accumulated when ¢ < 0. Solving the shadow Hamilto-
nian system and obtaining analytic expressions of the trajectories in the region
q < 0, we can compute the energy error introduced during the collision as a
function of k, h, and the state of the system just before it interacts with the
wall. For this particular problem, it turns out that the relative change in energy
over the collision depends only on the parameter kh? and the initial position
which we can parametrize by a “phase” . Given a numerical solution sequence
(po,90); (P1,q1), ... with ¢, > 0 > gn41 for some n > 0, we define the phase u
associated with the collision beginning at time ¢,,4+1 by

dn+1

2.3 p= |t
( ) dn+1 — Qqn
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See Figure 2.1 for an illustration. Denoting the trajectory of the shadow Hamil-
tonian in the region ¢ < 0 by (p(t),q(t)), which at each time ¢,,n > 0 corre-
sponds exactly with the numerical solution after n timesteps, the relative change
in energy over one collision can be written as p(tnin.)?/D(tn)? — 1 where n, is
the first positive integer such that ¢n4n, > 0, that is n. is the duration of the
collision in timesteps. Through some lengthy but straightforward calculations

[5] we find that
ne(p, 0) = Z _ rtan! _psinb
P = 1 — (1 — cos )

where cosf = 1— %kh2 and [x] denotes the smallest integer strictly greater than
2. The relative change in energy due to a collision is then

AH (1 —cosf)(1—2pu)

2
= F = (cos(ncﬂ) + sin(nﬁ)) -1

@4 Fo) nd

where AH is the difference of energies immediately before and immediately after
the collision and HY is the energy immediately before the collision. The reader
is referred to [5] where the details of these calculations are presented for the
symplectic Euler method. A simple way of seeing why, in this case, the results
for the symplectic Euler method also apply for Verlet is to consider the position
and momenta time series separately. Viewed in this way, the values of positions
and momenta generated by the symplectic Euler and Verlet methods are the
same except for a possible difference in initial conditions due to the shift of h/2
in the times of the momentum data [1]. Since the momenta are constant in time
prior to a collision (at least for two-particle collisions), the precollision momenta
are the same for the Verlet and symplectic-Euler method and the results of the
analysis [5] apply in both cases.

=
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% e dn Qn+n:
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nh (n+1)h ; (n+ne)h

Figure 2.1: Position versus time of the numerical solution for a point particle colliding
with a wall at position zero. p is the phase associated with the collision.
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For each 6, the change in energy, F', can be positive or negative depending on
u. Figure 2.2 demonstrates this dependence for several values of 6. For some
isolated 6, there is no change in energy for any p; this is a special feature of our
model system and would not be expected of general potentials.

0.4r
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T/6=2.2386
_0.1 L

T/6=3.7352
—0.2t J
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Figure 2.2: Relative change in energy plotted as a function of u for several values of 6.

3 One Dimensional System: Model and Predictions

Here we use the results of Section 2 to study a system of particles on a finite
line segment with periodic boundary conditions. Consider N point particles
(radii zero) with positions uniformly distributed on the interval [0, L] and with
independently distributed Gaussian velocities with variance ¢?. The system

evolves according to the Hamiltonian

il p? = (Ch‘+1 - Qi)Q (CI1 - qN)2
H(q,p) = Z 9 +k Z fl{qqui@} + k?ﬂ‘{mflﬂrdﬂ“
i=1 i=1

We start the system in configurations with ¢; < ¢2 < ... < ¢,. When they
are ordered this way the particles do not interact, but when two particles pass
through each other and switch order they repel each other through a linear force.
The particles interact only with their immediate neighbours. We integrate the
system using the Stormer-Verlet method and estimate the statistical behaviour
of the energy error over many collisions using (2.4).

When no particles are overlapping they undergo free motion and no errors
are introduced in the energy by the Stormer-Verlet method. Suppose the nth
collision in the system involves (only) particles ¢ and j so that energy errors occur
only through changes in p;" and pj: the momenta of the ith and jth particles
just before the nth collision. We separate internal motion and motion of the
centre of mass by introducing the centralized coordinates R" = (qI' + qf) /2,
" = (qf —q}), u" = (pf +p})/2 and v" = (p}' — p}). Then the energy of the
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two particles just before the collision can be written (u™)?+ (v™)?/4. Since total
momentum is conserved by the given method (and by most methods), u™** = u
and the total change in energy of the entire system due to the nth collision is
simply [(v"+1)2 — (v")g} /4. Applying the change of coordinates to the map
obtained from the Stoérmer-Verlet method [5] it is seen that the internal and
centre of mass coordinates do not depend on each other. Furthermore, the map
corresponding to integration of the (v,r) coordinates forward one time step is
exactly the map (2.2). Thus we can expect the relative change (v**1)2/(v"™)2 -1
to be given by (2.4). We can then express the total change in energy of the entire
system due to the nth collision in terms of the momenta and positions of the
two colliding particles:
1 n+1\2 _ n\2 1
apn = U e = LR 06 ),

where ™ is the phase associated with the nth collision.

To predict the behaviour of the energy error of the system over many collisions,
we construct a probabilistic model of the change in energy. We make a number
of assumptions which are validated in Section 4:

1. The system is dilute enough that the likelihood of more than two particles
being involved in any collision at the same time is negligible.

2. At any time when no particles are colliding the momenta of the particles
are independently identically distributed (i.i.d.) Gaussian and the positions
are i.i.d. uniform on the interval. That is, the momenta are distributed
according to

where o2 is the initial temperature.

3. The phases p™ associated with the collisions are i.i.d. uniform on [0, 1] and
are uncorrelated with the positions and momenta of the colliding particles.

Using the above assumptions we approximate the joint probability density
function for the momenta of two colliding particles in the following way [12]. At
a given instant in the simulation, the probability of the next collision occurring
between particles with momenta p; and p; is proportional to the product of the
numbers of particles with these momenta — which are proportional to g(p;) and
g(p;) respectively — times the rate at which two particles of these momenta
collide. This latter quantity is proportional to the relative velocity between
them, |p; — p;|. (For example, if the relative velocity is zero, they will never
collide.) Thus the normalized joint density is

(3.1) f(pi,pj) = Cg(pi)g(ps)lpi — vyl

for some constant C. The above result can also be obtained by considering the
probability density for the momentum of one colliding particle, p;, conditional



8 D. Cottrell AND P. F. Tupper

on the momentum of the other particle. This conditional density is derived in
[12] and is given (in section 2.2 of the same work) as f(pilp;) = 9(p:)|p: — p;1/P5
where p; is the mean of p; with respect to g(p;). Using Bayes’ rule, we can
rewrite the joint p.d.f., f(pi,p;) = f(pilp;)9(p;) = Clpi — pslg(pi)g(p;), thus
obtaining the result (3.1).

If we introduce the scaled momenta & = 2 and &; = %, the joint p.d.f. of
(&,&;) does not depend on o. From the second assumption we have No?/2 =
(F) = E (for a 1-d gas), and the energy of the system will evolve according to:

1 1
AE’IL — _F n "IL _ TL 2E7L [ TLE’IL.
P 0)(€ —§)°E" = G

where E™ is the total energy of the system just before the nth collision. Here the
G™ are a sequence of i.i.d. random variables dependent only on the parameter 6
and the independent random variables p" and (£',&7). Since the distributions
of these latter random variables are known we can easily determine the mean
(G) and standard deviation Std(G) of G™. Figure 3.1 shows a plot of each as a
function of stepsize. The mean of G tends to zero as O(h*) and the standard
deviation of G tends to zero as O(h?).

10

Figure 3.1: Mean (solid), and standard deviation (dashed) of the variable G as a
function of stepsize, h. The average is taken with respect to p and (&;,&;).

To study the total energy change over many collisions, we note that
E" = E" 1 AE™ = E"(1+ G"/N) =~ E" exp(G"/N),
since G™ /N is small with high probability for large N. This gives us

n—1
(3.2) E" = E%exp <Z am /N)

m=0

or

n—1
InE" —InE°= Y G™/N.
m=0
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So the logarithm of the energy as a function of collision number is a random
walk. Using the Central Limit Theorem, for large n

mn
(3.3) In % ~ % (n(G) +n'/2sta(G)N)
in distribution, where A/ is the standard Gaussian random variable with mean 0
and variance 1. This expression gives the approximate distribution of the energy
after n collisions, when n is large.

Figure 3.2 gives a picture which, at least qualitatively, motivates the continuous-
time modelling approach. It shows the mean and standard deviation of the
energy versus collision number for the model (3.3) over four different time inter-
vals. The parameters used were N = 10* particles, spring constant k = 10'? and
integration time step h = 4.1582 x 10~%. For each interval we have also plotted
three trajectories of the energy versus collision number from the actual numer-
ically integrated system. In contrast to the rest of the simulations presented in
this paper where the initial energy is the sum of N Gaussian variables, here the
initial energy was fixed to be exactly No?/2. This done merely to better show
the scale of the “random” fluctuations.

2.5006 2.503
S S
— 2.5004 —
X X 2502
b:>=0 2.5002 56
g € 2501
g 25 g &
(5} ]
2.4998
2.5
2.4996
600 collisions 6000 collisions
2.53
2.7
o o
2 S 2.65
X X =
% %
- - 26
Q (]
=1 =
® ® 255
2.5
6x10* collisions 6x10° collisions

Figure 3.2: Energy versus number of collisions. The energy of three (not averaged)
simulations and the theoretically predicted mean and mean + standard deviation are
plotted over four different numbers of collision.

If the number of particles N in the system grows large, the time between the
collisions becomes shorter and the size of the relative jumps in energy become
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smaller. This allows us to approximate the energy as a function of time by
a time-continuous stochastic process. For large N, collisions occur at a nearly
constant rate, ¢(N) and in a fixed time interval, [0, ¢] there will be approximately
n = |e(N)t] collisions where |z] is the greatest integer smaller than z. Letting
E(t) = El“MN we have

Bt 1 le(N)t|—1 1 Lle(N)t|—1 (N
m% =¥ m;) G" =+ m;) (G™ — (@) + L (N)J<G>.

By Donsker’s Theorem [3], for large N

1 le(N)t]—1
¢(N)1/28td(G) z_:o (G™— (@) = B(t)

where B(t) is standard Brownian motion. Suppressing the N and writing ¢ =
¢(N), the energy of the system over a time interval can be approximated by the
stochastic process

(3.4) E(t) = E(0) exp [(G)ct/N + cjlvﬁStd(G)B(t) ,

which is geometric Brownian motion. Using the fact that (exp z) = exp ((2?)/2)
for any Gaussian random variable z with zero mean, the mean and standard
deviation of this process can be easily calculated,

(E(t)) = E(0) exp [(G)ct/N + Var(G)ct/2N?]
Std(E(t)) = (E(t)) (exp[Var(G)ct/N?) —1)"/%.

To estimate the mean collision rate, ¢(N), we first use Assumption 2 above to
calculate the mean collision rate of a given pair of particles, (p; —p;)/{¢: —¢;) =
o/+/mL. Considering the rates of all the (assumedly independent) particle pairs
yields a total rate of

(3.5) ¢(N) =op(N —1)/2/.

where p = N/L is the number density.

4 Numerical Validation of the Diffusion Model

In this section we will check the validity of the statistical assumptions of the
previous section and compare the predictions made by our continuous time model
(3.4) with the energy drift in an actual simulation of the system of Section 3
with the Stormer-Verlet method.

Figure 4.1 shows histograms (points with error bars) of phase (left) and mo-
menta (right) calculated from a single simulation of a system of 10* particles
with number density 1.25 x 104, spring constant k& = 10'° and integration time
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step h = 4.1582 x 1075. The histogram of y is calculated using (2.3) for all col-
lisions occuring between ¢ = 0 and a final time ¢t = h x 10% ~ 4. The histogram
of momenta is calculated from the momenta of all particles that are not collid-
ing at the final time t = h x 10%. The solid lines, representing the theoretical
densities given by the assumptions, are well within the sampling uncertainty for
both the phase and momenta. To ensure that the system is dilute in the sense
of Assumption 1, multi-particle collisions are counted over various simulations.
For the above choice of parameters, only about 0.1% of collisions involve more
than two particles.

11

1.05
. TITTITL Llrerly 7orn
per T
I
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Figure 4.1: Checking the statistical assumptions. In both panels, theoretical densities
are plotted as solid lines while histograms calculated form simulations are represented
as points with error bars. (left) Density of the collision phase u. The histogram is
calculated from one simulation involving approximately 10° collisions. (right) Density
of particle velocities. The histogram is calculated from all non-colliding particles at
the end of one simulation.

Figure 4.2 (left) shows the mean and mean plus/minus standard deviation of
the change in energy versus time for both the model and the actual simulation.
The solid lines are the mean and variance calculated from the model (3.4) for
a system with the parameters given in the previous paragraph. Sample esti-
mates of the mean and variance from corresponding numerical simulations are
plotted as points. The small plot shows the relative difference between model
and simulation for the mean and variance (bottom and top respectively). (Here
by relative difference we mean the difference between the model value and the
simulated value divided by the model value.) The error bars represent sampling
errors for the relative differences. The model closely matches the mean energy
drift and variance of this system for this choice of parameters.

Statistics of the number of collisions during simulations are also collected.
Mean and mean plus/minus standard deviation of the number of collisions are
shown in Figure 4.2 (right) as a function of time. It is clear that for the three
simulations shown, with densities 0.8, 0.5 and 0.2 from top to bottom and other
parameters as above, the number of collisions has very small variance and is well
approximated by a constant rate deterministic process. Subplot A of Figure 4.2
shows the relative difference between the mean number of collisions and that
predicted by the model rate (3.5). In subplot B, the same quantity is shown but
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Figure 4.2: (left) Mean and mean =+ standard deviation of energy versus time. Solid
lines are theoretical predictions (3.4) and points with error bars are sample estimates
from numerical simulations. Relative differences between simulation and theory are
displayed in the small boxes. (right) Mean and mean + standard deviation (calculated
from simulations) of the number of collisions per particle versus time for systems with
N = 10000, 1000 and 100 particles from top to bottom. Subplot A shows relative
difference between simulation and prediction given by the constant collision rate (3.5).
Subplot B shows the same quantity but with ¢ = /2E(t)/N in expression (3.5). In
both subplot A and B curves have been vertically shifted with solid straight lines
representing the zero mark in each data set.

with the collision rate (3.5) depending on the energy at time ¢ via the substitution
o =+/2E(t)/N. It is evident that the relative error in subplot B is smaller and
does not appear to exhibit the linear drift apparent in subplot A. We expect
that the constant collision-rate approximation is accurate only if the change in
system energy is small over the duration of the simulation. However, introducing
an energy dependent collision rate in (3.4) only decreases the relative error in
the mean energy by half and does not significantly affect the error in prediction
of variance over the time scale of these simulations.

Four different sets of experiments were conducted to test the validity of the
model (3.4) over a range of values of the time step h, the temperature o2, the
number of particles N and the number density p of the system (referred to
simply as density from here onward). For each choice of parameters, the mean
and variance of the change in energy versus time was sampled with a series
of 500 simulations and was compared to model predictions. Each simulation
was initialized with uniformly distributed positions conditioned on the particles
being non-overlapping. Initial velocities were Gaussian with initial temperature
0% =5 x 1075 (mean initial energy of whole system is No?/2).

In each of Figures 4.3 through 4.6, data from the system shown in Figure 4.2
(left) are compared with two other systems which differ from the first system
in only one parameter. The comparison takes the form of relative difference
in mean and variance between data and model plotted versus time. Solid lines
representing zero relative error are plotted for reference. The error bars in these
plots represent sampling error estimated from the 500 simulations. Note that
the initial energy of the system is Gaussian with mean No?/2 and variance
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No*/2, and the system stays near this distribution over the time scale of the
simulations. A simple calculation reveals that sampling error of the relative
differences in mean vary only with 1/v/N (for fixed number of samples) while
those for the relative differences of variance are independent of the four variables
under consideration.

Figure 4.3 represents simulations performed with timesteps (from top to bot-
tom) h = 5.6347 x 1076, 4.7863 x 1076 and 4.1582 x 10~%. The three values of
h correspond to a resolution of approximately 5, 6 and 7 timesteps per collision.
The sampled mean and variance remain roughly within one standard deviation
of the model statistics for the smaller value of h and deviate significantly from
the model as h is increased. Even when the data are compared with model (3.3)
taking n to be the sampled mean number of collisions (nearly exact), for the
large h simulation the deviation in relative difference of the means decreases
only by a factor of 2/3 and the relative difference of variances does not decrease
significantly. This discrepancy arises because the joint distribution of the mo-
menta of colliding particles gradually deviates from (3.1) (with o2 = 2E(t)/N)
over the duration of the simulation. The degree of this deviation depends on G
(and hence on h) and, when large, is a rough indication that the relaxation time
of the momenta to the stationary (equilibrium) distribution is large enough for
significant energy drift to occur.

In Figure 4.4 the effect of varying the number of particles is demonstrated. The
plots correspond, from top to bottom, to systems of 102, 10® and 10* particles.
In all three simulations both the mean and variance of the model and simulations
appear to agree up to sampling error.

In Figure 4.5 we show the results of simulations run at number densities of
1.25 x 104,2 x 10* and 5 x 10*. The model appears to be less accurate for
the higher density simulations. This apparent decrease in accuracy is almost
entirely due to the fact that the two-particle collision rate (3.5) scales with p
so the higher density systems undergo more collisions, and hence more drift in
energy, over the duration of the simulations. When the relative differences are
plotted versus average number of collisions instead of versus time, the quality of
the match in both the means and the variances appears to be the same up to
sampling uncertainty in all three cases. Though the frequency of three particle
collisions does increase as the density is increased (scaling like p?), the fraction
of collisions which involve three particles is still very small (about 0.6 % for the
simulations with number density 5 x 10%) and the change of energy due to these
rare collisions is negligible. It is, however, expected that the model will fail for
sufficiently high densities, where all three listed assumptions may not hold.

Figure 4.6 displays results from simulations run at temperatures 5 x 10755 x
107% and 5 x 10~7 from top to bottom respectively. The effects of varying the
temperature are somewhat similar to those for varying density. The collision rate
(3.5) varies with the square root of temperature so, as with the higher density
systems, the higher temperature systems undergo more collisions and more drift
in energy. When the relative differences are plotted versus average number of
collisions, it is apparent that the degree of disagreement between model and
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theory is roughly the same in the three cases.
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Figure 4.3: The effect of changing the time step h. (left) Relative difference of sample
mean and model mean for decreasing values of h from top to bottom. (right) Relative
difference of sample variance and model variance for the three values of h.
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Figure 4.4: Changing the number of particles N. (left) The relative difference in sample
and model mean for three systems with 102, 10 and 10* particles respectively. (right)
Relative difference of sample variance and model variance for systems with different
numbers of particles.

The overall conclusion to be drawn from these comparisons is that the data fit
both the continuous and the discrete model well for small enough h, moderate
number density and temperature and a large range of N. It should be noted
that the parameter sets and time interval are chosen to achieve a fairly large
drift in energy (about 5%) in order to test the validity of the model in rather
extreme situations. In a realistic simulation at room temperature, a 5% change
in energy would lead to a 7°C change in temperature, so such drift would never
be allowed in practice.

5 Energy Drift in Realistic Molecular Dynamics Simulations

We have provided a stochastic model of numerical energy drift for the simula-
tion of a particular system of interacting particles. We have seen that this model
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Figure 4.5: The effect of changing the number density. (left) Relative difference of
sample and model mean for three values of the number density decreasing from top
to bottom. (right) Relative difference of sample and model variance for systems with
different number densities.
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Figure 4.6: The effect of changing the temperature. (left) Relative difference of sample
and model mean for three values of the temperature decreasing from top to bottom.
(right) Relative difference of sample and model variance for systems with different
temperatures.

is valid for a range of parameters, including stepsize h, temperature, and num-
ber density. The question remains of what insight these results can provide into
energy drift in more realistic molecular dynamics simulations. Here we will dis-
cuss what of our work is likely to still hold for more practical systems, and what
is likely to be different. For the purposes of discussion, we shall have in mind
a simulation of a low-density three-dimensional system of particles interacting
through the analytic Lennard—Jones potential.

Firstly, our model system is one-dimensional and so the geometry of collisions
is particularly simple. Studying a higher dimensional system would require mak-
ing more complicated statistical assumptions about the collisions. However, as
long as the system is not very dense, so that collisions are effectively independent
events, we believe that a similar probabilistic model of collision events will be
adequate. Compare, for example, [12].

Secondly, in a system with an analytic Hamiltonian, systematic drift in energy
will be much less. Fluctuations in the Hamiltonian function due to integration by
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the Stérmer-Verlet method are still on the order of k2, but there will be a mod-
ified Hamiltonian function which is conserved to within the order of exp(—D/h)
per time interval. The long-term drift of the original Hamiltonian will be corre-
sponding small. Thus it is natural to apply our approach to modelling the drift
of this modified Hamiltonian, rather than the original Hamiltonian as for our
model system. We believe a random walk model similar to (3.2) will apply for
this quantity. The challenge would be in validating such a model model since it is
not straightforward to compute the modified Hamiltonian, though it is possible
to efficiently approximate it [13, 14].

Thirdly, repulsive forces are not linear in realistic systems. This will likely
change the resulting stochastic process limit as follows. The reason we obtain
Brownian motion as the limit of the logarithm of the energy as a function of time
is that the energy errors made in each collision are independent and have finite
second moments. The energy change in one collision has finite second moment in
our system because the energy changes linearly with respect to energy. However,
in systems with nonlinear repulsive forces, the change in energy will not scale
linearly with the velocities in the collision. It may be that doubling the energy of
a collision more than doubles the resulting change in the modified Hamiltonian.
This could lead to the distribution of the change in energy during one collision
having “heavy tails”, leading to single rare collisions contributing significantly
to the total energy drift. This is indeed what is observed in [14]; most of the
numerical drift in the modified Hamiltonian is due to a few high-energy collisions.
In this case Donsker’s theorem would not apply, and we cannot conclude that
we will obtain a diffusive limit. It is possible that the natural continuous-time
limit of the modified energy as a function of time would not be continuous, but
contain jumps.

To summarize, we believe that much of our methodology would carry through
to a more realistic system. However, the limiting process in the end of the
analysis need not be geometric Brownian motion, or a continuous Markov process
at all.
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