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Abstract

An open problem in numerical analysis is to explain why molecular
dynamics works. The difficulty is that numerical trajectories are only
accurate for very short times, whereas the simulations are performed
over long time intervals. It is believed that statistical information from
these simulations is accurate, but no one has offered a rigourous proof
of this. In order to give mathematicians a clear goal in understanding
this problem, we state a precise mathematical conjecture about molec-
ular dynamics simulation of a particular system. We believe that if the
conjecture is proved, we will then understand why molecular dynamics
works.

1 Introduction

Molecular dynamics is the computer simulation of a material at the atomic
level. In principle the only inputs to a simulation are the characteristics of
a set of particles and a description of the forces between them. An initial
condition is chosen and from these first principles the evolution of the system
in time is simulated using Newton’s laws and a simple numerical integrator
[6, 1].

Molecular dynamics is a very prevalent computational practice, as a
glance at an issue of the Journal of Chemical Physics will show. It does have
its limitations: the motion of only a relatively small number of particles can
be simulated over a short time interval. However, most of the mesoscopic
models that have been suggested to overcome these difficulties still rely on
molecular dynamics as a form of calibration. It is likely that molecular
dynamics will continue to be important in the future.

Given its scientific importance there is very little rigourous justification
of molecular dynamics simulation. From the viewpoint of numerical analysis
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it is surprising that it works at all. The problem is that individual trajecto-
ries computed by molecular dynamics simulations are accurate for only small
time intervals. As we will see in Section 3, numerical trajectories diverge
rapidly from true trajectories given the step-lengths used in practice. No
one disputes this fact, and no one is particularly concerned with it either.
The reason is that practitioners are never interested in particular trajec-
tories to begin with. They are interested in ensembles of trajectories. As
long as the numerical trajectories are representative of a particular ensemble
of true trajectories, researchers are content. However, that this statistical
information is computed accurately has yet to be rigourously demonstrated
in representative cases.

The goal of this article is to present a concise mathematical conjecture
that encapsulates this fundamental difficulty. We present a model system
that is representative of systems commonly simulated in molecular dynam-
ics. We present the results of numerical simulations of this system using
the Störmer-Verlet method, the work-horse of molecular dynamics. In each
simulation a random initial condition is generated, an approximate trajec-
tory for the system is computed and the net displacement of one particle
over the duration of the simulation is recorded. We show that even for
step-sizes that are far too large to accurately compute the position of the
particle, the distribution of the particle’s displacement over the many initial
conditions appears to be accurate. From the numerical data we conjecture a
rate of convergence for this particular statistical property. We believe that
if this conjectured rate of convergence (or one like it) can be rigourously es-
tablished, even for this single system, then we will understand significantly
better why molecular dynamics works.

The problem of explaining the accuracy of molecular dynamics simula-
tion is well-known both in the physical sciences (for example [6, p. 81])
and in the mathematics community [12]. This latter reference is a survey
of the relation between computation and statistics for initial value problems
in general. There has been plenty of excellent mathematical work that has
done much to explain various features of this type of simulation, but has
not resolved the issue we consider here. See [13, 14, 15] for surveys.

One body of work that has addressed the statistical accuracy of under-
resolved trajectories in a special case is by A. Stuart and co-workers. In
[3, 17] they have explored some linear test systems with provable statistical
properties in the limit of large numbers of particles. They are able to show
that if the systems are simulated with appropriate methods the statistical
features of numerical trajectories are accurate in the same limit even when
the step-lengths are too large to resolve trajectories. Though these results
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are interesting since they are the only ones of their kind now known, for the
highly nonlinear problems of practical molecular dynamics very different
arguments will be required.

One subproblem that has been attacked more successfully is that of the
computation of ergodic averages. These are averages of functions along
very long trajectories. All that numerical trajectories have to do to get
these correct is sample the entire phase space evenly. This is a much weaker
property than getting all statistical features correct. The most striking work
on this question is by S. Reich [11] which establishes rapid convergence of
ergodic averages for Hamiltonian systems which are uniformly hyperbolic
on sets of constant energy. Unfortunately, this property has never been
established for realistic systems, and is unlikely to hold for them [9, 10]. The
work [18] established similar results for systems with much weaker properties
but requires radically small time steps for convergence to occur.

The contribution of this work is to precisely specify a simple problem
which encapsulates all the essential difficulties of the more general problem.
In Section 2 we present the system we will study. Section 3 shows the
results of some numerical experiments on this system. There we state our
conjecture based on the results. In Section 4 we will discuss two possible
approaches to proving the conjecture. Finally, in Section 5 we will discuss
prospects for the eventual resolution of the conjecture.

2 The System

The system consists of n = 100 point particles interacting on an 11.5 by 11.5
square periodic domain. We let q ∈ T

2n and p ∈ R
2n denote the positions

and velocities of the particles, with qi ∈ T
2, pi ∈ R

2 denoting the position
and velocity of particle i. The motion of the system is described by a system
of Hamiltonian differential equations:

dq

dt
=

∂H

∂p
,

dp

dt
= −

∂H

∂q
,

with Hamiltonian

H(q, p) =
1

2
‖p‖2

2 +
∑

i<j

VLJ(‖qi − qj‖).

Here VLJ denotes the famous Lennard-Jones potential. In our simulations
we use a truncated version:

VLJ(r) =

{
4
(

1
r12 − 1

r6

)
, if r ≤ rcutoff,

0, otherwise.
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Figure 1: The positions of the particles for a representative state of the
system.

Figure 1 shows the positions of the particles on the periodic domain for one
state of the system. Though the particles are only points, in the figure each
is represented by a circle of radius 1/2.

We take our initial conditions q0, p0 to be randomly distributed according
to the probability density function

Z−1e−H(q,p)/kT , (1)

where Z is chosen so that the function integrates to one. This is known as
the canonical distribution (or ensemble) for the system at temperature T .
There is a simple physical interpretation of this distribution: if the system
is weakly connected to another very large system at temperature T , this is
the distribution we will find the original system in after a long period of
time. In our units k = 1, and we choose T = 1.

There are many ways of sampling from the canonical distribution at
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a given temperature. For our experiments we generated initial conditions
using Langevin dynamics. See [4] for an explanation of this technique and
a comparison with other methods. If done correctly, the precise method of
sampling from the canonical distribution will have no bearing on the results
of the experiments we will present subsequently.

The numerical method we use for integrating our system is the Störmer-
Verlet scheme. Given an initial q0, p0 and a ∆t > 0 it generates a sequence
of states qn, pn, n ≥ 0 such that (qn, pn) ≈ (q(n∆t), p(n∆t)). The version of
the algorithm we use is

qn+1/2 = qn + pn∆t/2,

pn+1 = pn − ∆t∇V (qn+1/2),

qn+1 = qn + pn+1∆t/2.

This is a second-order explicit method. It is symplectic, and as a conse-
quence conserves phase space volume [7].

Finally we have to decide upon our step-length ∆t. If ∆t is too large
the energy of the computed solution will increase rapidly and explode. In
practice, it is observed that for small enough step lengths energy remains
within a narrow band of the true energy for very long time intervals. (There
is extensive theoretical justification for this phenomenon, see Section 4.1).
Practitioners tend to pick a ∆t as large as possible while still maintaining
this long-term stability on their time interval of interest. For the system and
initial conditions we describe here ∆t = 0.01 yields good approximate energy
conservation on the time interval [0, 100]. For our numerical experiments we
will let ∆t take this value and smaller. (The recommended value in [6], a
standard reference, for this type of system is ∆t = 0.005.)

3 The Problem

We will first examine how well trajectories are computed with ∆t = 0.01.
Figure 2 shows the computed x-position of one particle versus time for the
same initial conditions and for a range of step-lengths. If the trajectory
computed by Störmer-Verlet is accurate over the time interval [0, 5], we
expect that reducing the time step by a factor of a thousand would not
yield a significantly different curve. However, we see that the two curves for
∆t = 0.01 and ∆t = 0.00001 very quickly diverge. They are distinguishable
to the eye almost immediately and completely diverge around 1.2 time units.

Reducing the step length to ∆t = 0.001 gives a curve that agrees with the
∆t = 0.00001 line longer, but still diverges around 2.5 time units. Similarly,
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Figure 2: Computed x-position of one particle versus time for fixed initial
conditions for a range of ∆t.

even with ∆t = 0.0001 trajectory is not accurate over the whole interval
depicted.

From these numerical results, we might conjecture that reducing the
step-length by a constant factor only extends the duration for which the
simulation is accurate by a constant amount of time. This is consistent with
theoretical results about the convergence of numerical methods for ordinary
differential equations. What is surprising in this case is that the time-scale
on which the trajectories are valid appears to be miniscule compared to the
time-scale on which computation are actually performed. It seems that the
trajectories we compute here with stepsize even as small as ∆t = 0.00001
are not accuarate over the whole interval [0, 5] let alone over considerably
longer intervals.

Fortunately we almost never care about what one particular trajectory
is doing in molecular dynamics. We only care about statistical features of
the trajectories when initial conditions are selected according to some prob-
ability distribution. Here we will consider the example of self-diffusion. Self-
diffusion is the diffusion of one particular particle through a bath of identical
particles. We can imagine somehow marking one particle at time zero and
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Figure 3: Displacement in x direction of 1 particle at T = 10 for three
different step-lengths.

watching its motion through the system. This single-particle trajectory will
depend on the positions and velocities of all the particles (including itself)
at time zero. Since these are random, the trajectory of the single particle is
random.

One way to measure self-diffusion is to look at the distribution of the x-
coordinate of the tracer particle relative to its initial condition. To estimate
this, we generate many random initial conditions, perform the simulation
using the Störmer-Verlet method, and record the net displacement of the
particle in the given direction. Figures 3 show the histograms of these dis-
placements at time T = 10 for three different step-lengths.

In contrast to the case where we examined single trajectories, here the
histograms are virtually identical for the different step-lengths. This sug-
gests that any information we glean from the first histogram will be accurate.

To check this more carefully, we compute the variance of the total
displacement at various times T for varying step-lengths. Let R(T ) =
‖q1(T ) − q1(0)‖ denote the total displacement of the particle after time
T . This is a random quantity through its dependence on the state of the
system at t = 0. Let R∆t(T ) denote this same displacement as simulated
with the Störmer-Verlet method. This also is a random quantity. Now de-
fine 〈R2

∆t(T )〉 to be the expected value of R2
∆t(T ) when the initial conditions

are chosen according to the canonical distribution. Let us see how this last
quantity depends on ∆t. We do this by generating many initial conditions
from the canonical ensemble and then simulating the system for 100 time
units, keeping track of the total displacement of the tracer particle.

Figure 4 shows 〈R2
∆t(T )〉 versus T for three choices of step length. The

inset shows a subset of the data with error bars. Up to the sampling error
there is no difference between the curves. As far as we can tell from this
plot, the answers for ∆t = 0.01 are accurate. The time-scale is much larger
than the short interval we found the trajectory to be accurate over. Lest
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Figure 4: Expected squared total displacement in the x direction of a single
particle as a function of time for three different step-lengths.

we give the impression that 〈R2
∆t(T )〉 depends linearly on T , Figure 5 shows

the same results for a smaller time interval.
We conjecture that the reason 〈R2

∆t(T )〉 does not appear to depend on
∆t is that even for these large values of ∆t it closely matches 〈R2(T )〉. It is
not clear at all what the rate of convergence of R∆t(T ) to R(T ) is and how
it depends on T . However we make the following conjecture:

Conjecture 1 For the system described in Section 2 with the initial distri-
bution given by (1) and the Störmer-Verlet integrator with time step ∆t

∣∣〈R2
∆t(T )〉 − 〈R2(T )〉

∣∣ ≤ C∆t2,

for all T ∈ [0, AeB/∆t], for some constants A,B,C.

We will explain the reasons for hypothesizing this particular dependence in
the next section. Here we will briefly note what dependence the classical
theory of convergence for numerical ODEs gives:

∣∣〈R2
∆t(T )〉 − 〈R2(T )〉

∣∣ ≤ CeLT ∆t2

for T ∈ [0, E log(F/∆t)] for sufficiently small ∆t for some C,L,E, F > 0.
(See [16, p. 239], for example.) So we need to explain why the error remains
so small even for long simulations.
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Figure 5: Same as Figure 4 but on a smaller time interval.

4 Two Approaches

We will discuss two possible approaches to proving Conjecture 1: backward
error analysis and shadowing.

4.1 Backward Error Analysis

Typically a pth order numerical method applied to a system of ODEs com-
putes a trajectory that is O(∆tp) close to the exact trajectory on a finite
interval. Backward error analysis is a way of showing that the numerical
trajectory is an O(exp(−1/∆t)) approximation to the exact trajectory of a
perturbed system. This result can be used in turn to prove results about
the stability of the numerical trajectory. See [2] for an early reference and
[7, Ch. IX.] for a recent comprehensive treatment of the subject.

If we apply a symplectic integrator to a Hamiltonian system it turns out
that the modified system is also Hamiltonian. The Hamiltonian function
H̃ for the new system can be written as H̃ = H + O(∆t2). There are two
consequences for us. Firstly, the numerical method agrees very closely with
the exact solutions of the modified Hamiltonian on short time intervals. If we
denote the solution to the modified system with the same initial conditions
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by (q̃, p̃) then
|q̃(n∆t) − qn| ≤ Ce−D/∆t (2)

for T ∈ [0, B/∆t], for some appropriate constants [5]. (This alone is not
useful for analysing molecular dynamics since T and ∆t are both large.)
Secondly, the modified Hamiltonian H̃ is conserved extremely well by the
numerical method for long time intervals:

∣∣∣H̃(q0, p0) − H̃(qn, pn)
∣∣∣ ≤ Ce−D/∆t,

for n∆t ∈ [0, AeB/∆t]. Putting this together with H̃ = H + O(∆t2) gives

∣∣H(q0, p0) − H(qn, pn)
∣∣ ≤ E∆t2,

for n∆t ∈ [0, AeB/∆t]. We chose the bound in Conjecture 1 in analogy with
this last result.

Suppose we wanted to bound the error between 〈R2
∆t(t)〉 and 〈R2(t)〉

using these estimates. The fact that the initial conditions are random adds
an extra level of complication to the problem. We have been using 〈·〉
to denote the average with respect to the canonical distribution for the
Hamiltonian H. The perturbed Hamiltonian H̃ has a different canonical
distribution. We denote averages with respect to it by 〈·〉′. We let R̃ denote
the net displacement of the tracer particle under the new flow given by H̃.

We might try bounding the error in the following way:

|〈R2
∆t(T )〉 − 〈R2(T )〉| ≤ |〈R2

∆t(T )〉 − 〈R̃2(T )〉|

+|〈R̃2(T )〉 − 〈R̃2(T )〉′|

+|〈R̃2(T )〉′ − 〈R2(T )〉|

We discuss each of the three terms in turn.
The first term is due to the numerical trajectory not agreeing with the

exact trajectory of the modified system with Hamiltonian H̃. According
to (2) we can bound this term by C exp(−D/∆t) for a duration of B/∆t.
The studies in [5] suggest that this is a tight estimate for typical molecular
dynamics simulations.

The second term is the difference in the expectation of R̃2(t) due to
a perturbation in the measure. Since the two measures are proportional
to exp(−H/kT ) and exp(−H̃/kT ) respectively, and H − H̃ = O(∆t2), we
expect this term to be on the order of O(∆t2) for all T . This probably can
be rigourously controlled without much difficulty.
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The third term is just the difference in 〈R2(t)〉 between the original sys-
tem and the perturbed system. This is likely to be extremely difficult to
bound. However, showing that it is small is not a question about computa-
tion but about statistical physics. For now let us assume that it is O(∆t2)
for all T for now.

Already we can see that this approach will not get us the result that
we want, even assuming we can bound the third term. The best estimate
we have so far is that the error is bounded by O(∆t2) for T ∈ [0, B/∆t].
The bound would hold on an interval much shorter than what is needed.
It appears that backward error analysis alone cannot explain the observed
convergence.

4.2 Shadowing

The idea of shadowing is complementary to that of backward error analy-
sis. Whereas backward error analysis shows that the numerical trajectory is
close to the exact trajectory of a different Hamiltonian system with the same
initial condition, shadowing attempts to show that the numerical trajectory
is close to an exact trajectory of the same Hamiltonian system with a differ-
ent initial condition. See [8] for a nice review of shadowing for Hamiltonian
systems.

In our situation, if shadowing were possible, something like the follow-
ing would hold. Suppose we compute a numerical trajectory starting from
(q0, p0) with time step ∆t, which we denote by (qn, pn), n ≥ 0. If shad-
owing is possible then there is an exact trajectory (q̃(t), p̃(t)) of the same
Hamiltonian system starting at some other initial condition (q̃(0), p̃(0)) such
that

(qn, pn) ≈ (q̃(n∆t), p̃(n∆t))

for n∆t in some large range of times. Assuming that it is possible to shadow
every numerical trajectory in this way, let us denote the map on the phase
space that takes the numerical initial condition to the initial condition of
the shadow trajectory by

S∆t(q
0, p0) = (q̃(0), p̃(0)).

The idea of shadowing is used very effectively by S. Reich in [11]. For a
Hamiltonian system for which shadowing holds he demonstrates that long-
time averages will be computed accurately by almost all numerical trajec-
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tories. That is,

lim
T→∞

1

T

∫ T

0
g(q(t), p(t))dt ≈ lim

N→∞

1

N

N∑

n=0

g(qn, pn), (3)

for almost all initial conditions (q0, p0) = (q(0), p(0)), for reasonable func-
tions g. Since the quantity on the left does not depend on (q(0), p(0)) in the
systems considered in [11] (except for sets of measure zero), it is sufficient
that such a map S∆t exists to get the result.

In our case we are interested in more general statistical features of tra-
jectories than long-time averages. For example, the variance of the displace-
ment of a single particle in a finite time interval cannot be put into the form
of a long-time average such as in 3. This puts more stringent requirements
on S∆t. To show that statistics are captured correctly we cannot consider
just single trajectories; we have make sure the entire ensemble’s statistics
are reproduced correctly. If the shadowing map S∆t systematically picked
initial conditions for which the tracer particle tended to move to the left,
for example, then the computed statistics could be quite inaccurate. See [8]
for a discussion of this issue in the context of astrophysics. What is neces-
sary for this shadowing to work is for S∆t to leave the canonical ensemble
invariant:

〈G(q, p)〉 = 〈G(S∆t(q, p))〉 (4)

for some suitably broad class of functions G on phase space. This is an even
more stringent requirement than just that shadowing is possible at all, and
it may be quite unlikely to hold for our system.

Fortunately we can weaken some other requirements demanded of shad-
owing considerably for our problem. We do not need the trajectory of the
whole system to be close; we only need the trajectory of a single particle to
be close. Suppose that our tracer particle’s numerical trajectory is denoted
by (qn

1 , pn
1 ) for n ≥ 0. We say that weak shadowing holds if we can select

q̃(0), p̃(0) such that

(qn
1 , pn

1 ) ≈ (q̃1(n∆t)), p̃1(n∆t)))

for n∆t in some long range of times.
To see how this fits in with the conjecture suppose that we have both

(4) and
‖(qn

1 , pn
1 ) − (q̃1(T )), p̃1(T ))‖ ≤ C∆t2. (5)
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for T = n∆t ∈ [0, AeB/∆t]. This means that (assuming we can obtain
reasonable bounds on R2

∆t(T ) and R2(T )) that

|〈R2
∆t(T )〉 − 〈R2(T )〉| ≤ K|〈‖qn

1 ‖〉 − 〈‖q1(t)‖〉|

≤ K|〈‖qn
1 ‖〉 − 〈‖q̃1(T )‖〉| + K|〈‖q̃1(T )‖〉 − 〈‖q1(T )‖〉|

≤ K〈‖(qn
1 , pn

1 ) − (q̃1(T )), p̃1(T ))‖〉

+K|〈G(S∆t(q
0, p0))〉 − 〈G(q0, p0)〉|,

for T ∈ [0, AeB/∆t]. Here we have let G be the composition of the time T
flow map of the Hamiltonian system with the 2-norm. Now the first term
above is bounded by CTe−D/∆t by (5) and the second term is 0 by (4),
thus establishing the conjecture. Simultaneously proving (4) and (5) for
some shadowing map S∆t may not be easy, but it may be much easier than
proving the usual stronger shadowing result.

5 Discussion

Despite the ideas presented in the previous section, the conjecture we have
presented is probably not open to attack by existing techniques. The prob-
lem is that there is no rigourous mathematical theory of how statistical
regularities emerge from the dynamics of generic high-dimensional Hamilto-
nian systems. Consequently, there is no theory of how perturbations in the
Hamiltonian dynamics leads to perturbation in the statistics. A numerical
analyst has three choices when faced with this situation:

1. Take Up Mathematical Physics. If we are to make progress on the
conjecture these entirely non-numerical problems need to be tackled
first. Mathematical physicists are interested in proving things like
ergodicity and decay of correlations for Hamiltonian systems such as
presented here, and it is conceivable that eventually there will a robust
body of theory that we can apply to our problem. So one possibility
is to work on developing such a theory. This likely will not have much
to do with computation.

2. Relax Standards of Rigour. Theoretical physicists, as opposed to
mathematical physicists, have accepted that much reliable informa-
tion can be obtained through calculations that cannot be rigourously
justified. Typically theoretical physicists study systems about which
nothing interesting can be proved; to do otherwise would be far too
restrictive. There is no reason why this informal yet highly fruitful
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style of reasoning should be restricted to systems themselves and not
numerical discretizations of systems. A combination of non-rigourous
arguments and careful numerical experiments could do a lot to clar-
ify how the Störmer-Verlet method is able to compute statistics so
accurately for our system.

3. Abandon the Whole Pursuit. For many, the purpose of numerical
analysis is to provide reliable, efficient algorithms. If one is pursuing a
theoretical question, it is hoped that it will lead to better algorithms
eventually. Sadly, even a complete resolution of the conjecture we have
presented in unlikely to have much effect on computational practice.
Many people have tried for years to devise an integrator that is more
efficient than the Störmer-Verlet method for computing statistically
accurate trajectories in molecular dynamics. They have only been
successful for Hamiltonian systems with special structure. (The prime
example of this is the multiple time stepping methods, see [7, Ch.
VIII.4].) In fact, we state another conjecture which is not formulated
rigourously.

Conjecture 2 No integration scheme can improve the efficiency by
more than a factor of two with which Störmer-Verlet computes statis-
tically accurate trajectories for systems like that in Section 2.

Here even a clear mathematical formulation would be a challenge.
Obviously if we already know a lot about a system we can contrive an
algorithm which will give correct statistics for a tracer particle, but
this does not count. The conjecture is intended to capture the idea
that Störmer-Verlet is a very general purpose method; we do not need
to know anything about a system to apply it.

At the Abel Symposium participants seemed to prefer the first of the
three options: try to prove what one can about the system and its dis-
cretization.
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