Chapter 9

Canonical Forms

1 Nilpotent Operators

If a linear transformation L mapping an n-dimensional complex vector space
into itself has n linearly independent eigenvectors then the matrix representing
L with respect to the basis of eigenvectors will be a diagonal matrix. In this
chapter we turn our attention to the case where L does not have enough linearly
independent eigenvectors to span V. In this case we would like to choose an
ordered basis of V' for which the corresponding matrix representation of L will
be as nearly diagonal as possible. To simplify matters in this first section we
will restrict ourselves to operators having a single eigenvalue A of multiplicity
n. It will be shown that such an operator can be represented by a bidiagonal
matrix whose diagonal elements are all equal to A and whose superdiagonal
elements are all 0’s and 1’s. To do this we require some preliminary definitions
and theorems.

Recall from Section 2 of Chapter 5 that a vector space V is a direct sum of
subspaces S7 and Ss if and only if each v € V' can be written uniquely in the
form x; +x9 where x; € S7 and xo € S;. This direct sum is denoted by S1 & Ss.

Lemma 9.1.1. Let B; = {x1,...,%,} and By = {y;,...,yx} be disjoint sets
which are bases for subspaces Sy and Ss, respectively, of a vector space V. Then
V =518 if and only if B= By U By is a basis for V.

Proof. Exercise (|

Definition. Let L be a linear operator mapping a vector space V into itself. A
subspace S of V is said to be invariant under L if L(x) € S for each x € S.

For example if L has an eigenvalue A and S is the eigenspace corresponding
to A then S, is invariant under L since L(x) = Ax € S for each x € S.

If S is an invariant subspace of L then the restriction of L to S which we
will denote Lig) is a linear operator mapping S into itself.

Lemma 9.1.2. Let L be a linear operator mapping a vector space V into itself
and let S1 and Sy be invariant subspaces of L with S1NSe = {0}. If S = S16 S,



then S is invariant under L. Furthemore if A = (a;;) is the matriz representing
Lis,) with respect to the ordered basis [X1,...,X;] of S1 and B = (b;;) is the

matriz representing Lig,) with respect to the ordered basis [y,,...,y;] of So
then the matriz C representing Lig) with respect to [X1,...,Xr, ¥1,.--, Y] i5
given by
A 0
(1) ¢ = 0 B ]
ailr - Q1r 0 0
_ Qrr  ccc Qpp 0 0
B 0 O bl]_ M b]_k;

Proof. We should first note that since S; NSy = {0} it follows that x1,...,x;,
¥Yi1,---,Y¥ are linearly independent and hence form a basis for a subspace S of
V. By Lemma 9.1.1, S = 57 @ S> so that it really does make sense to speak of
a direct sum of S7 and S3. If s € S then there exist x € S; and y € S5 such
that s = x +y. Since L(x) € S1 and L(y) € Sy it follows that

L(s) = L(x) + L(y)
is an element of S7 @ Sy = S. Therefore S is invariant under L.

Let sgl) = L(x;) fori =1,...,7r. and 55-2) = L(y;) for j = 1,...,k. Since
(1

each s;’ is in S; and each s§2) is in Sy it follows that

Lig(xi) = s +0
= a;;X1 +agXy + -+ apiXy + 0y + -+ - + Oy,
and hence the ith column of the matrix C representing Lig) will be
c; = (a1i, a2, .-, p3,0,. .. ,O)T
Similarly

L[S](yj) = 0+S§-2)
= 0x1 + -+ +0xp + b1y + -+ + brjyy

and hence c;4, is given by

Cjtr = (0,...,0,b1j,...,bkj)T



Thus the matrix C representing L{s; with respect to [X1,...,Xp, ¥q, ...y will
be of the form (9.1). O

It is possible to have a direct sum of more than two matrices. In general if
S1,59,...,5, are subspaces of a vector space V then V =51 ®--- @ S, if and
only if each v € V can be written uniquely as a sum s; + - - - + s, where s; € S;
fori=1,...,r.

Using mathematical induction one can generalize both of the lemmas to
direct sums of more than two subspaces. Thus, if each subspace S; has a basis
B; and the B;’s are all disjoint, then V = S; & --- $ S, if and only if B =
B1UByU---U B, is a basis for V. If Sy,...,5, are invariant under a linear
transformation L and S = 51 @ --- ® S, then S is invariant under L and Lg
can be represented by a block diagonal matrix

Ay
A
2) A=

A,

Let L be a linear operator mapping an n-dimensional vector space V into
itself. If V' can be expressed as a direct sum of invariant subspaces of L then it
is possible to represent L as a block diagonal matrix A of the form (2).

The simplest such representation occurs in the case that L is diagonalizable.
This occurs when the dimensions of the eigenspaces are equal to the multiplici-
ties of the eigenvalues. In this case we can choose A so that each diagonal block
A; is a diagonal matrix and hence the matrix A is also diagonal.

If however there are any eigenvalues for which the dimension of the eigenspace
is less than the multiplicity of the eigenvalue, then the subspace Sy, @ ---@® S,
will have dimension less than n and hence will be a proper subspace of V. In
this case we would like to do is somehow enlarge the deficient Sj,’s and obtain
a direct sum representation of V of the form S; & --- ® S, where each S; is
invariant under L. Furthermore, we would like the corresponding block repre-
sentation of L to be as close to a diagonal representation as possible. Indeed
we will show that it is possible to find invariant subspaces S; so that each Lig;
can be represented by a bidiagonal matrix of a certain form.

As a simple example consider the case where the matrix A representing L is
a 3 x 3 matrix with a triple eigenvalue A\ and the eigenspace S has dimension 1.
In this case we would like to show that L can be represented by a 3 x 3 matrix

A1 0
J=10 X 1
0 0 A

If such a representation is possible then A would have to be similar to J, i.e.,



AX = XJ for some nonsingular matrix X. If we let x;, X2, x3 denote the
column vectors of X this would say that

A(x1,X2,Xx3) = (X1,X2,X3)J
and hence

AX1 = AXl
AXQ = X1 + )\XQ
Ax3 = xo+ Ax3

or equivalently
(A=XDx; =0
(A= ADx2 = x;
(A= AD)x3 = X2
These equations imply that
(3) (A= A)Px3=(A—-X)?xa = (A—A)x; =0
Thus if we can find a vector x such that
(4) (A= XI)*x=0 and (A= XI)’x#0
then we can set
(5) X3 = X, X =(A—A)x and x; = (A—\)’x

The equations given in (4) really provide the key to our problem. If we can find
a vector x satisfying (4) then it is not difficult to show that the vectors x;, xa,
and x3 defined in (5) are linearly independent and hence that X = (x1,x2,X3)
is invertible. Equation (3) implies that

(A= XI)3*x=0
for all x € R(X). Note that
(A=XD)2x; #0

This type of condition plays an important role in the theory we are about to
develop. We state this condition for a general linear operator L in the following
definition.

Definition. Let L be a linear operator mapping a vector space V into itself.
L is said to be nilpotent of index k on V if LF(v) = 0 for all v € V and
LF=1(vy) # 0 for some vy € V.



Lemma 9.1.3. Let L be a linear operator mapping a vector space V into itself
and let v € V. If L¥(v) = 0 and L*1(v) # 0 for some integer k > 1 then the
vectors v, L(v), L*(v), ..., LF=1(v) are linearly independent.

Proof. The proof will be by induction. The result clearly holds in the case
k =1 since
v=L%v)#0 and L(v)=0

and hence we have only a single nonzero vector v. (Here L° is taken to be the
identity operator.) Assume now that we have a value of k such that the result
holds for all j < k and suppose we have a vector v satisfying

LFl(v)#0 and L*v)=0
To show linear independence we consider the equation
(6) v+ aoL(v) + -+ apLF1(v) =0
If we let w = L(v) and apply L to both sides of (6) we get
a1 L(V) + aoL?(v) + - + a1 LF Y (v) = 0

or
W + OQL(W) —+ o4 Oék_lLk_z(W) =0

Since
LF2(w) =LF'(v) #£0 and LFY(w)=LFv)=0

then by our induction hypothesis
w, L(w),...,L*"2(w)

are linearly independent and hence

a1=a2='-':ak,1:0
Thus (6) reduces to
arL*1(v) =0
It follows that a must also be zero and hence v, L(v), ..., L¥*~1(v) are linearly
independent. O

If LF=1(v) # 0 and LF(v) = 0 for some v € V then the vectors v,
L(v),...,L*"1(v) form a basis for a subspace which we will denote by Cf,(v).
The subspace Cr,(v) is invariant under L since for each

w = a1V + aL(v) + -+ ax LF 71 (v)



in Cr(v) we have
L(w)=a1L(v) + a2L2(v) 44 Oék71Lk_1(v)

and hence L(w) is also in Cf,(v). We will refer to Cr,(v) as the L-cyclic subspace
generated by v. In particular if L is nilpotent of index k then for each nonzero
vector vo € V there is an integer ko, 1 < ko < k such that L*o~1(vy) # 0 and
LFo(v) = 0. Thus if L is nilpotent on V then one can associate an L-cyclic
subspace Cr,(v) with each nonzero vector v in V. It is easily seen that L-cyclic
subspaces are invariant under L.

Let CL(v) be an L cyclic subspace of V with basis {v, L(v),..., L*¥71(v)}.
Let

y,=LF(v) fori=1,...,k (where L° = I)

Then
V1Yo syl = [LF7H(V), L2 (v), ., V]

is an ordered basis for Cp(v). Since

L(y,) 0
Lly;) =y;.1 for  j=2,...k
it follows that the matrix representing Lic, (v with respect to [yy,...,y] is
given by
010 --- 00
001 -- 00
A 000 --- 00
000 --- 01
000 --- 00

Thus, Lic,(v) can be represented by a bidiagonal matrix with 0’s along the
main diagonal and 1’s along the superdiagonal.

Lemma 9.1.4. Let L be a linear operator mapping a vector space V into itself.
If L is nilpotent of index k on V and LF='(vy), L¥~Y(va),...,LF1(v,) are
linearly independent, then the kr vectors

Vl,L(Vl), ey Lk_l(Vl)
Vo, L(Vg), ey Lk_l(Vg)

Vv, L(Vy),. .. ,Lkil(VT)

are linearly independent.



Proof. The proof is by induction on k. If k = 1 there is nothing to prove.
Assume the result holds for all indices less than k and that L is nilpotent of

index k. If
a11v1 + o L(vy) + -+ alkLk_l(Vl)
+ a21Ve + aQQL(VQ) 4+t Oé2kLk_1(V2)

(7)

+ ap1Ve + apoL(ve) + - + arkkal(’UT)
=0

then applying L to both sides of (7) we get

o1y + a2L(yy) + -+ + ar g1 LF 2 (y;)
+ @21y + 22 L(ys) + -+ - + az 1 LF2(y,)

(8)

+ a1y, + amL(y,) + -+ arp 1LF2(y,)
=0

where y;, = L(v;) for i = 1,...,r. Since L*2(y,) = LF~1(v;) for each i it
follows that L*=2(y,),..., L*~2(y,,) are linearly independent. Let S be the
subspace of V' spanned by

Y17L(Y1)7 v 7Lk_2(Y1)7 R vYT’L(YT)v s 7Lk_2<Yr)

Since L is nilpotent of index £ — 1 on S it follows by the induction hypothesis

that s
yle(y1)7'-'aL B (yl)
y27L(Y2)7"'aLk_2(Y2)

Yo L(y,)s - L2 (y,)

are linearly independent. Therefore
ajj =0for 1 <i<r, 1<j<k—-1
and consequently (8) reduces to
a1 LF 7 (ve) + aop LF Y (vo) + -+ + i LF TN (v,) = 0
Since LF~Y(vy),..., L*~1(v,) are linearly independent it follows that
o =g =- =0 =0
and hence

Vl,L(Vl), ey Lk_l(Vl)
Va, L(Vg)7 ey Lk_l(Vg)

v, L(v;), ..., LF"(v,)



are linearly independent. O

Theorem 9.1.5. Let L be a linear operator mapping an n-dimensional vector
space V into itself. If L is nilpotent of index k on V then V can be decomposed
into a direct sum of L-cyclic subspaces.

Proof. The proof will be by induction on k. If k = 1 then L is the zero operator
on V. Thus if {vy,...,v,} is any basis of V then CL(v;) is the one-dimensional
subspace spanned by v; for each ¢ and hence

V= CL(Vl) D--- EBCL(Vn).

Suppose now that we have an integer k£ > 1 such that the result holds for all
indices less than k and L is nilpotent of index k. Let {vi,...,v,;,} be a basis
for ker(L*~1). This basis can be extended to a basis {Vi,...,Vm, ¥1,..., ¥}
of V' (where r = n —m).

Since y; ¢ ker(LF~1) it follows that L*¥~(y,) # 0. Let

B, = {YIaL(yl)a (R Lkil(yl)v ce ’yr’L(yT)a (R Lkil(Yr)}

We claim Bj is a basis for a subspace S; of V. By Lemma 9.1.4 it suffices to
show that L¥~1(y,), L*~1(y,),..., L¥~(y,) are linearly independent. If

a1 LF N (yy) + o lF(yy) + -+ o L (y,) = 0

then
Lk—l(alyl + e _|_ aryr) — O

and hence a1y, + -+ + a,y, € ker(L¥™1). But then oy = ag = --- = @, =
0 otherwise Vi,...,Vm, ¥1,-..,¥, would be dependent. Thus L*~!(y,),...,
LF=1(y,) are linearly independent and hence B is a basis for a subspace S; of
V. It follows from Lemma 9.1.1 that

S1=0CL(y1) ® - ®CL(y,)

If S; # V extend B; to a basis B for V. Let By be the set of additional basis
elements (i.e., B = B1UB3 and BiNBy = (}). By is a basis for a subspace Sy of V
and by Lemma 9.1.1 V = S;®S,. By construction Sy is a subspace of ker(LF~1).
(If s € Sy then it must be of the form s = a;vi +- - -+ amVy, +0y; + - -+ 0y,.).
Thus L is nilpotent of index k; < k on S3. By the induction hypothesis Sy can
be written as a direct sum of L-cyclic subspaces and since V' = 57 & S5 it follows
that V is a direct sum of L-cyclic subspaces. O

Corollary 9.1.6. If L is a linear operator mapping an n-dimensional vector
space V into itself and L is nilpotent of index k on V then L can be represented



by a matriz of the form
Ji
J2
Js

where each J; is a k; X k; bidiagonal matriz (1 < k; < k and Zki = n) with
i=1
0’s along the main diagonal and 1’s along the superdiagonal.

Proof. By Theorem 9.1.5 we can write
V = CL(Vl) b---P CL(VS)

If Cr.(v;i) has dimension k; then the matrix representing Lc, (v,)) with respect
to [LFi=1(vy),...,v;] will be

01
0 1
Ji = T
0 1
0
The conclusion follows from Lemma 9.1.2. O

It follows from Corollary 9.1.6 that if L is nilpotent on an n-dimensional
vector space V' then all of its eigenvalues are 0. Conversely if all of the eigen-
values of L are 0 then it follows from Theorem 6.4.3 that L can be represented
by a triangular matrix 7" whose diagonal elements are all 0. Thus for some k,
T* will be the zero matrix and hence L¥ will be the zero operator. Thus if L is
a linear operator mapping an n-dimensional vector space V into itself then L is
nilpotent if and only if all of its eigenvalues are 0.

Corollary 9.1.7. Let L be a linear operator mapping an n-dimensional vector
space V into itself. If L has only one distinct eigenvalue A\ then L can be
represented by a matriz A of the form

Ji(A)
o) A J2(A)



where each J;(\) is a bidiagonal matrixz of the form

Al
Al

(10) Ti(N) =

Proof. Let Z denote the identity operator V. The eigenvalues of the operator
L — X7 are all 0 and hence L — AZ is nilpotent. It follows from Corollary 9.1.6
that with respect to some ordered basis [vi,...,Vvy] of V the operator L — AZ
can be represented by a matrix of the form

0 1
N0) 0 1
J2(0)
J= . where Ji(0) = .
’ 0 1
The matrix representing AZ with respect to [vi,...,Vy] is simply AI. Since

L = (L — M\T) + AT it follows that the matrix representing L with respect to
[Vi,...,Vy] is
Ji(A)
J2(N)
J+A =

Js(A)

A matrix of the form (10) is said to be a simple Jordan matriz. Thus a
simple Jordan matrix is a bidiagonal matrix whose diagonal elements all have
the same value A and whose superdiagonal elements are all 1. O

Example. Let

b

Il
[l e e e
OO O =N
O O =
== N =
= =

0

We can think of A as representing an operator from R® into R5. Since A = 1
is the only eigenvalue, A is similar to a block diagonal matrix whose diagonal
blocks are simple Jordan matrices with 1’s along both the diagonal and the
superdiagonal. The eigenspace corresponding to A = 1 is spanned by the vectors

10



x = (1,0,0,0,0)7 and y = (0,0,—1,0,1)7. Thus the bidiagonal matrix will
consist of two simple Jordan blocks, J1(1) and J2(1). If we order the blocks
so that the first block is the largest then the only possibilities for the block
diagonal matrix are:

1 10
0 1 1
0 01

o

=
oo O O =
OO ==
o O OO

To determine which of these forms is correct one must compute powers of A—1.

02111 0025 2
001 21 000710
A-T =|0 00 10| (A-D*2=|0 00 0 0
0000 O 00000
0000 O 00000
00020
00000
A-D*=[0 000 0] (A-Di=0
00000
00000

Thus A — I is nilpotent of index 4. The systems
(A-DFs=x and (A-I)Ys=y

are clearly inconsistent if k£ and j are greater than 3. We determine the maximum
k and maximum j for which these systems are consistent. For k = 3 the system

(A-T)3s =x

is consistent and will have infinitely many solutions. We pick one of these

solutions r
X1 = (Ov 0,0, %7 O)

To generate the rest of the cyclic subspace we compute
T
xg = (A—1D)x; = (%,1, %,0,0)
x5 = (A—I)xy = (A—1)*x; = (£,1,0,0,0)"

With respect to the ordered basis [x,X3,X2,X;] the matrix representing the
operator A on this subspace will be of the form

1

—_

0 1
H=19 o
00



The systems ’
(A-I))s=y

are inconsistent for all positive integers j. Thus the cyclic subspace containing
y has dimension 1. It follows that the matrix representing A with respect to
[X7 X3, X2, X17y] is

The reader may verify that if Y is the matrix whose columns are x, X3, X2, X1,
y, respectively, then
YJY '=4A

In the next section we will show that a matrix A with distinct eigenvalues
Al, ...y A is similar to a matrix J of the form

By
Bs
B,
where each B; is of the form (9) with diagonal elements equal to A;, i.e.,

J1(A)
Ja(Ai)

Js(/\i)

where the Ji()\;)’s are simple Jordan matrices. We say that J is the Jordan

canonical form of A. The Jordan canonical form is unique except for a reordering
of the blocks.

Exercises

1. Let L be a linear operator on a vector space V of dimension 5 and let A be
any matrix representing L. If L is nilpotent of index 3 then what are the
possible Jordan canonical forms of A?

2. Let A be a 4 x 4 matrix whose only eigenvalue is A = 2. What are the
possible Jordan canonical forms of A?

12



. Let L be a linear operator on a vector space V of dimension 6 and let A
be a matrix representing L. If L has only one distinct eigenvalue A and the
eigenspace S has dimension 3 then what are the possible Jordan canonical
forms of A7

. For each of the following find a matrix S such that S~*AS is a simple Jordan
matrix.

(a) A=|1 0 2 (b) A=
L .1 o 00 1 2
0 0 01

. In each of the following find a matrix S such that S™1AS is the Jordan
canonical form of A.

L1 0 o 00111
11 o0 o 00011

@ A=|"5 5 o o ) A=]0 0 0 0 1
0 3 1 o 00000
00000

. Let S; and S be subspaces of a vector space V. Prove that V = S & S5 if
and only if V = 51 + 59 and 51 NSy = {0}.

7. Prove Lemma 9.1.1.

8. Let L be a linear operator mapping a vector space V into itself. Show that

ker(L) and R(L) are invariant subspaces of V under L.

. Let L be a linear operator on a vector space V. Let Si[v] denote the subspace
spanned by v, L(v),..., L*=1(v). Show that Sk[v] is invariant under L if
and only if L*(v) € S[v].

10. Let L be a linear operator on a vector space V and let S be a subspace of

V. Let Z represent the identity operator and let A be a scalar. Show that L
is invariant on S if and only if L — AZ is invariant on S.

11. Let S be the subspace of C[a, b] spanned by z, ze®, and xe® + z%e®. Let D

be the differentiation operator on S.

(a) Find a matrix A representing D with respect to [e%, ze®, ze® + x2e7].
(b) Determine the Jordan canonical form of A and the corresponding basis
of S.

12. Let D denote the linear operator on P, defined by D(p) = p’ for all p € P,.

Show that D is nilpotent and can be represented by a simple Jordan matrix.

13



2 The Jordan Canonical Form

In this section we will show that any linear operator L on an n-dimensional
vector space V' can be represented by a block diagonal matrix whose diagonal
blocks are simple Jordan matrices. We will apply this result to solving systems
of linear differential equations of the form Y’ = AY where A is defective.

Let us begin by considering the case where L has more than one distinct
eigenvalue. We wish to show that if L has distinct eigenvalues Aq, ..., A\x then
V' can be decomposed into a direct sum of invariant subspaces Sy, ..., Sk such
that L — A\; is nilpotent on S; for each ¢ = 1,...,k. To do this we must first
prove the following lemma and theorem.

Lemma 9.2.1. If L is a linear operator mapping an n-dimensional vector
space V into itself then there exists a positive integer ko such that ker(L*) =
ker(Lko+®) for all k > 0.

Proof. If i < j then clearly ker(L?) is a subspace of ker(L7). We claim that
if ker(L?) = ker(L*!) for some i then ker(L!) = ker(Li*¥) for all k > 1. We
will prove this by induction on k. In the case k = 1, there is nothing to prove.
Assume for some k > 1 the result holds all indices less than k. If v € ker(Li*F)
then
0= Li+k (V) _ Li+k71(L(V))

Thus L(v) € ker(L*t*~1). By the induction hypothesis ker(L***~1) = ker(L?).
Therefore L(v) € ker(L?) and hence v € ker(L**!). Since ker(L**!) = ker(L?)
it follows that v € ker(L?) and hence ker(L?) = ker(L**¥). Thus if ker(L*1) =
ker(L?) for some i then

ker(Li) = ker(L“‘l) = ker(LiH) =...

Since V is finite dimensional, the dimension of ker(L¥) cannot keep increasing as
k increases. Thus for some ko we must have dim(ker(L*0)) = dim(ker(LFo+1))
and hence ker(L*) and ker(L*o*1) must be equal. It follows then that

ker(L*) = ker(L*oT!) = ker(LFo+?) = . ..
u

Theorem 9.2.2. If L is a linear transformation on an n-dimensional vector
space V' then there exist invariant subspaces X andY such thatV =X &Y, L
is nilpotent on X, and L[y is invertible.

Proof. Choose ko to be the smallest positive integer such that ker(Lk0) =
ker(Lko+1). Tt follows from Lemma 9.2.1 that ker(L*?) = ker(Lkot7) for all
j > 1. Let X = ker(L*). Clearly X is invariant under L for if x € X then
L(x) € ker(L*o~1) which is a proper subspace of ker(L*). Let Y = R(Lko). If
w € X NY then w = L*(v) for some v and hence

0 = LFo(w) = Lko(LFo(v)) = Lo (v)

14



Thus v € ker(L?*0) = ker(L*°) and hence
w=LF(v)=0

Therefore X NY = {0}. We claim V =X &Y. Let {x1,...,%,} be a basis for
X and let {yy,...,¥,_,} be a basis for Y. By Lemma 9.2.1 it suffices to show

that x1,...,%Xr, ¥1,-..¥Y,_, are linearly independent and hence form a basis for
V. If
(1> a1Xy + - Xy + ﬂlyl i ﬁn—Tyn—r =0

then applying L0 to both sides gives

BiLko(y) + -+ + BprL*(y,_,) =0

or
LkO (/61}’1 + R ﬂnfryn_yv) = 0

Therefore S1y; + -+ Bn—rYn_r € X NY and hence
bryi+-+ Bty =0
Since the y,’s are linearly independent it follows that
Bi=fa=-=Pur=0
and hence (1) simplifies to
aixX; + -+ ax. =0
Since the x;’s are linearly independent it follows that
ap=as=---=a,=0

Thus, x1,...,Xr, ¥1,---,¥n_, are linearly independent and therefore V.= X @
Y. Lisinvariant and nilpotent on X. We claim that L is invariant and invertible
onY. Let y € Y, then y = L*0(v) for some v € V. Thus,

L(y) = L(L*e(v)) = L**(v) = L*(L(v))

Therefore L(y) € Y and hence Y is invariant under L. To prove Ljy) is invertible
it suffices to show that

ker(Liy)) =Y Nker(L) = {0}

This, however, follows immediately since ker(L) C X and X NY = {0}. t

We are now ready to prove the main result of this section.

15



Theorem 9.2.3. Let L be a linear operator mapping a finite dimensional vector
space V into itself. If A1, ..., \x are the distinct eigenvalues of L then V' can be
decomposed into a direct sum

X10Xo® - DXy
such that L — DT is nilpotent on X; and the dimension of X; equals the multi-
plicity of ;.

Proof. Let L1 = L — \;Z. By Theorem 9.2.2 there exist subspaces X; and Y;
which are invariant under L; such that V = X; @Y7, L; is nilpotent on X; and
Ly[y) is invertible. It follows that X; and Y7 are also invariant under L. By
Corollary 9.1.2, Lix,] can be represented by a block diagonal matrix A; where
diagonal blocks are simple Jordan matrices whose diagonal elements all equal
Al. Thus

det(A1 — )\I) = ()\1 — )\)Tn1

where m; is the dimension of X;. Let B; be a matrix representing Liy,. Since
L is invertible on Y7 it follows that A; is not an eigenvalue of B;. Thus

det(B; — AI) = q(N)

where g(A1) # 0. It follows from Lemma 9.1.2 that the operator L on V can be
represented by the matrix
Ay
By

Thus if each eigenvalue A; of L has multiplicity r; then
A=A A2 =) (A =A™ = det(A—AI)
= det(A; — AI) det(B; — AI)
= (A= A)™q(N)

A:

Therefore r; = m; and
4 = g = A" (= )

If we consider the operator Ly = L — A2Z on the vector space Y; then we can
decompose Y7 into a direct sum Xs @ Yo such that X5 and Y5 are invariant
under L, Ly is nilpotent on X3 and L[y, is invertible. Indeed we can continue
this process of decomposing Y; into a direct sum X;11 @ Y;41 until we obtain a
direct sum of the form

V=X10Xe® ®Xr 10 Yr 1

The vector space Y;_1 will be of dimension r with a single eigenvalue Ag. Thus,
if we set Xy = Yr_1 then L — \;Z will be nilpotent on X} and we will have the
desired decomposition of V. O
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It follows from Theorem 9.2.3 that each operator L mapping an n-dimensional
vector space V' into itself can be represented by a block diagonal matrix of the
form

Ay
Ao

Ag

where each A; is an r; X r; block diagonal matrix (r; = multiplicity of A;) whose
blocks consist of simple Jordan matrices with A;’s along the main diagonal.

If A is an n X n matrix then A represents the operator L4 with respect to
the standard basis on R™ where L4 is defined by

L4(x) = Ax for each x € R"

By the preceding remarks L4 can be represented by a matrix J of the form just
described. It follows that A is similar to J. Thus each n x n matrix A with
distinct eigenvalues Aq, ..., Ag is similar to a matrix J of the form

Ay
Aa
2) J=

Ay,
where A; is an r; X r; matrix (r; = multiplicity of ;) of the form

J1(Ai)
J2(As)
3) 4=

with the J()\;)’s being simple Jordan matrices. The matrix J defined by (2)
and (3) is called the Jordan canonical form of A. The Jordan canonical form
of a matrix is unique except for a reordering of the simple Jordan blocks along
the diagonal.

Example Find the Jordan canonical form of the matrix

-3 1 0 1 1
-3 1 0 11
A=|-4 1 0 2 1
-3 1 0 1 1
-4 1 0 1 2

Solution: The characteristic polynomial of A is

|A— M| = X1 =)
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The eigenspace corresponding to A = 1 is spanned by x; = (1,1,1,1,2)7 and
the eigenspace corresponding to A = 0 is spanned by x, = (1,1,0,1,1)7 and
x3 = (0,0,1,0,0)T. Thus the Jordan canonical form of A then will consist of
three simple Jordan blocks. Except for a reordering of the blocks there are only
two possibilities:

1 1

0

1
0

1
0 0

To determine which of these forms is correct we compute (A — 0I)? = A2,

-1 0 0 0 1
-1 0 0 0 1
A2=|-1 00 0 1
-1 0 0 0 1
-2 0 0 0 2
Next we consider the systems
A%x = x;

for ¢ = 2, 3. Since these systems turn out to be inconsistent, the Jordan canonical
form of A cannot have any 3 x 3 simple Jordan blocks and consequently it must

be of the form
1

J=X"TAX = 0

To find X we must solve
Ax = x;

for i = 2,3. The system, Ax = X5, has infinitely many solutions. We need
choose only one of these say x4 = (1,3,0,0,1)%. Similarly Ax = x3 has infinitely
many solutions one of which is x5 = (1,0,0,2,1)7. Let

1 11 0 1
11 3 0 0
X[x1 Xo X3 X4 X5] 1 0 01 0
1 1.0 0 2
21 1 01
The reader may verify that X 1AX = J. O
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One of the main applications of the Jordan canonical form is in solving systems
of linear differential equations which have defective coefficient matrices. Given
such a system

Y'(t) = AY(t)

we can simplify it by using the Jordan canonical form of A. Indeed if A =
XJX ! then
Y = (XJX Y)Y

Thus if we set Z = X 'Y then Y’ = XZ’ and the system simplifies to
X7 = XJZ

Multiplying by X! we get
(4) 7 =JZ
Because of the structure of J this new system is much easier to solve. Indeed
solving (4) will only involve solving a number of smaller systems each of the
form

21 = 21+ 22

z’2 = Az9 + 23

!
Zp_1 = AZk—1+ 2k

2, = A2k

These equations can be solved one at a time starting with the last. The solution

to the last equation is clearly

2k = ce™

The solution to any equation of the form
2'(t) — Az(t) = u(t)
is given by
z(t) = e)‘t/e*)‘tu(t)dt

Thus we can solve
7
21 — AZk—1 = 2k

for zx_; and then solve
!
Zp—_o — A2gp—2 = Zk—1

for z_o, etc.
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Example. Solve the initial value problem

Y1 10 0 -1 Y1
ys | [0 -1 1 2 Y3
yﬁl 1 0 2 1 Y4
y1(0) = 32(0) = y3(0) =0, y4(0) =2

Solution: The coefficient matrix A has two distinct eigenvalues \; = 0 and
A2 = 2 each of multiplicity 2. The corresponding eigenspaces are both dimension
1. Using the methods of this section A can be factored into a product X JX !
where

01 00
0 0 0O
J_0021
0 0 0 2

The choice of X is not unique. The reader may verify that the one we have
calculated

1 1 -1 1
1 1 1 -1
X = -1 0 1 0
0 1 0
does the job. The system
X' =JX
can be broken up into two systems
Ty = wo xh = 2mz+ a4
xh = 0 and xy = 2x4
The first system is not difficult to solve.
1 = cit+co
To = C1 (c1 and ¢y are constants)

To solve the second system we solve first
Ty = 2x4

getting
T4 = Cgth

Thus
o — 2x3 = cze?
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and hence
x3 = e /e_zt(03e2t)dt = e (cst + c4)

Finally we have

(c1t + c2) + c1 — (cat + cq)e?t + cze?t
(c1t + c2) + c1 + (cat + cq)e?t — cze?t
—(e1t + c2) + (cat + cq)e?t

(c1t + ca) + (c3t + cq)e?

Y=JX=

If we set ¢t = 0 and use the initial conditions to solve for the ¢;’s we get
cir=—-1, co=cg=cy =1

Thus the solution to the initial value problem is

Yy = —t — te?t
yp = —t +te*
ys = —14+t4 (1+1t)e?

yg = 1—t+ (141t)e*

O

The Jordan canonical form not only provides a nice representation of an
operator but it allows us to solve systems of the form Y’ = AY even when the
coefficient matrix is defective. From a theoretical point of view its importance
cannot be questioned. As far as practical applications go, however, it is generally
not very useful.

If n > 5 it is usually necessary to calculate the eigenvalues of A by some
numerical method. The calculated A;’s are only approximations to the actual
eigenvalues. Thus we could have calculated values A} and A, which are unequal
while actually A\; = Ag. So in practice it may be difficult to determine the
correct multiplicity eigenvalues. Furthermore, in order to solve Y = AY we
need to find the similarity matrix X such that A = XJX~!. However, when A
has multiple eigenvalues the matrix X may be very sensitive to perturbations
and in practice one is not guaranteed that the entries of the computed similarity
matrix will have any digits of accuracy whatsoever. A recommended alternative
is to compute the matrix exponential e and use it to solve the system Y’ = AY.

Exercises

1. Let A be a 4 X 4 matrix whose only eigenvalue is A = 2. What are the
possible Jordan canonical forms for A7

2. Let A be a 5 x 5 matrix. If A% # 0 and A3 = 0, what are the possible Jordan
canonical forms for A?
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3. Find the Jordan canonical form J for each of the following matrices and
determine a matrix X such that X 'AX = J.

1 0 1
a) A=|1 0 2
1 -1 2
0o 0 0 1
0 0 0 1
byA=17 95 ¢ o
0 0 0 -1
120 0
01 2 0
©A=1¢9 0 1 2
000 1
11111
01111
dA=]00 1 1 1
0000 1
0000 0
2111 1 1
02111 1
000111
©A=10000 1 1
000011
000011

4. Let L be a linear operator on a finite dimensional vector space V.

(a) Show that R(L!) C R(L?) whenever i > j.
(b) If for some kg, R(L*) = R(L¥o*!) then R(LFo) = R(Lkotk) for all
kE>1

5. Let L be as in Exercise 4.
(a) Show that there is a smallest positive integer ko such that R(LF) =
R(Lko+1),

(b) Let k; be the smallest positive integer such that ker(L*1) = ker(LF1+1).
Show that kl = ]{30.
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6. Solve the initial value problem

Y1 = Y3
Yo = Y1 — Y2+ 2y3
Ys = Y1 — Y2+ ys
y1(0) = 0, y2(0) =0, y3(0) = -1

A1 0
0 A 1| =J
0 0 A

If x1, X9, and x3 are the column vectors of X define

7. Suppose

X 'AX =

Z1 = aXy

Z2

axy + bxy

zZ3 = aXs + bxXg + cx3

where a, b, and ¢ are scalars and a # 0.

(a) If Z = (21 22 z3) show that

AZ =7J
(b) Let
a b c
B=10 a b
0 0 a

Show that BJB™! = X71AX = J.
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