Chapter 8

Iterative Methods

1 Basic Iterative Methods

In this section, we study iterative methods for solving a linear system Ax = b.
Iterative methods start out with an initial approximation x(® to the solution
and go through a fixed procedure to obtain a better approximation, x(!). The
same procedure is then repeated on x() to obtain an improved approximation,
x®); and so on. The iterations terminate when a desired accuracy has been
achieved.

Iterative methods are most useful in solving large sparse systems. Such sys-
tems occur, for example, in the solution of boundary value problems for partial
differential equations. The number of flops necessary to solve an n X n using
iterative methods is proportional to n2, whereas, the amount necessary using
Gaussian elimination is proportional to n3. Thus for large values of n iterative
methods provide the only practical way of solving the system. Furthermore, the
amount of memory required for a sparse coefficient matrix A is proportional to
n, whereas, Gaussian elimination and the other direct methods studied in earlier
chapters usually tend to fill in the zeros of A and hence require an amount of
storage proportional to n%. This can present quite a problem when n is very
large, say n > 20000.

The iterative methods we will describe only require that in each iteration
we can multiply A times a vector in R™. If A is sparse, this can usually be
accomplished in a systematic way so that only a small proportion of the entry
of A need be accessed. The one disadvantage of iterative methods is that after
solving Ax = by, one must start all over again from the beginning in order to
solve Ax = bas.

Matrix Splittings

Given a system Ax = b, we write the coefficient matrix A in the form A =
C — M, where C is a nonsingular matrix which is in some form that is easily
invertible (e.g., diagonal or triangular). The representation A = C — M is
referred to as a matriz splitting. The system can then be rewritten in the form

Cx = Mx+b



x = C 'Mx+C'b

If we set

B=C'M=I-C"'4 and c=C"1b
then
(1) x=Bx+c

To solve the system, we start out with an initial guess x(?), which may be any
vector in R™. We then set

xM = Bx® ¢

x@ = Bx® 4+ ¢
and in general

xHD = Bx(®) 4 ¢

Let x be a solution of the linear system. If || - || denotes some vector norm
on R™ and the corresponding matrix norm of B is less than 1, we claim that
[x*) — x| = 0 as k — co. Indeed,

xM —x = (Bx(© +¢) — (Bx +c¢) = B(x® —x)
x®@ —x = (BxM +¢) - (Bx +c¢) = B(xV —x) = B(x(¥ — x)

and so on. In general,

(2) x®) — x = BF(x(®) —x)
and hence
Ix® —x|| = [|B*(x® —x)|
< 1B 1x* —x]|
< |IB]FIx© - x|

Thus, if || B|| < 1, then ||x*) — x| — 0 as k — oo.

The foregoing result holds for any norm on R", although in practice it is
simplest to use the || - | or the || - ||1. Essentially, then, we require that the
matrix C be easily invertible and that C~! be a good enough approximation to
A~1 50 that

IT—C A = ||B| < 1

This last condition implies that all the eigenvalues of B are less than 1 in
modulus.

Definition. Let A1,..., A, be the eigenvalues of B and let p(B) = max |\;].

1<i<n

The constant p(B) is called the spectral radius of B.



Theorem 8.1.1. Let x© be an arbitrary vector in R™ and define x(it1) =
Bx® 4 ¢ fori = 0,1,.... If x is the solution to (1), then a necessary and
sufficient condition for x*) — x is that p(B) < 1.

Proof. We will prove the theorem only in the case where B has n linearly
independent eigenvectors. The case where B is not diagonalizable is beyond the
scope of this book. If x1,...,Xx, are n linearly independent eigenvectors of B,
we can write

X(O) —X=o1X1 + "+ X,

and it follows from (2) that
x®) —x = B¥(aix; 4+ + anxy)
= alA’fxl + -+ an/\ﬁxn

Thus
x®) _x -0

if and only if |\;| < 1 for i =1,...,n. Thus x*) — x if and only if p(B) < 1.
The simplest choice of C is to let C' be a diagonal matrix whose diagonal

elements are the diagonal elements of A. The iteration scheme with this choice
of C is called Jacobi iteration.

Jacobi Iteration
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and set B=C~'M and ¢ = C~'b. Thus
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At the (i + 1)st iteration, the vector x("+1) is calculated by

i 1 = i .
(3) x§.+1):; 7Zajkx§€)+bj j=1...,n
7 k=1
k#j

The vector x(! is used in calculating x(**1). Consequently, these two vectors
must be stored separately.

If the diagonal elements of A are much larger than the off-diagonal elements,
the entries of B should all be small and the Jacobi iteration should converge.
We say that A is diagonally dominant if

n

|aii| > Z lasj] for i=1,...,n

i=1
J#i
If A is diagonally dominant, the matrix B of the Jacobi iteration will have the
property
n n |a . ‘
Sobyl=> <1 for  i=1,...,n
=1 o il
J#i
Thus

n
| Blloo = [oax, z; biz| | <1
o

It follows, then, that if A is diagonally dominant, the Jacobi iteration will
converge to the solution of Ax = b.

An alternative to the Jacobi iteration is to take C to be the lower triangular
part of A (i.e., ¢;j = a;; if ¢ > j and ¢;; = 0if ¢ < j). Since C is a better
approximation to A than the diagonal matrix in the Jacobi iteration, we would
expect that C~! is a better approximation to A~!, and hopefully B will have a
smaller norm. The iteration scheme with this choice of C' is called Gauss—Seidel
iteration. It usually converges faster than Jacobi iteration.

Gauss—Seidel Iteration
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Set C = D—L and M = U. Let x(©) be an arbitrary nonzero vector in R". We
have

Cxt) = mx@ 1+ b
(D —L)x+) = Ux® 4+ b
Dx) = [x(+D) L yx® 4 p

We can solve this last equation for x(*+1) one coordinate at a time. The first
coordinate of x(*t1) is given by

n
(i+1) _ 1 (i)
x =—| - a1kx;,” +0b
T QT

The second coordinate of x(**1) can be solved for in terms of the first coordinate
and the last n — 2 coordinates of z(9).

i 1 i - i
xé +1) = — (azlxg +1) — Z agk:zrgc) + bg)

(¢4
22 k—3

In general,

) 1 it ) n .
1+1 i+1 1
(4) 2 = vl > gt - > ajzy) +b;
73 k=1 k=j+1

It is interesting to compare (3) and (4). The difference between the Jacobi and
Gauss—Seidel iterations is that in the latter case, one is using the coordinates
of x(+1) ag soon as they are calculated rather than in the next iteration. The
program for the Gauss—Seidel iteration is actually simpler than the program for
the Jacobi iteration. The vectors x(® and x(:+1) are both stored in the same
vector, x. As a coordinate of x(**1) is calculated, it replaces the corresponding
coordinate of x(*.



Theorem 8.1.2. If A is diagonally dominant, then the Gauss—Seidel iteration

converges to a solution of Ax = b.

Proof. For j =1,...,n, let
j—1 n
Qj = Z |aji|, ﬂj = Z \aji|, and Mj =
i=1 i=j+1
Since A is diagonally dominant, it follows that
|ajj| > o + B
and consequently M; < 1 for j =1,...,n. Thus

M = max M; <1
1<j<n

We will show that

B
[Blec = max [Bxc]ec

<M<1
X#0 |[%||oo

Bi

(laj;| — o)

Let x be a nonzero vector in R™ and let y = Bx. Choose k so that

[¥]loo = giasxn\yil = |yx|

It follows from the definition of B that
y=Bx=(D- L)_lUx
and hence
y =D YLy +Ux)

Comparing the kth coordinates of each side, we see that

1 k—1 n
wot (—zakiyi— 3 )
=1

i=k+1

and hence

1
(5) 1¥lloo = [yl < == (k||¥lloo + Brllx[lo0)
|akk|

It follows from (5) that

1Bxloc _ [¥llee _ 3 < r

oo Ixlloo =

Thus

B[00
B = max
|| ||00 X0 ||X||oo

<M<1

and hence the iteration will converge to the solution of Ax = b.



Exercises

1. Let

(10 1 (11 o _ (0
A‘[zlo]’ b_[12]’ and  x _{0]

Use Jacobi iteration to compute x(*) and x(?). [The exact solution is x =
(1,17

2. Let
111 3 1
A=101 1|, b=|2], and x@=1o0
00 1 1 0

Use Jacobi iteration to compute x(1), x(®), x®3) and x(¥.

3. Repeat Exercise 1 using Gauss—Seidel iteration.

4, Let
10 1 1 12 1
110 1|, b=|12], and  x©@ =10
1 1 10 12 0

(a) Calculate x(Y) using Jacobi iteration.

A:

(b) Calculate x") using Gauss-Seidel iteration.

(c) Compare your answers to (a) and (b) with the correct solution x =
(1,1,1)T. Which is closer?

5. For which of the following matrices, will the iteration scheme
x*+1) = Bx(k) 4 ¢

converge to a solution of x = Bx + ¢? Explain.

111
(a)B:[O 1 1]

00 1
09 1 1
by B=[0 09 1
0 0 09



3 10 100
) B=|0 1 10
0 0 3
1101
4 4 4
1 1 1
dB=1|7 2 s
111
2 4 8
1101
3 3 3
() B=13 3 3
1 1
0 6 3

6. Let x be the solution of x = Bx + c. Let x(%) be an arbitrary vector in R"

and define
x*+1) — Bx(k) 4 ¢
for k=0,1,.... Prove that if B™ is the zero matrix, then x(™ = x.

7. Let A be a nonsingular upper triangular matrix. Show that the Jacobi
iteration will give the exact solution (assuming no roundoff erros) to Ax = b
after n iterations.

8. For an iterative method based on the splitting A = C — M, C nonsingular,
show that

x(B+1) — x (k) 4 o—1.(F)

where r(%) denotes the residual b — Ax(*).

9. Let A= D — L —U, where D, L, and U are defined as in Gauss—Seidel
iteration and let w be a nonzero scalar. The system wAx = wb can be solved
iteratively by splitting wA into C' — M, where C = D —wL. Determine the B
and ¢ corresponding to this splitting. (The constant w is called a relazation
parameter. The case w = 1 corresponds to Gauss—Seidel iteration.)

10. Let x be the solution to x = Bx + c. Let x(9) be an arbitrary vector in R™

and define
x(+) = Bx(® 4 ¢

fori=0,1,.... If | B]| = @ < 1, show that

) — ] < T [l —x*1)
-«



