
COUNTING INEQUIVALENT MONOTONE BOOLEAN

FUNCTIONS

TAMON STEPHEN AND TIMOTHY YUSUN

Abstract. Monotone Boolean functions (MBFs) are Boolean functions
f : {0, 1}n → {0, 1} satisfying the monotonicity condition x ≤ y ⇒
f(x) ≤ f(y) for any x, y ∈ {0, 1}n. The number of MBFs in n variables is
known as the nth Dedekind number. It is a longstanding computational
challenge to determine these numbers exactly – these values are only
known for n at most 8. Two monotone Boolean functions are equivalent
if one can be obtained from the other by permuting the variables. The
number of inequivalent MBFs in n variables was known only for up
to n = 6. In this paper we propose a strategy to count inequivalent
MBFs by breaking the calculation into parts based on the profiles of
these functions. As a result we are able to compute the number of
inequivalent MBFs in 7 variables. The number obtained is 490013148.

1. Introduction

A Boolean function on n variables (BF) is a function f : {0, 1}n → {0, 1}.
A monotone Boolean function (MBF) additionally satisfies the condition
x ≤ y ⇒ f(x) ≤ f(y), for any x, y ∈ {0, 1}n; these are also known as isotone
Boolean functions. We write x ≤ y if xi ≤ yi for all i = 1, 2, . . . , n, and
x < y if x ≤ y and xi < yi for some i. A BF is monotone if and only if it
can be written as a combination of conjunctions and disjunctions only.

Since each input state in {0, 1}n has two possible output states, there are
a total of 22

n
Boolean functions on n variables. On the other hand, no exact

closed form is known for the number of monotone Boolean functions on n
variables. Denote this number by D(n). The numbers D(n) are called the
Dedekind numbers, after R. Dedekind [Ded97]. The first few values are given
in Table 1 [Slo11]. Currently, only values of D(n) up to n = 8 are known.

Kisielewicz [Kis88] gave a logical summation formula for D(n), however
performing the computation using his summation has the same complexity
as brute force enumeration of D(n), see, e.g., [Kor03]. There are some
asymptotic results concerning the behavior of D(n), one of the earliest of
which was a result of Kleitman in 1969, that log2D(n) ∼

(
n
bn/2c

)
[Kle69]. So

far, the most accurate one is given by Korshunov [Kor03], found in Table 2.

2010 Mathematics Subject Classification. Primary 68W05; Secondary 06E30, 05A05.
Key words and phrases. Dedekind numbers, monotone Boolean functions, isotone

Boolean functions, inequivalent monotone Boolean functions.

1

2 TAMON STEPHEN AND TIMOTHY YUSUN

n D(n) Source
0 2

Dedekind, 1897
1 3
2 6
3 20
4 168
5 7 581 Church, 1940 [Chu40]
6 7 828 354 Ward, 1946 [War46]

7 2 414 682 040 998
Church, 1965 [Chu65]

(see also [BK76])

8 56 130 437 228 687 557 907 788
Wiedemann, 1991 [Wie91]

(see also [FMSS01])

Table 1. Known Values of D(n), (A000372, [Slo11]).

D(n) ∼ 2(n
n/2) · exp

[(
n

n
2
−1
) (

2−n/2 + n22−n−5 − n2−n−4
)]
, for even n

D(n) ∼ 2(n
(n−1)/2)+1 · exp

[(
n

n−3
2

) (
2(−n−3)/2 − n22−n−5 − n2−n−3

)
+
(
n

n−1
2

) (
2(−n−1)/2 − n22−n−4

)]
, for odd n

Table 2. Korshunov’s Asymptotics

1.1. Inequivalent MBFs. We define an MBF f(x1, x2, . . . , xn) to be equiv-
alent to another MBF g(x1, x2 . . . , xn), written as f ∼ g, if there is a per-
mutation σ ∈ Sn such that f(xσ(1), xσ(2), . . . , xσ(n)) = g(x1, x2, . . . , xn). For
example, the function f(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3) is equivalent to
g(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) via the permutation σ = (12).

Let R(n) be the number of equivalence classes defined by “∼” among
monotone Boolean functions on n variables. As with D(n), no closed form
is known for R(n), and in fact only the values up to n = 6 have been com-
puted. These appear to have been obtained by the straightforward method
of listing all monotone Boolean functions on n variables and then sorting
them into equivalence classes. The known values are shown in Table 3. We
will denote by D(n) and R(n) the sets of monotone Boolean functions and
their equivalence classes, respectively. So D(n) = |D(n)| and R(n) = |R(n)|.

Example 1.1. The inequivalent MBFs in two variables are: f = 0, f = 1,
f = x1, f = x1 ∨ x2, and f = x1x2; R(2) is the set comprised by these
functions (equivalence classes) and R(2) = 5. Then D(2) consists of these
functions along with f = x2, which is equivalent to f = x1; D(2) = 6.

COUNTING INEQUIVALENT MONOTONE BOOLEAN FUNCTIONS 3

n 0 1 2 3 4 5 6
R(n) 2 3 5 10 30 210 16 353

Table 3. Known Values of R(n) (A003182, [Slo11])

1.2. Terminology and Elementary Facts. Define a minimal term of an
MBF f to be an input x ∈ {0, 1}n such that f(x) = 1 and f(y) = 0 if
y < x. The minimal terms of a monotone Boolean function are the minimal
vectors where the function equals 1 – any input below a minimal term in the
lattice of 0-1 vectors evaluates to 0, and everything above evaluates to 1 by
virtue of monotonicity. For example, the function f(x1, x2, x3) = x1 ∨ x2x3
evaluates to 1 at (1, 0, 0) and (0, 1, 1), as well as at all vectors above (1, 0, 0)
and (0, 1, 1) in the lattice, and evaluates to 0 at all other vectors. Indeed,
each MBF can be written as a disjunction of clauses, each representing one
of its minimal terms. This is known as its minimal disjunctive normal form,
or DNF [CH11]. For the rest of this paper we will represent 0-1 vectors by
the sets of indices of their non-zero entries – e.g. (1, 0, 0) by {1} and (0, 1, 1)
by {2, 3}.

MBFs can be classified according to the number of minimal terms they
have. Call Dk(n) the number of monotone Boolean functions on n vari-
ables with k minimal terms. Kilibarda and Jovovic [KJ03] derive closed
form expressions for Dk(n) for fixed k = 4, 5, . . . , 10 (A051112 to A051118,
[Slo11]).

A truth table for a Boolean function is a row of zeros and ones which
encodes the outputs of the function corresponding to every possible input
state. To illustrate, the function f(x1, x2, x3) = x1 ∨ x2x3 from above has
minimal terms {1} and {2, 3}, and so it has the following truth table:

variables set to 1 x1, x2, x3 x2, x3 x1, x3 x3 x1, x2 x2 x1 none
output states 1 1 1 0 1 0 1 0

Table 4. Truth table for the function f(x1, x2, x3) = x1 ∨ x2x3

Note that the input states on the top row are arranged in a reverse colex-
icographic (or colex) order on {0, 1}3, defined as x < y if x 6= y and xk < yk
where k = max{i : xi 6= yi}. Fixing this order, we write f as 11101010. In
general, any Boolean function on n variables can be written as a 0-1 string
of length 2n where each entry corresponds to an input state; we use this
convention throughout this paper. The ordering has the nice property that
the first 2n−1 of its entries have xn = 1, and the second half have xn = 0.

The truth table form is the most compact way to represent general Boolean
functions. For monotone Boolean functions, both the truth table and the
minimal terms representation are useful for our purposes.

4 TAMON STEPHEN AND TIMOTHY YUSUN

Example 1.2. The colexicographic order for two variables is {1, 2} > {2} >
{1} > {}. The functions in D(2), written in truth table form are {1111,
1110, 1100, 1010, 1000, 0000}.

1.3. Background. Monotone Boolean functions are ubiquitous objects in
mathematics, occurring in many guises. For instance, there is a one-to-one
correspondence between MBFs in D(n) and antichains in the set 2[n], that is,
pairwise incomparable subsets of the power set of {1, 2, . . . , n}. Specifically,

the set of minimal terms of an MBF in D(n) is an antichain in 2[n]. Since
by Sperner’s Theorem, any antichain on the n-set can have at most

(
n
bn/2c

)
elements, we have that any n-variable MBF can have at most

(
n
bn/2c

)
minimal

terms [Eng97].
The one-to-one correspondence between n-variable MBFs and Sperner

hypergraphs is also well-known. In particular, each minimal term of an
MBF maps to a hyperedge in the corresponding hypergraph, and because of
pairwise incomparability, the hypergraph thus exhibits the Sperner property,
that is, no hyperedge contains another.

Some other fields in which monotone Boolean functions appear include
lattice theory [Grä71], nonlinear signal processing [SSGC95], coding theory
[IKN07], computational learning theory [Shm], game theory [RP11], and
computational biology [KG04],[HKS08].

For a comprehensive discussion of Boolean functions, see the recently-
published book by Crama and Hammer [CH11].

2. Computational Strategies

2.1. Profiles of MBFs. It is natural to refine the classification of monotone
Boolean functions by number of minimal terms, and consider how many
elements are contained in each of these terms. We define the notion of a
profile formally as given in Engel [Eng97], and introduce some notation:

Definition 2.1 (Profile of an MBF). Given an n-variable MBF f where
f 6≡ 1, the profile of f is a vector of length n, (a1, a2, . . . , an), where the
ith entry is equal to the number of minimal terms of f which are i-sets.

Example 2.2. The MBF 11111100 has minimal terms {2}, {3}, and profile
(2, 0, 0), while the MBF 11111000 has minimal terms {1, 2}, {3}, and profile
(1, 1, 0).

Definition 2.3. Given profile vector (a1, a2, . . . , an), define (a1, a2, . . . , an)D
to be the number of monotone Boolean functions on n variables with pro-
file vector (a1, a2, . . . , an). Similarly define (a1, a2, . . . , an)R for inequivalent
monotone Boolean functions on n variables.

Note that the number of variables n is implicit in the profile vector – it is
the length of the vector. Some relations between the profiles are described
and proven in Lemma 2.4.

COUNTING INEQUIVALENT MONOTONE BOOLEAN FUNCTIONS 5

Lemma 2.4. Assume that all profile vectors pertain to MBFs on n variables,
unless otherwise stated.

(A): (0, . . . , 0, ai, 0, . . . , 0)R = (0, . . . , 0,
(
n
i

)
− ai, 0, . . . , 0)R.

(B): If a1 > 0, then an = 0 and (a1, a2, . . . , an−1, an)R =
(a1 − 1, a2, . . . , an−1)R.

(C): (a1, a2, . . . , an−2, an−1, an)R = (an−1, an−2, . . . , a2, a1, an)R.

Statements (A) and (C) hold true when R is replaced by D.

Proof. The proof of each claim rests on the fact that there is a one-to-one
correspondence between functions of the first type and functions of the sec-
ond type, for the purposes of counting both D(n) and R(n). For statements
(A) and (C), we will prove the claim for D(n) first, from which the results
for R(n) follow.

(A): Given an MBF with exactly ai i-sets as minimal terms, we can derive
another MBF with minimal terms exactly the

(
n
i

)
−ai i-sets which were not

taken in the first MBF. For example, the 3-variable MBF with minimal
terms {1, 2}, {2, 3} corresponds to the MBF with minimal term {1, 3}. So,
we must have (0, . . . , 0, ai, 0, . . . , 0)D = (0, . . . , 0,

(
n
i

)
− ai, 0, . . . , 0)D.

The statement then follows for R(n) by observing that the images of any
two equivalent functions under this correspondence will also be equivalent,
via the same permutation.

(B): Suppose that f is an MBF with profile (a1, a2, . . . , an−1, an), a1 > 0.
Without loss of generality assume that {n} is a minimal term of f . (We can
assume this because we are only considering R(n).)

This implies that f cannot have minimal terms containing the element n,
and hence an = 0. In addition, removing the term {n}, we are left with an
(n− 1)-variable MBF, with the profile (a1 − 1, a2, . . . , an−1).

(C): Let f ∈ D(n). If an = 1, then [n] := {1, 2, . . . , n} is the only
minimal term. This implies that all the other ai’s are zero, and hence the
claim follows trivially.

If an = 0, assume that the minimal terms of an MBF f with the given
profile are A1, A2, . . . , Ak. We know that none of the Ai’s are comparable,
so it follows that none of the sets [n] − A1, [n] − A2, . . . , [n] − Ak must be
comparable to one another as well. Hence the collection {[n]− Aj}1≤j≤k is
the set of minimal terms of an MBF g where the number of i-sets is equal
to the number of (n − i)-sets in f . This proves that the profile of g is
(an−1, an−2, . . . , a2, a1, an).

As an example, the 5-variable MBF with minimal terms {1, 2}, {1, 3, 4},
{2, 4, 5} is mapped to the MBF with minimal terms {3, 4, 5}, {2, 5}, {1, 3}
under this correspondence. As in (A), if we have (a1, a2, . . . , an−2, an−1, an)D
= (an−1, an−2, . . . , a2, a1, an)D then the statement is also true for R(n).

�

Lemma 2.4 is very useful in reducing the amount of computation that
needs to be done to compute D(n) or R(n). For instance, when generating

6 TAMON STEPHEN AND TIMOTHY YUSUN

R(7), we build the profiles (0, 0, k, 0, 0, 0, 0) for k = 1 to 17 using an expen-

sive algorithm, and then profiles for k = 18 to k =
(
7
3

)
= 35 are cheaply

computed via complements, using the idea from the proof of part (A). Part
(B) enables us to refer back to R(6) when considering profiles with a nonzero
entry in the first position. The most useful is (C), which effectively cuts all
computation time in half.

2.1.1. Generating Profiles. To generate all n-variable MBFs using these pro-
files, we first need to determine which vectors of length n are the profile
vectors for some MBF. It is not immediately apparent how to do so. The
number of profile vectors for any n is sequence A007695 [Slo11]. The entry
for A007695 also includes undocumented code that can be used to compute
this number. This code does not explicitly generate these profiles.

n Number of profiles n Number of profiles
0 1 5 95
1 2 6 552
2 4 7 5460
3 9 8 100708
4 25 9 3718353

Table 5. Number of profiles for each n, from n = 0 to n = 9,
(A007695, [Slo11]).

In Section 4 we present an algorithm, based on ideas from the code, to out-
put the profiles of n-variable MBFs. Here we briefly outline the algorithm.
The main idea is to use the incomparability condition on the minimal terms
of MBFs to generate new profiles from vectors we already know are profiles
of MBFs.

The algorithm starts by generating all profiles consisting only of 1-sets,
then 1-sets and 2-sets and so on. Consider, by way of example, the profile
P = (1, 3, 0, 0, 0) – this is the profile vector of several 5-variable MBFs.
Observing that any 3-set is comparable to 3 2-sets, from P we construct the
profile (1, 0, 1, 0, 0) by subtracting 3 from the second entry and adding 1 to
the third entry.

In general, the algorithm proceeds from (r − 1)-sets to r-sets by deter-
mining the number of (r − 1)-sets that must be comparable to at least one
set from a collection of k r-sets for some fixed k. Since the largest rth en-
try that a profile vector can have is

(
n
r

)
, we precompute the answer to this

question for collections of sizes 1, 2, . . . ,
(
n
r

)
. Then, given the list of profiles

with ar−1 > 0 and ak = 0 for k ≥ r, we repeat the technique in the previous
paragraph to build up all profiles with ar > 0 and ak = 0 for k > r.

2.1.2. Using Profiles to Generate Functions. A monotone Boolean function
can be written uniquely as the disjunction of its minimal terms. Thus we
can generate all MBFs inductively beginning with profiles that have a single

COUNTING INEQUIVALENT MONOTONE BOOLEAN FUNCTIONS 7

non-zero entry. Let Qik(n) be the collection of MBFs on n variables with
exactly k minimal terms, all of size i. We will take the liberty of omitting
the argument n, which, for the purposes of this section discussion, is fixed.
The Qik are exactly the MBF’s with profile (0, . . . , 0︸ ︷︷ ︸

i−1 times

, k, 0, . . . , 0︸ ︷︷ ︸
n−i times

).

Fixing n and i, we generate Qi1,Qi2, . . . ,Qib(n2)/2c
in turn, with the remain-

ing non-zero Qik obtained by complements via Lemma 2.4 part (A). Since we
are counting inequivalent MBFs, without loss of generality Qi1 contains only
the function whose single minimal true clause is {1, 2, . . . , i}. To build Qik+1

from Qik, we take each MBF from Qik and, for each function, take all i-sets
that are not already minimal true clauses. Each pairing of a function and
an i-set generates a candidate MBF with the appropriate profile. However,
many of these MBFs will be duplicates.

To handle duplicates, we convert each MBF to a canonical MBF (for
its equivalence class under permutations of the variables) before storing it.
Recall that we are using truth tables to represent MBFs; the disjunction of
two functions represented by truth tables is computed via a bitwise OR. We
precompute the truth table for the MBF generated by each possible single
i-set, as these are used to produce the new functions via disjunction. Once
the function f has been identified, we generate the full set of n! functions
equivalent to f by permuting the variables. These are obtained by permuting
the 2n coordinates of the truth table; the exact permutation corresponding
to each of the n! permutations is precomputed.

We choose the canonical MBF to be the lexicographically smallest of the
n! truth tables in the set. These canonical representatives are stored in an
ordered list of truth tables for Qik+1. Duplicates have identical canonical
truth tables and thus are only counted once; they are dropped rather than
inserted in the list.

Consider now profiles with multiple non-zero entries. The simplest situ-
ation is where the profile differs from some Qik by having a single second
non-zero entry with index j 6= i and the entry is 1. Then we can proceed as
before, generating the profile beginning with the functions that comprise Qik
and taking disjunctions with all possible j-sets. Again, since the functions
are represented as truth tables, a lookup of the relevant j-set allows us to
see if the disjunction is non-trivial and hence has the appropriate profile.
When this occurs, we convert to a canonical MBF and continue until all
possibilities are exhausted.

In the same manner, we can build all possible profiles with two non-zero
entries, and then on to three, four and beyond. Note that profiles with
multiple non-zero entries can be computed from one of several adjacent
profiles. In Section 3 we discuss briefly our strategies for moving through
the profiles. We remark that several profiles were computed more than once
from different adjacent profiles, and in all cases the same result was obtained.

8 TAMON STEPHEN AND TIMOTHY YUSUN

Finally, we note that one MBF, the function which is true for all inputs,
does not correspond to any profile as per Definition 2.1, and is accounted for
separately. This function has the empty set as its lone minimal true clause:
if Definition 2.1 were modified to include an extra a0 term then it would be
the lone function with a0 > 0. We did not do this as this increases clutter
without removing the need to handle this case separately.

Remark 2.5. We are in particular interested in the case n = 7, where
the techniques described in this section are comfortably within the range
of a modern computer. This is not true for n = 8, and the techniques
certainly don’t make sense asymptotically. One issue is finding the canonical
function by brute force: each prospective function is expanded into a list of
7! = 5040 equivalent functions and this is then searched for the lexicographic
minimum. At first glance one might hope to do better, but since the list can
be generated quickly by multiplying by a precomputed matrix, investing in
a complicated algorithm here would offer at most a mild return. For n = 8,
brute force is possible, but alternatives would become more appealing.

We frequently generate all j-sets of n for use in disjunctions. For n = 7
this is no more than 35 sets. For n = 8 this doubles to a still-manageable(
8
4

)
= 70, though it becomes prohibitive for large n.

A more serious issue is the size of the profiles. The largest profile in
R(7) is that of (0, 0, 7, 7, 0, 0, 0), with 5443511 MBFs, slightly more than 1%
of the total. A back of the envelope calculation suggests that the largest
profile in R(8) would have around 1016 MBFs. The number of profiles also
increases rapidly with n, referring back to Table 5, we see there are 100708
for n = 8. To give the reader an idea of the distribution of MBFs by profile,
we include in Table 6 the number of inequivalent MBFs by profile for five-
variable functions.

As a byproduct of the calculations done for R(7), we also extended the
known values for the sequences Rk(n) included in the OEIS. The correspond-
ing sequences for Dk(n) are A051112 to A051118 [Slo11]. The new values
that we have computed are included in Table 7.

2.1.3. Computing Bounds on R(n) and D(n). Since each MBF can have at
most 7!−1 = 5039 other functions equivalent to it, we know that D(7)/7! ∼
479 million is a lower bound for R(7). In fact, we can increase the lower
bound by looking for highly symmetric functions. For instance, the MBF
with minimal term {1} is equivalent to only six other MBFs, all with one
singleton set as the only minimal term. Hence this equivalence class only has
7 functions, so by considering this class of functions we could increase the
lower bound to (D(7) + 5040− 7)/7!. Doing this for all equivalence classes
of functions with at most two minimal terms, and some simple equivalence
classes with three and four minimal terms increases the lower bound of
D(7)/7! by only about 500. This suggests that R(7)/(D(7)/7!) will be fairly
close to 1.

COUNTING INEQUIVALENT MONOTONE BOOLEAN FUNCTIONS 9

Profile # Profile # Profile # Profile #
(0,0,0,0,0) 1 (0,9,0,0,0) 1 (1,0,3,0,0) 1 (0,2,0,1,0) 1
(1,0,0,0,0) 1 (0,10,0,0,0) 1 (0,1,3,0,0) 6 (0,3,0,1,0) 1
(2,0,0,0,0) 1 (0,0,1,0,0) 1 (0,2,3,0,0) 6 (0,4,0,1,0) 1
(3,0,0,0,0) 1 (1,0,1,0,0) 1 (0,3,3,0,0) 4 (0,0,1,1,0) 1
(4,0,0,0,0) 1 (2,0,1,0,0) 1 (0,4,3,0,0) 1 (0,1,1,1,0) 1
(5,0,0,0,0) 1 (0,1,1,0,0) 2 (0,0,4,0,0) 6 (0,2,1,1,0) 1
(0,1,0,0,0) 1 (1,1,1,0,0) 1 (1,0,4,0,0) 1 (0,0,2,1,0) 2
(1,1,0,0,0) 1 (0,2,1,0,0) 4 (0,1,4,0,0) 6 (0,1,2,1,0) 1
(2,1,0,0,0) 1 (1,2,1,0,0) 1 (0,2,4,0,0) 4 (0,0,3,1,0) 3
(3,1,0,0,0) 1 (0,3,1,0,0) 6 (0,3,4,0,0) 1 (0,1,3,1,0) 1
(0,2,0,0,0) 2 (1,3,1,0,0) 1 (0,4,4,0,0) 1 (0,0,4,1,0) 2
(1,2,0,0,0) 2 (0,4,1,0,0) 6 (0,0,5,0,0) 6 (0,0,5,1,0) 1
(2,2,0,0,0) 1 (0,5,1,0,0) 4 (0,1,5,0,0) 4 (0,0,6,1,0) 1
(0,3,0,0,0) 4 (0,6,1,0,0) 2 (0,2,5,0,0) 1 (0,0,0,2,0) 1
(1,3,0,0,0) 3 (0,7,1,0,0) 1 (0,0,6,0,0) 6 (0,1,0,2,0) 1
(2,3,0,0,0) 1 (0,0,2,0,0) 2 (0,1,6,0,0) 2 (0,0,1,2,0) 1
(0,4,0,0,0) 6 (1,0,2,0,0) 1 (0,0,7,0,0) 4 (0,0,2,2,0) 1
(1,4,0,0,0) 2 (0,1,2,0,0) 4 (0,1,7,0,0) 1 (0,0,3,2,0) 1
(0,5,0,0,0) 6 (1,1,2,0,0) 1 (0,0,8,0,0) 2 (0,0,0,3,0) 1
(1,5,0,0,0) 1 (0,2,2,0,0) 7 (0,0,9,0,0) 1 (0,0,1,3,0) 1
(0,6,0,0,0) 6 (0,3,2,0,0) 6 (0,0,10,0,0) 1 (0,0,0,4,0) 1
(1,6,0,0,0) 1 (0,4,2,0,0) 4 (0,0,0,1,0) 1 (0,0,0,5,0) 1
(0,7,0,0,0) 4 (0,5,2,0,0) 1 (1,0,0,1,0) 1 (0,0,0,0,1) 1
(0,8,0,0,0) 2 (0,0,3,0,0) 4 (0,1,0,1,0) 1 TOTAL 209

Table 6. Number of inequivalent five-variable MBFs by profile.

k Rk(5) Rk(6) Rk(7)

2 13 22 34
3 30 84 202
4 49 287 1321
5 48 787 8626
6 34 1661 50961
7 18 2630 253104
8 7 3164 1025322
9 2 2890 3365328
10 2 2159 9005678
11 0 1327 19850932

Table 7. Partial list of values Rk(n), values in boldface were
not known to us.

This raises the interesting question of what the functions in high-cardinality
equivalence classes look like, that is, functions which have few or no sym-
metries. For n ≤ 5 functions with no symmetries are quite rare, however it

10 TAMON STEPHEN AND TIMOTHY YUSUN

appears that they already are the overwhelming majority when n = 7. We
computed the number of inequivalent n-variable MBFs that have no sym-
metries starting from n = 1 by enumerating R(n). This gives the sequence
0, 1, 0, 0, 7, 7281; we haven’t computed the exact number for n = 7.

3. Implementation Details

All computations were done on MATLAB, a high-level scientific comput-
ing language [MAT]. We used three computational clusters: the Optima
cluster at SFU Surrey, the IRMACS computational cluster, and the buga-
boo cluster of WestGrid under Compute Canada. We used MATLAB for
building a prototype because it is easy to get started, and it is built for han-
dling large vectors and matrices. It has many built-in functions that work
well with the types of lists we are generating, and if desired, further work
can be transported over to other programming languages.

In MATLAB, we represented MBFs as their truth table forms, 1×2n row
vectors. This representation also lends itself well to using 32-bit integers
instead of long 0-1 strings. Given an MBF of length 2n, we partitioned the
zeros and ones into blocks of length 32, which we considered as a binary
number (a31a30 . . . a2a1a0)2, representing

∑31
k=0 ak2

k. If n is smaller than 5,
the truth table form has less than 32 entries, and we pad with zeros on the
right. For n ≥ 5, an n-variable MBF can be written as 2n−5 32-bit integers.

Example 3.1. The six-variable MBF

f = 111111101111

↑
11

↑
10111111

↑
001

↑
00000001111

↑
10101110101

↑
011111

↑↑
00000000000

has 64 entries, so it is divided into two blocks of 32:

11111110111111101111110010000000→ 20938623

11111010111010101111100000000000→ 2053983

hence the 32-bit integer representation of f is (20938623, 2053983). Its mini-
mal terms are {1, 2, 4}, {3, 4}, {1, 5}, {2, 3, 5}, {1, 2, 3, 6}, {2, 4, 6}, {2, 5, 6},
and {3, 5, 6}, represented by the numbers 11, 12, 17, 28, 39, 42, 50 and 52
respectively. The indices of these minimal terms are identified by arrows
above.

The algorithms we used involve building and frequently referencing a very
long list of functions. To do this efficiently we used a hash table and a
nonlinear hashing function on the 32-bit representations to perform checks
and lookups quickly. In particular, we used a polynomial hash function,
which acts on the four integers (say b1, b2, b3, and b4) modulo a prime p by
repeatedly adding a number α > 2, and multiplying by the next component,
i.e. we take b1(α+b2(α+b3(α+b4))) (mod p). For the profiles where hashing
was used, we used a hash table of size 20 million; the largest profile has size
5443511. We believe the collision rate from this scheme on the generated
MBFs is not much higher than for a random hashing function.

COUNTING INEQUIVALENT MONOTONE BOOLEAN FUNCTIONS 11

Each profile P was generated from a profile P ′ which differs from P by one
in a single coordinate. This allowed some freedom in traversing this lattice
of profiles. We kept the following observations in mind. All profiles with a
nonzero 1st entry can be obtained from the corresponding profile in R(6),
via Lemma 2.4 part (B); further profiles with a nonzero 6th entry can be
handled by using this in combination with Lemma 2.4 part (C). Remaining
profiles with a nonzero 2nd or 5th entry were computed by first adding the
necessary 2-sets and 5-sets as any such set is comparable to many 3-sets
and 4-sets, and thus substantially reduce the search space and profile size.
The largest profiles we encountered were those solely containing 3-sets and
4-sets. In fact, the functions in these profiles account for 366689638 out of
the total of 490013148 for R(7), or 74.8%.

We observed that when moving from profile P to profile P ′ by adding j-
sets that any MBF in P ′ will be generated, since from an MBF with profile
P ′ (which has j ≥ 1), removing any single j-set that is a generator gives an
MBF with profile P . On the other hand, the use of canonical representatives
ensured that only a single function per equivalence class was included in the
computation of each P ′.

In the computation, we generated the list of functions for profiles with
exactly one nonzero entry first, then proceeded through the list of profiles
with the above considerations as a general guide. Note that the branches
of computation were independent of each other and so multiple calcula-
tions can be made to run concurrently. Also many profiles were computed
more than once, either as an intermediate step with the goal of comput-
ing a larger profile, or as a redundancy check. For example, the profile
(0, 0, 3, 4, 0, 0, 0)R was computed both by a process generating profiles of
the form (0, 0, 3, x, 0, 0, 0)R and another one generating profiles of the form
(0, 0, x, 4, 0, 0, 0)R. We saved lists of functions to disk for the larger profiles
generated to have various points to start further computations or recover (as
some jobs lasted several weeks and were susceptible to system shutdowns,
etc.).

All results of computations were saved by the script files as text files,
which include the numbers obtained and the computation time (Fig. 1).
To keep track of the data, we stored all the results in a database together
with the computation times, with a running total (Fig. 2). At the end we
obtained the number R(7) = 490013148.

Our MATLAB code and the database shown in Figure 2 are available on
the website [Yus12]. To ensure accuracy, we checked the minimal terms of
around 10,000 functions from each profile in a random sample: ensuring that
the functions in the input file indeed correspond to the profile we start with.
We also tested our algorithm for n ≤ 6 and obtained the correct number for
R(n). We also observe that the number obtained is slightly higher than the
lower bound of 479 million discussed in Section 2.1.3, as expected.

12 TAMON STEPHEN AND TIMOTHY YUSUN

>> >> >> >> >> >> >> >> >> >> >> Initial profile [0 0 15 2 0 0 0] has 2931257 functions.

Profile [0 0 15 3 0 0 0] done after 422847.33 seconds.

Number of functions: 2294434

Profile [0 0 15 4 0 0 0] done after 701392.33 seconds.

Number of functions: 1141753

Profile [0 0 15 5 0 0 0] done after 820305.51 seconds.

Number of functions: 390945

Figure 1. Sample output log of the computation

Profile # # minterms a1 a2 a3 a4 a5 a6 a7

1932 17 0 4 1 12 0 0 0 28

1933 18 0 5 1 12 0 0 0 2

1934 19 0 6 1 12 0 0 0 1

1935 14 0 0 2 12 0 0 0 2635180

1936 15 0 1 2 12 0 0 0 89339

1937 16 0 2 2 12 0 0 0 1110

1938 17 0 3 2 12 0 0 0 71

1939 18 0 4 2 12 0 0 0 3

1940 15 0 0 3 12 0 0 0 4126847

1941 16 0 1 3 12 0 0 0 64838

1942 17 0 2 3 12 0 0 0 577

1943 18 0 3 3 12 0 0 0 36

1944 16 0 0 4 12 0 0 0 4291110

1945 17 0 1 4 12 0 0 0 31174

1946 18 0 2 4 12 0 0 0 263

Figure 2. Portion of database where results are stored

We tracked computation times using MATLAB’s somewhat unreliable
cputime function. The migration between systems1, the introduction of
hashing after some profiles had been computed, and overflow in the inter-
nal representation of the cputime function2, make it difficult to assign a
meaningful total time to the computation.

To give an idea of the total CPU time that would be required to rerun the
entire calculation on the WestGrid cluster, the largest profile, (0, 0, 7, 7, 0, 0, 0)
had a MATLAB cputime reading of just under a month (29.3 days). This
contains more than 1% of the profiles, and should be slower than average
to generate (small profiles can be generated quickly). Thus we expect that
it would take less than 8 years of CPU time to run the entire computation

1The computation began on the Optima cluster at SFU Surrey, which consists of 9 dual
core blade machines shared among several users. Since the computation parallelizes very
naturally, we started some as well on the IRMACS computational cluster at SFU, which
includes another 10 dual core blades, and was not being heavily used. This continued until
the IRMACS machines were disabled for a time. Then we moved the largest jobs to the
much larger Bugaboo cluster on WestGrid, which consists of 446 blades with 8 to 12 fast
cores each. It did work noticeably faster than the smaller clusters.

2An advertised bug in MATLAB.

COUNTING INEQUIVALENT MONOTONE BOOLEAN FUNCTIONS 13

in this configuration. We remark again that the computation is highly par-
allelizable. Our computations took about a year in real time across several
machines.

4. The Profile-Generating Algorithm

Algorithm 1: Generating all profiles of MBFs on n variables.

Input: n
Output: P(n), all profiles of n-variable MBFs
Step 1: Precompute K(r, s), lower bounds for how many (r − 1)-sets are

comparable to s number of r-sets

Initialize K(0, s) := 0 for 0 ≤ s ≤
(

n
bn/2c

)
for r = 1 to n do

Set k := r

Set K(r, 0) := 0

for s = 1 to
(
n
r

)
do

if s ≥
(
k
r

)
then

k ← k + 1

end

K(r, s) = K(r − 1, s−
(
k−1
r

)
) +

(
k−1
r−1
)

end

end

Step 2: Generate all profiles using K(r, s)

Initialize P(n) = {(0, . . . , 0)} ∪ {(i, 0, . . . , 0) : i = 1, 2, . . . , n}
for r = 2 to n do

for s = 1 to s =
(
n
r

)
do

Let Pr,s = {(a1, a2, . . . , an) : ar−1 ≥ K(r, s), ai = 0, i ≥ r}.
Update P(n)← P(n) ∪ {(a1, a2, . . . , ar−1 −K(r, s), s, 0, . . . , 0) :
(a1, a2, . . . , an) ∈ Pr,s}.

end

end

Output P(n)

We prove the correctness of Algorithm 1 by first proving that the values
K(r, s) generated in the first step are lower bounds for the number of (r−1)-
sets comparable to a collection of s sets of cardinality r.

Lemma 4.1. Given 2 ≤ r ≤ n and 0 < s ≤
(
n
r

)
, K(r, s) in Step 1 of Algo-

rithm 1 is the smallest number of (r − 1)-sets comparable to any collection
of s r-sets.

Proof. First, observe that because we increase k by 1 if s ≥
(
k
r

)
, whenever

we recursively calculate K(r, s) = K(r− 1, s−
(
k−1
r

)
) +
(
k−1
r−1
)
, it will always

be true that
(
k−1
r

)
≤ s <

(
k
r

)
.

14 TAMON STEPHEN AND TIMOTHY YUSUN

We are looking for a best possible collection in that it contains the smallest
number of (r − 1)-sets. So, since s <

(
k
r

)
, such a collection has to contain

only k distinct elements. (Any collection with more than k elements will be
comparable to a larger number of (r − 1)-sets.) Without loss of generality
assume that this best collection contains the elements {1, 2, . . . , k}.

Because s ≥
(
k−1
r

)
, this collection also has to contain all r-subsets of

{1, 2, . . . , k − 1} (again, without loss of generality). This is in turn compa-
rable to all (r − 1)-subsets of {1, 2, . . . , k − 1}.

This leaves us with s −
(
k−1
r

)
sets remaining in the collection, all con-

taining the element k. Since all (r − 1)-subsets of {1, 2, . . . , k − 1} have
been accounted for, we only have to look at the number of (r− 1)-sets that
also contain k, comparable to these remaining sets. By removing the ele-
ment k from each of them, we see that this number is bounded below by
K(r − 1, s−

(
k−1
r

)
).

Therefore by the two previous observations, K(r, s) = K(r−1, s−
(
k−1
r

)
)+(

k−1
r−1
)
, completing the proof. �

Theorem 4.2. The list P(n) in Algorithm 1 contains all profiles of mono-
tone Boolean functions on n variables.

Proof. We perform induction on the rightmost nonzero entry in a profile
vector.

When P(n) is initialized, the empty profile and all profiles with a single
nonzero entry in the first position are included. This is the collection of all
MBFs with only 1-sets as minimal terms, and there are n such profiles as
there are n such sets in 2[n].

Now assume that P(n) contains all profiles with the rightmost nonzero
entry in the (r − 1)-th position.

Since K(r, s) is the smallest number of (r − 1)-sets comparable to any s
number of r-sets, profiles with ar = s and ai = 0 for i > r can be obtained by
taking all profiles with at least K(r, s) in the (r−1)-th position, subtracting
K(r, s) from ar−1, and setting ar to s.

Note that as we are only looking at profile vectors, this operation of
removing (r − 1)-sets and adding r-sets will not always work for particular
MBFs. However because the K(r, s) values represent lower bounds that
are achieved, doing this operation will always result in a profile that is also
achieved by some MBF.

Repeating this for all s = 1, 2, . . . ,
(
n
r

)
will result in all profile vectors of

MBFs with ar > 0 and ai = 0 for i > r. This completes the induction, and
so the output P(n) contains all profiles of n-variable MBFs. �

5. Conclusions and Discussion

In this paper we propose a strategy for counting inequivalent monotone
Boolean functions (MBFs), which is a challenging enumeration problem on a
fundamental combinatorial object. The strategy is to break the computation

COUNTING INEQUIVALENT MONOTONE BOOLEAN FUNCTIONS 15

into smaller parts based on profiles of MBFs. We describe and implement a
non-trivial algorithm to generate the profiles. Using profiles, we are able to
generate the full set of inequivalent 7-variable MBFs in manageable pieces,
which in particular allows us to find that the number of such functions is
R(7) = 490013148.

At present it appears difficult to extend this technique to computing R(8)
because it requires generating, rather than merely counting, the profiles.
Actual enumeration of the MBFs is needed to identify equivalent functions,
in contrast to the situation with D(n), and it is difficult to see how to
get around this. The set R(8) contains more than D(8)/8! ≈ 1.4 × 1016

MBFs distributed across 100708 profiles, and thus would require substantial
computational resources to compute under any strategy that enumerates the
functions. For n ≥ 9 enumeration strategies appear hopeless.

It is appealing to try to use R(7) to compute D(9), which is presently not
known. Wiedemann in 1991 computed D(8) using D(6) and R(6), by going
through all pairs of functions in D(6)×R(6), and using a lookup function to
calculate how many functions in D(8) can be formed by fixing two “middle
functions”. See [Wie91] for details.

To apply this technique to the computation of D(9), we would need to
generate D(7) from R(7), store the number of functions in each equivalence
class, and then calculate the number of MBFs each function contains as a
preprocessing step. The difficulty lies in the sheer amount of computation
needed, but as the strategy is simple to parallelize, there is some hope.
To make the calculation more manageable we would like to understand the
symmetries of monotone Boolean functions better. We might start by trying
to count functions by their symmetry group, or by extending the sequence
of inequivalent non-symmetric MBFs that we consider in Section 2.1.3.

6. Acknowledgments

Parts of this work were included in the M.Sc. thesis of T. Yusun [Yus11].
This research was partially supported by an NSERC Discovery Grant, and
by a grant from the SFU office of the Vice-President, Research. We would
like to thank the SFU Math Department, the IRMACS Centre at SFU,
and WestGrid and Compute Canada for the access to the computational
resources needed to perform the calculations in this paper.

Also, we are grateful to Michael Monagan and Utz-Uwe Haus for discus-
sion, in particular we thank MM for pointing out that we needed to use
hash tables for the large lists. We appreciate the detailed and thoughtful
comments of the anonymous referees, which improved the presentation of
the paper.

References

[BK76] J. Berman and P. Köhler, Cardinalities of finite distributive lattices, Mitt. Math.
Sem. Giessen (1976), no. Heft 121, 103–124.

16 TAMON STEPHEN AND TIMOTHY YUSUN

[CH11] Y. Crama and P.L. Hammer, Boolean functions: Theory, algorithms, and ap-
plications, Encyclopedia of Mathematics and Its Applications, Cambridge Uni-
versity Press, 2011.

[Chu40] R. Church, Numerical analysis of certain free distributive structures, Duke
Mathematical Journal 6 (1940), no. 3, 732–734.

[Chu65] , Enumeration by rank of the free distributive lattice with 7 generators,
Notices of the American Mathematical Society (1965), no. 11, 724.

[Ded97] R. Dedekind, Über Zerlegungen von Zahlen durch ihre größten gemeinsamen
Teiler, Ges. Werke, Vol. 2, 1897, pp. 103–148.

[Eng97] K. Engel, Sperner theory, Cambridge University Press, 1997.
[FMSS01] R. Fidytek, A. Mostowski, R. Somla, and A. Szepietowski, Algorithms counting

monotone Boolean functions, Information Processing Letters 79 (2001), 203–
209.

[Grä71] George Grätzer, Lattice theory. First concepts and distributive lattices, W. H.
Freeman and Co., San Francisco, Calif., 1971.

[HKS08] U. Haus, S. Klamt, and T. Stephen, Computing knock-out strategies in metabolic
networks, J. Comput. Biol. 15 (2008), no. 3, 259–268.

[IKN07] H. Ito, M. Kobayashi, and G. Nakamura, Semi-distance codes and Steiner sys-
tems, Graph. Comb. 23 (2007), 283–290.

[KG04] S. Klamt and E.D. Gilles, Minimal cut sets in biochemical reaction networks,
Bioinformatics 20 (2004), no. 2, 226–234.

[Kis88] A. Kisielewicz, A solution of Dedekind’s problem on the number of isotone
Boolean functions, J. Reine Angew. Math. 386 (1988), 139–144.

[KJ03] G. Kilibarda and V. Jovovic, On the number of monotone Boolean functions
with fixed number of lower units (in Russian), Intellektualnye sistemy 7 (2003),
no. 1-4, 193–217.

[Kle69] D. Kleitman, On Dedekind’s problem: The number of monotone Boolean func-
tions, Proc. Amer. Math. Soc. 21 (1969), 677–682.

[Kor03] A. Korshunov, Monotone Boolean functions, Russian Mathematical Surveys 58
(2003), no. 5, 929–1001.

[MAT] MATLAB, The MathWorks Inc., Natick, Massachusetts.
[RP11] F. Riquelme and A. Polyméris, On the complexity of the decisive problem in sim-

ple and weighted games, Electronic Notes in Discrete Mathematics 37 (2011),
21–26.

[Shm] I. Shmulevich, Computational learning theory, http://personal.

systemsbiology.net/ilya/LEARN.htm.
[Slo11] N. J. A. Sloane, The online encyclopedia of integer sequences, http://oeis.org,

2011.
[SSGC95] I. Shmulevich, T. M. Sellke, M. Gabbouj, and E. J. Coyle, Stack filters and

free distributive lattices, Proceedings of the 1995 IEEE Workshop on Nonlinear
Signal and Image Processing (Halkidiki, Greece), 1995, pp. 927–930.

[War46] M. Ward, Note on the order of free distributive lattices, Bulletin of the American
Mathematical Society (1946), no. 52, 423.

[Wie91] D. Wiedemann, A computation of the eighth Dedekind number, Order 8 (1991),
no. 1, 5–6.

[Yus11] T. Yusun, Dedekind numbers and related sequences, M.Sc. thesis, Department
of Mathematics, Simon FraserUniversity, 2011.

[Yus12] , Counting inequivalent monotone Boolean functions, http://sfu.ca/
~tyusun/inequivalentMBF.html, 2012.

http://personal.systemsbiology.net/ilya/LEARN.htm
http://personal.systemsbiology.net/ilya/LEARN.htm
http://oeis.org
http://sfu.ca/~tyusun/inequivalentMBF.html
http://sfu.ca/~tyusun/inequivalentMBF.html

COUNTING INEQUIVALENT MONOTONE BOOLEAN FUNCTIONS 17

Department of Mathematics, Simon Fraser University, 8888 University Drive,
Burnaby, B.C. V5A 1S6, Canada

E-mail address: tamon@sfu.ca

E-mail address: tyusun@sfu.ca

