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Abstract. The expected value for the weighted crossing number of a randomly weighted
graph is studied. We focus on the case where G = Kn and the edge-weights are independent
random variables that are uniformly distributed on [0, 1]. The first non-trivial case is K5. We
compute this via an unexpectedly involved calculation, and consider bounds for larger values
of n. A variation of the Crossing Lemma for expectations is proved.

1. Introduction

The crossing number of a graph is the minimum number of internal intersections of edges in a
drawing of the graph on the plane. Computing the crossing number, even for complete graphs,
is a surprisingly challenging problem and an active area of research [RS09, SSV95, Vrt10].

The notion of the weighted crossing number, when the edges have weights and each crossing
counts as the product of the corresponding weights, has been used in various situations, since it
mimics the possibility of having many edges in parallel. In this paper, we study the expected
value of the weighted crossing number of the complete graph Kn on n vertices, where the
weights of edges are independent random variables. We consider first the situation where the
weights are i.i.d. variables with the uniform distribution on [0, 1]. The first non-trivial case is
K5; we show through an involved calculation that the expected value is 35921

1108800
≈ 0.032396.

We then use a discrete distribution to show that the first two moments of the distribution on
the edges are not sufficient to determine the expectation. If the weights are binary (Bernoulli)
random variables, we get the problem of crossing numbers of random graphs. In [ST02], these
are shown to have the Θ(n4) asymptotics of the usual crossing number cr(Kn) of complete
graphs. We give three proofs that this also true for the uniform distribution and compare the
bounds obtained from each. The first proof is by comparison with the binary case, the second
by using a similar recurrence as used for the usual crossing number of complete graphs and
the third by proving and applying a variation of the Crossing Lemma for expectations.

2. Preliminaries

Given a graph G = (V,E), we denote its crossing number by cr(G). This is the minimum
over all drawings of G in the Euclidean plane R2 of the number of crossings of edges in the
drawing. All drawings are assumed to have simple polygonal arcs representing the edges of
the graph, and it is assumed that each pair of edges involves at most one intersection of
their representing arcs. Here and in the remainder of the paper, we consider only internal
intersections of edges. Formally, a crossing in a drawing D is an unordered pair {e, f} of edges
whose arcs in D intersect each other internally. We let X(D) denote the set of all crossings
and set cr(D) = |X(D)|.
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Given non-negative weights w : E → R+ on the edges of G, we define the crossing weight
of a drawing D of G as:

cr(D, w) =
∑

{e,f}∈X(D)

w(e)w(f).

We define the weighted crossing number of a weighted graph G as:

cr(G,w) = min
D

cr(D, w). (1)

For a fixed graph, the function cr(G, ·) is also called the crossing function for G. We take the
domain of cr(G, ·) to be RE

+. We remark that cr(G, 0) = 0 and cr(G,w) ≥ 0. We also note
that cr(G, ·) ≡ 0 if and only if cr(G) = 0. The function cr(G, ·) is piecewise quadratic in w,
and the chambers defined by these pieces correspond to (groups of) optimal drawings for the
contained weightings; the forms in the chambers are neither convex nor concave. If 1 ∈ RE

+ is
the constant all-1 function, then cr(G) = cr(G,1).

The crossing function of any n-vertex graph is just a specialization of the crossing function
cr(Kn, w) of the complete graph Kn, where we put weight 0 for the non-edges in the graph.
In this sense the crossing functions of complete graphs contain information about crossing
numbers of all graphs. This universality property was the main goal to introduce this notion
in [Moh08, Moh10] and to propose its study.

Note that we allow the edges to be represented by any (polygonal) line, they need not be
straight lines. As in the unweighted case, minimal drawings can be obtained without using
double crossings (pairs of edges that cross more than once). The related questions of the
rectilinear crossing number, the pairwise crossing number and the odd crossing number are
also interesting and well-studied, see for example [PT00]. For the rectilinear crossing number,
the edges are required to be straight lines. The pairwise crossing number counts the number
of pairs of crossing edges, so a pair of edges that intersects several times counts only once. The
odd crossing number counts the number of pairs of edges crossing an odd number of times.
We can consider weighted versions of all four types of crossing numbers.

Clearly the odd crossing number is at most the pairwise crossing number. Also, the pairwise
crossing number is at most the crossing number (with equality in all known cases), and the
crossing number is at most the rectilinear crossing number (with strict inequality in some cases
[Guy72]). These relations remain for the weighted versions. For the computations performed
in Section 3, these four numbers will be the same.

3. Computation of the uniform expected crossing number for K5

We begin by considering the expected crossing number of the complete graph Kn for some
small values of n. We take the weights on the edges to be independently identically distributed
random variables, with uniform distributions on the interval [0, 1]. Let us denote the expected
value of cr(Kn, w) under this distribution as Eu(n).

For n ≤ 4, the graph can be drawn without crossings, so Eu(n) = 0 = cr(Kn). For n ≥ 5,
we have 0 < Eu(n) < cr(Kn). In this section, we compute Eu(5) directly from the definition
of expectation. Our somewhat cumbersome case analysis can also be viewed as determination
of the piecewise quadratic chambers for the crossing function of K5. We conclude that:

Theorem 3.1. We have Eu(5) = 35921
1108800

.

Proof. We will label the edges of K5 as in Figure 1. We will denote the random weight assigned
to the ith edge by Xi, i = 1, . . . , 10. We note that cr(K5) = 1 and by symmetry, for any two
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Figure 1. Edge labelling of K5

non-adjacent edges, K5 can be drawn so that those two edges are the single pair of crossing
edges. Hence:

Eu(5) = E[min(X1X8,X1X9,X1X10,X2X5,X2X6,X2X9,X3X5,X3X7,

X3X8,X4X6,X4X8,X4X10,X5X10,X6X8,X7X9)]

We abbreviate the quantity inside the expectation as m(X).
This is a problem in order statistics, see for instance [DN03]. The direct way to obtain

Eu(5) is to evaluate: ∫ 1

0

∫ 1

0

. . .

∫ 1

0

m(x)dx1 . . .dx9dx10 (2)

where m(x) is the function of x ∈ R10 corresponding to the random variables of m(X). To do
this we break (2) into 10! terms based on the increasing order of the variables, i.e. we compute
(2) via the sum: ∑

σ∈S10

∫ 1

0

∫ xσ(10)

0

∫ xσ(9)

0

. . .

∫ xσ(2)

0

m(x)dxσ(1) . . .dxσ(9)dxσ(10) (3)

Here the permutations σ ∈ S10 index the possible orderings of the random variables X. This
sum has 10! terms, but they can be grouped into a manageable number of cases. To begin,
we note that by reordering the vertices, we can assume that X1 takes the smallest value, and,
using the labelling of Figure 1, X2 ≤ X3,X4,X5,X6,X7 and X3 ≤ X4. This corresponds to
a labelling of K5 based on X, breaking ties arbitrarily. Actually, we may assume that the
weights Xi, 1 ≤ i ≤ 10, are pairwise different, since the set on which an equality occurs is of
measure zero. Thus, each case with the above assumptions corresponds to 120 terms in (3).

With these assumptions, the minimum of the 15 pairs of random variables in m(X) must
be attained at one of X1X8,X1X9,X1X10,X2X5,X2X6,X3X7 since X1X9 ≤ X2X9,X7X9;
X2X5 ≤ X3X5; et cetera. We note that these six terms are symmetric in the variables
X8,X9,X10, and also in X5,X6. Thus we will also take X8 = min(X8,X9,X10) and X5 =
min(X5,X6), and treat the remaining cases by symmetry. Combined with our assumptions on
X1,X2 and X3 we break the 10! terms of (3) into groups of 720 terms based on symmetry; this
leaves us with 5040 terms up to these symmetries. It also allows us to simplify our integrand
further to min(X1X8,X2X5,X3X7).
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We now divide into cases based on the relative orderings of some of the remaining variables.
We remark that, depending on the order of the variables, the integrand may simplify further
– for instance if the two smallest variables are X1 and X8, the minimum of the three terms
will always be X1X8. We organize the cases by how the integrand simplifies.

Case 1: Orderings which ensure X1X8 = min(X1X8,X2X5,X3X7).

In these cases, the computation is relatively simple: the integral depends only on which
position X8 occupies in the order of the Xi’s. It can be anywhere from the second to fifth
smallest. Suppose it is the second smallest, i.e. that the order of the variables is:

X1 ≤ X8 ≤ Xi3 ≤ Xi4 ≤ Xi5 ≤ Xi6 ≤ Xi7 ≤ Xi8 ≤ Xi9 ≤ Xi10 .

Then we compute:∫ 1

0

∫ xi10

0

∫ xi9

0

. . .

∫ xi4

0

∫ xi3

0

∫ x8

0

x1x8dx1dx8dxi3 . . .dxi8dxi9dxi10

=

∫ 1

0

∫ xi10

0

∫ xi9

0

. . .

∫ xi4

0

∫ xi3

0

x38
2
dx8dxi3 . . .dxi8dxi9dxi10

=

∫ 1

0

∫ xi10

0

∫ xi9

0

. . .

∫ xi4

0

x4i3
2 · 4

dxi3 . . .dxi8dxi9dxi10

. . .

=

∫ 1

0

x11i10
2 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11

dxi10 =
3

12!

A similar calculation shows that if X8 is ith smallest variable, the integral for a fixed ordering
of the remaining variables will be i+1

12!
.

Now observe that there are 8!
24

= 1680 ways of ordering the variables with X1 as the smallest
variable, X8 as the second smallest, X2 ≤ X3,X4,X5,X6,X7, X3 ≤ X4, and X5 ≤ X6. We
remark that our symmetry assumptions guarantee that either X2 or X8 is the second smallest
variable, so in the remainder of the analysis X2 will always be the second smallest variable.

Thus if X8 is the third smallest variable, we have fixed the order of the first 3 variables,
and the remaining variables can be ordered in 7!/4 = 1260 ways, accounting for the facts that
X3 ≤ X4 and X5 ≤ X6.

If X8 is the fourth smallest variable, we have two possible choices for the third smallest: X3

and X7. In the former case we have 6!/2 = 360 possible ordering of the remaining variables
(accounting for X5 ≤ X6), while for the latter case we have 6!/4 = 180 possible orderings.

Finally, under the assumptions of Case 1, X8 can be the fifth smallest variable only if
the third and fourth variables are X3 and X4, respectively. There are 5!/2 orderings of the
remaining variables compatible with this. We remark that in this case, we can never have
X5 ≤ X8, or X3,X7 ≤ X8 since then it may be the case that X1X8 is not minimal, depending
on the values chosen.

This already covers the majority of the cases, 3540 of the 5040. Thus the terms in (3)
corresponding to these orderings of the variables have total weight per symmetry class of:

1680 · 3

12!
+ 1260 · 4

12!
+ 540 · 5

12!
+ 60 · 6

12!
=

13140

12!
.

The remaining cases are similar and are included in Appendix A. �
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As noted in Section 4.3, the computed value of Eu(5) is used in a lower bound for Eu(n)
for n ≥ 5.

It is striaghtforward to verify the first few digits of this number by simulating the ten
uniform random variables. A short MATLAB program sampled the ten variables 1012 times
and computed the minimum; the computed number agreed with our calculation to the 7th
decimal place. While this number arises in a relatively simple way, we do not know of it
arising in other places.

Unfortunately, it would be much harder to use such a simulation to get approximate values
of Eu(6) or Eu(7). The proof method used above for K5 does not generalize to K6 or K7 either.
To simulate Eu(6) we would need to catalogue the minimal ways of drawing K6, i.e. drawings
D for which X(D) is inclusion-wise minimal.

Remark 3.2. We can get a simple lower bound by observing that each edge has weight at least
1− p with probability at least p; thus the expectation is at least p10(1− p)2 for any p ∈ [0, 1].

This expression is maximized at p = 5
6
, giving the bound Eu(5) ≥ 510

612
≈ 0.0045, which is weak,

but can be generalized.

Remark 3.3. Gelasio Salazar notes that the same approach can be used to compute the ex-
pected crossing number of K3,3 with uniform [0, 1] random variables on the edges. This turns
out to be less involved than the K5 case due to the symmetries between the edges; using the
same method we arrived at Eu(K3,3) = 23

1155
≈ 0.019913.

4. Moments and bounds for Eu(n)

In this section, we consider the expected crossing number under some discrete distributions.
By doing this in the case where the random variable takes one of two values, we show that
the first two moments of the distribution do not determine the expected crossing number, see
Section 4.1.

When the two values are 0 and 1, the random variables define a random graph. We note
that the expected crossing number for the uniform distribution cannot be much less than the
expected crossing number of the random graph (Section 4.2). This fact gives us an asymptotic
lower bound for Eu(n). In fact, such a bound can be obtained more directly via a recurrence
as used for the usual crossing number of complete graphs (Section 4.3), or by proving and
applying a variation of the Crossing Lemma for expectations (Section 4.4).

Finally, we discuss upper bounds briefly in Section 4.6.

4.1. Moments. Consider for 0 ≤ t < u, the discrete distribution where edges have weight t
or u with probability 1

2
. Let Edisc(n, t, u) be the expected weighted crossing number of Kn

with the distribution for given t, u; if the parameter u is omitted we will assume it is 1 − t.
Then it is easy to see that

cr(K5, w) =

 t2 if there is a pair of non-adjacent edges of weight t
u2 if all edges have weight u
tu otherwise.

All 210 possible assignments of t’s and u’s to the edges are equally likely. There is only one
way for all edges to have weight u. Otherwise, if we do not have two non-adjacent edges of
weight t, we must either have all edges of weight t incident with a single vertex, or three edges
forming a triangle. In the former situation, we may have one edge (10 assignments), two edges
(30 assignments), three edges (20 assignments) or four edges (5 assignments). For the triangles,
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we have 10 more assignments. The remaining 948 assignments of t’s and u’s to the edges have
a pair of non-adjacent edges of weight t. Therefore, Edisc(5, t, u) = 1

1024
(948t2 + 75tu + u2),

which simplifies to Edisc(5, t) = 1
1024

(874t2 + 73t+ 1) when u = 1− t.
The mean and variance of the considered discrete distribution are u+t

2
and (u−t)2

4
, respec-

tively. If we take u = 1 − t, then the mean is 1
2
, matching the the mean of the uniform

distribution, while the variance is (1−2t)2
4

. Since the variance of the uniform case is 1
12

, by

choosing t = 3−
√
3

6
, we get a distribution that matches the uniform distribution in its first two

moments. However the above calculation shows that

Edisc(5,
3−
√

3

6
) =

1973− 947
√

3

6144
≈ 0.05416 > Eu(5).

Thus the first two moments of the input distribution on the edges are not sufficient to de-
termine the expected crossing number. We believe that a constant number of higher moments
is not sufficient either. Perhaps, up to

(
n
2

)
moments are required.

4.2. Random graphs. If we take t = 0 and u = 1 above we have a random graph on n
vertices where the edges are chosen randomly and independently with probability p = 1

2
. We

can also consider more general p > 0, and denote the random graph on n vertices with edge
probability p as G(n, p).

The expected crossing number of G(n, p) is studied in [ST02], focusing its behaviour as
n increases, with p perhaps a function of n. They find several interesting results, which
are unexpectedly different for pairwise crossing numbers, crossing numbers and rectilinear
crossing numbers. The differences may be the availability of proof techniques rather than in
the numbers themselves.

We note that given a lower bound ρ for E[cr(G(n, 1
2
))] we get a lower bound of ρ

4
for Eu(n)

by rounding down the uniform [0, 1] variables to 0 or 1
2

respectively. In particular, it is shown

in [ST02] that E[cr(G(n, 1
2
))] = Θ(n4), so the same holds true of Eu(n). (Since cr(Kn) is

O(n4) and an upper bound for Eu(n), we need only show the lower bound.) In the following
section we give two direct proofs of this fact by adapting standard arguments used for crossing
numbers to work for the expectations.

4.3. Lower bounds via a recurrence. We recall that we denote the crossing weight of a
given drawing D of a graph weighted by w as cr(D, w), and the weighted crossing number of
G weighted by w (i.e. the minimum over all drawings) by cr(G,w).

Given a drawing D of Kn with weights w, we can consider the induced drawings of copies
of Kn − v ≈ Kn−1 obtained by removing each vertex v ∈ V = V (Kn) from Kn in turn. Then∑

v∈V

cr(D|Kn−v, w|Kn−v) = (n− 4) cr(D, w) (4)

since each pair of disjoint edges ij, i′j′ of Kn appear in all but four of the terms on the left
side of (4).
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Now consider Kn for n > 4 with a fixed weighting w. There is some optimal drawing D∗ of
Kn such that cr(Kn, w) = cr(D∗, w). Now:

cr(Kn, w) = cr(D∗, w) =
1

n− 4

∑
v∈V

cr(D∗|Kn−v, w|Kn−v)

≥ 1

n− 4

∑
v∈V

min
D

cr(D|Kn−v, w|Kn−v) =
1

n− 4

∑
v∈V

cr(Kn − v, w|Kn−v).

If the weights in w are i.i.d. random variables, we can take expectations on both sides to
get Eu(n) ≥ n

n−4 Eu(n − 1). Applying this inequality recursively, we find for n ≥ 6 that

Eu(n) ≥ 1
5

(
n
4

)
Eu(5).

4.4. Lower bounds via the Crossing Lemma. The following result, known as the Crossing
Lemma, was proved independently by Ajtai et al. [ACNS82] and Leighton [Lei84]. The version
given below (with the specific constant 1024/31827 > 0.032) is due to Pach et al. [PRTT06].

Theorem 4.1 (Crossing Lemma). Let G be a graph of order n with m ≥ 103
16
n edges. Then

cr(G) ≥ 1024

31827

m3

n2
.

Let π be a probability distribution with expectation E(π) = µ. We define the complementary
probability distribution π∗ by setting π∗(µ + x) = π(µ − x). For the purpose of the following
argument, let us assume that our probability distribution is symmetric, i.e., π = π∗. Then,
given a random weight function w, the complementary weight function w∗, defined as w∗(e) =
2µ − w(e), has the same distribution as w. Let us define w′ to be either w or w∗, so that
w′(e) ≥ µ holds for at least half of the edges e ∈ E(G). Finally, let w1 be defined as w1(e) = 0
if w′(e) < µ, and w1(e) = 1 if w′(e) ≥ µ. Since cr(G,w)+cr(G,w∗) ≥ cr(G,w′) ≥ µ2 cr(G,w1),
the following holds:

E(cr(G,w)) = 1
2
E(cr(G,w) + cr(G,w∗)) ≥ 1

2
E(cr(G,w′))

≥ µ2

2
E(cr(G,w1)) ≥

µ2

2
· 1024

31827

(m/2)3

n2
=

64µ2

31827

m3

n2
.

This gives a version of the crossing lemma for expectations. With a little more care we can
improve the above bound and also get rid of the symmetry condition. In order to do this, we
replace the mean by the median, i.e. the largest number ν such that Prob[w(e) ≥ ν] ≥ 1

2
.

Theorem 4.2 (Crossing Lemma for Expectations). Let G be a graph of order n with m ≥
103

16(1−4−1/3)
n edges. Suppose that each edge e ∈ E(G) gets a random weight w(e), where the

weights of distinct edges are independent non-negative random variables (not necessarily i.d.)
whose median is at least ν > 0. Then

E(cr(G,w)) ≥ 128ν2

31827
· m

3

n2
.

Proof. Given w, we introduce related weights w′′ and w2 in a similar (but not identical) way
as above: we let w′′(e) = 0 if w(e) < ν, and w′′(e) = ν if w(e) ≥ ν; we let w2(e) = w′′(e)/ν
be the corresponding weight with values 0 and 1. Note that Prob[w′′(e) = ν] ≥ 1

2
and

Prob[w2(e) = 1] ≥ 1
2
. Similarly as before, we have cr(G,w) ≥ cr(G,w′′) = ν2 cr(G,w2).

Note that w determines a spanning subgraph Fw ⊆ G, whose edges are those edges of G for
which w2(e) = 1. The graph Fw is a random subgraph of G, and for each spanning subgraph
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F of G we let Prob(F ) be the probability that F = Fw. We will need a lower bound for the
sum

∑
cr(F )Prob(F ) taken over all (spanning) F ⊆ G. To do this, let us define F ′ ⊆ F as

the spanning subgraph of G such that e ∈ E(F ′) if w(e) ≥ νe ≥ ν, where νe is the median
of the random variable w(e). The threshold case when w(e) = νe is to be considered so that
Prob[e ∈ E(F ′)] = 1

2
. Then F ′ is also a random spanning subgraph of G and Prob(F ′) = 2−m.

Since the event that an edge e is in F ′ is contained in the event that e ∈ E(F ), we have for
each F

Prob(F ) =
∑
F ′⊆F

α(F, F ′)Prob(F ′),

where α(F, F ′) ≥ 0 is the probability that we have Fw = F under the condition that F ′ is
given. Clearly,

∑
F⊇F ′ α(F, F ′) = 1 for every fixed F ′. Since cr(F ′) is an increasing function,

we have: ∑
F⊆G

cr(F )Prob(F ) =
∑
F⊆G

cr(F )
∑
F ′⊆F

α(F, F ′)Prob(F ′)

≥
∑
F ′⊆G

cr(F ′)Prob(F ′)
∑
F⊇F ′

α(F, F ′)

=
∑
F ′⊆G

cr(F ′)Prob(F ′) =
∑
F ′⊆G

2−m cr(F ′).

We will employ another notion:

λ(k, n) = min{cr(F ) | |V (F )| = n, |E(F )| = k}.

By the Crossing Lemma, λ(k, n) ≥ 1024
31827

k3

n2 if k ≥ 103
16
n. Using the introduced quantities, we

obtain the following estimate:

E[cr(G,w)] =

∫
RE

cr(G,w)dw(x) ≥
∫
RE

cr(G,w′)dw(x) = ν2
∫
RE

cr(G,w1)dw(x)

≥ ν2
∑
F⊆G

cr(F )Prob(F ) ≥ ν2
∑
F ′⊆G

2−m cr(F ′)

≥ ν2
m∑
k=0

∑
F⊆G,|E(F )|=k

2−m cr(F )

≥ ν2 2−m
m∑
k=0

(
m

k

)
λ(k, n)

≥ 1024ν2

31827 · 2mn2

m∑
k=d103n/16e

(
m

k

)
k3.

The integrals in the first row are with respect to the random weight function w. Note that
we have k3 + (m− k)3 ≥ 1

4
m3 for 0 ≤ k ≤ m, and that for k < 103n/16, we have (m− k)3 ≥

(m− 103n/16)3 ≥ (m− (1− 4−1/3)m)3 = 1
4
m3. Thus,

m∑
k=d103n/16e

(
m

k

)
k3 ≥ 1

2

m∑
k=0

(
m

k

)
1
4
m3 = 1

8
2mm3.
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The above inequalities imply:

E[cr(G,w)] ≥ 1024ν2

31827 · 2mn2

1

8
2mm3 =

128ν2 ·m3

31827 · n2

which we were to prove. For uniform random variables on Kn this works out to Eu(n) ≥
4n(n−1)3
31827

.
�

4.5. Comparison of lower bounds. The lower bounds of Sections 4.2, 4.3 and 4.4 all have
the form cn4 + O(n3). Computing the values of c obtained from the three proofs, we see
that the Crossing Lemma for Expectations gives ccl = 4

31827
≈ 0.000126 while the recurrence

gives crec = Eu(5)
120
≈ 0.000270, and is tight for n = 5. The Crossing Lemma bound has the

advantage of being applicable as long as there are sufficiently many edges and only requiring
the distributions on the edges to be independent, non-negative and have mean ν.

The constant crg found in [ST02] from the random graph approach is asymptotically 1
1920
≈

0.000521; for fixed n it is 1
1920L2 where L > logn

logn−log 2 . In fact, it requires some effort to produce

an explicit lower bound from this technique for a given n as several lower order terms will
need to be calculated; for small n the bound it yields will not be as strong as the others. The
proof relies on counting induced copies of K5 in the random graph, and works even for the
pairwise crossing number. The constant 1

1920
may not be optimal.

For the rectilinear crossing number the constant can be further improved to crg′ = γ
64

where

γ is the limit of the rectilinear crossing number of Kn divided by
(
n
2

)2
. At present γ is not

known exactly, but [LVWW04] shows that γ > 1+ε
16

for a small ε ≈ 0.00003. This yields
crg′ > 0.000976, but again may not produce effective bounds for particular small n.

4.6. Upper bounds. The best known upper bound for the regular crossing number of Kn

is cr(Kn) ≤ g(n) := 1
4
bn
2
cbn−1

2
cbn−2

2
cbn−3

2
c. There is a drawing that meets this bounds but

it is not known to be tight for n > 12 and is an ongoing research challenge, see for instance
[AAK06, PR07]. (For the rectilinear crossing number the best known drawing has slightly
more crossings.) By using this drawing we get that Eu(n) ≤ g(n).

In fact, we can improve this to Eu(n) ≤ g(n)
4

since the expectation on given crossing pair
of edges e1 and e2 from the drawing is simply the expectation of the product of a pair of
independent uniform [0, 1] variables, i.e.

∫ 1

0

∫ 1

0
xydxdy = 1

4
. This is far from tight even for

n = 5, where the bound is 1
4
, about 7.7 times the actual value of Eu(5). On the other hand,

comparison with the lower bounds show that this ratio will not get much worse as n increases.
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Sali, eds.), Electronic Notes in Discrete Mathematics, vol. 38, Elsevier, 2011, pp. 651–656.

[PR07] Shengjun Pan and R. Bruce Richter, The crossing number of K11 is 100, J. Graph Theory 56
(2007), 128–134.

[PRTT06] János Pach, Radoš Radoičić, Gábor Tardos, and Géza Tóth, Improving the crossing lemma by
finding more crossings in sparse graphs, Discrete Comput. Geom. 36 (2006), 527–552.
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Appendix A. Remaining cases for the computation of Eu(5)

Here we compute the remaining cases from Section 3.

Case 2: Orderings which ensure min(X1X8,X2X5,X3X7) can be attained at both X1X8 and
X2X5, but not X3X7.

In these cases, X2 and X5 are between X1 and X8. However, X3 and X7 are not both
between X2 and X5. The integrand will be m(X) = min(X1X8,X2X5), and the two smallest
variables are X1 and X2. We break into subcases based on the positions of X5 and X8. Only
the simplest case is described in detail.

Subcase 2i: The four smallest variables are X1,X2,X5 and X8. Then we need to evaluate:∫ 1

0

∫ xi10

0

. . .

∫ xi6

0

∫ xi5

0

∫ x8

0

∫ x5

0

∫ x2

0

min(x1x8, x2x5)dx1dx2dx5dx8dxi5 . . .dxi9dxi10

=

∫ 1

0

∫ xi10

0

. . .

∫ xi6

0

∫ xi5

0

∫ x8

0

∫ x5

0

∫ x2x5
x8

0

x1x8dx1dx2dx5dx8dxi5 . . .dxi9dxi10

+

∫ 1

0

∫ xi10

0

. . .

∫ xi6

0

∫ xi5

0

∫ x8

0

∫ x5

0

∫ x2

x2x5
x8

x2x5dx1dx2dx5dx8dxi5 . . .dxi9dxi10

=

∫ 1

0

∫ xi10

0

. . .

∫ xi6

0

∫ xi5

0

∫ x8

0

∫ x5

0

(
x22x

2
5

2x8
+ x22x5 −

x22x
2
5

x8

)
dx2dx5dx8dxi5 . . .dxi9dxi10

=

∫ 1

0

∫ xi10

0

. . .

∫ xi6

0

∫ xi5

0

∫ x8

0

(
x45
3
− x55

6x8

)
dx5dx8dxi5 . . .dxi9dxi10

=

∫ 1

0

∫ xi10

0

. . .

∫ xi6

0

∫ xi5

0

(
x58
15
− x58

36

)
dx8dxi5 . . .dxi9dxi10

=

∫ 1

0

∫ xi10

0

. . .

∫ xi6

0

7x6i5
180

dxi5 . . .dxi9dxi10 =

∫ 1

0

7 · 5!x11i10
180 · 11!

dxi10 =
14

3 · 12!
.

The number of orderings of the variables in Subcase 2i up to symmetries is 6!
2

= 360, since we
require X3 ≤ X4.

The integrals in the remaining cases are essentially similar, so we will simply list the initial
sequence of integrands and then compute the number of orderings of the variables correspond-
ing to each case.

Subcase 2ii: The five smallest variables are X1,X2,X5,Xj and X8. This produces the
following integrands:

min(x1x8, x2x5);x
2
2x5 −

x22x
2
5

2x8
;
x45
3
− x55

6x8
;
x5j
15
−

x6j
36x8

;
x68
140

;
x7i6

140 · 7
; . . .

6!xi10
140 · 11!

;
36

7 · 12!
.

There are three possibilities for j: 3, 6 and 7. When j = 3 we have 5! cases, and when j = 6
or j = 7 we have 5!

2
cases as we need to account for the fact that X3 ≤ X4 in the remaining

variables. This is the total of 240 orderings.

Subcase 2iii: The six smallest variables are X1,X2,X5,Xj,Xk and X8. The integrands

remain as in the previous case up to
x5j
15
− x6j

36x8
. The next integrands will be

x6k
90
− x7k

36·7x8 and
11x78
7·1440 , the remaining simple integrations give 11

2·12! .

There are seven possibilities for (j, k) in this case: (3, 4), (3, 6), (3, 7), (6, 3), (7, 3), (6, 7) and
(7, 6). The first five of these are each associated to 4! orderings of the remaining variables,
while the last two are each associated to 4!

2
. This is a total of 144 orderings.
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Subcase 2iv: The seven smallest variables are X1,X2,X5,Xj,Xk,Xl and X8. We proceed

from the integrand
x6k
90
− x7k

36·7x8 to
x7l
7·90 −

x8l
7·8·36x8 , and then to

13x88
7·8·9·180 . Continuing to the end,

the integral is 52
9·12! .

There are twelve possibilities for (j, k, l) arising from choosing three of 3, 4, 6, 7 and requiring
4 to be preceded by 3. Each of these has 3! orderings of the remaining 3 variables, for a total
of 72 orderings.

Subcase 2v: The eight smallest variables are X1,X2,X5,Xj,Xk,Xl,Xm and X8. We

proceed from the integrand
x7l
7·90 −

x8l
7·8·36x8 to x8m

7·8·90 −
x9m

7·8·9·36x8 and then to
x98

7·8·9·120 . Continuing

to the end, the integral is 6
12!

.

Again there are 12 possibilities, as (j, k, l,m) are chosen from 3, 4, 6, 7 with 3 preceding 4.
There are 2 ways of arranging the remaining two variables, for a total of 24 orderings.

Subcase 2vi: The five smallest variables are X1,X2,Xj,X5 and X8. The sequence of
integrands that we see is then:

min(x1x8, x2x5);x
2
2x5 −

x22x
2
5

2x8
;
x3jx5

3
−
x3jx5

6x8
;
x55
12
− x65

24x8
;
x68
126

;
x7i6

126 · 7
; . . .

6!xi10
126 · 11!

;
40

7 · 12!
.

In this case, j must be either 3 or 7. If it is 3, there are 5! ways of ordering the remaining
variables, and if it is 7 there are 5!

2
ways of ordering the remaining variables, for a total of 180

orderings.

Subcase 2vii: The six smallest variables are X1,X2,Xj,X5,Xk and X8. We then see the

same integrands through
x55
12
− x65

24x8
followed by

x6k
72
− x7k

7·24x8 ,
x78
7·72 −

x78
7·8·24 . Following the

remaining routine integrations, we get 25
4·12! .

The possibilities for (j, k) are similar to those of Subcase 2iii, but 6 cannot be used in the
first position. This leaves (3, 4), (3, 6), (3, 7), (7, 3) and (7, 6). The first four cases correspond
to 4! orderings of the remaining variables, while (7, 6) corresponds to 4!

2
as 3 must precede 4.

This gives a total of 108 orderings.

Subcase 2viii: The seven smallest variables are X1,X2,Xj,X5,Xk,Xl and X8. We proceed

as in the previous subcase through
x6k
72
− x7k

7·24x8 , then to
x7l
7·72 −

x8l
7·8·24x8 , and

x88
7·8·72 −

x88
7·8·9·24 . The

remaining integrations bring us to 20
3·12! .

In this subcase, we have (j, k, l) chosen from 3, 4, 6, 7 with the conditions that 4 must be
preceded by 3, and 6 may not appear in the first position. This second condition removes 3 of
the 12 orderings as compared to Subcase 2iv, leaving us with 9. There are always 3! orderings
of the remaining variables, giving a total of 54 orderings for this case.

Subcase 2ix: The eight smallest variables are X1,X2,Xj,X5,Xk,Xl,Xm and X8. We

proceed as in the previous subcase through
x7l
7·72 −

x8l
7·8·24x8 . The next integrand is

x8m
7·8·72 −

x9m
7·8·9·24x8 , followed by

7x98
24·30·7·8·9 , and eventually 7

12!
.

There are 9 possible choices for (j, k, l,m) since we have the same conditions as in the
previous subcase, with the remaining number assigned to m. There are two orders for the
remaining two variables, giving a total of 18 orderings.

Subcase 2x: The six smallest variables are X1,X2,Xj,Xk,X5 and X8. We proceed as in the

previous subcase through the integrand
x3jx5

3
− x3jx

2
5

6x8
Continuing, we see integrands

x4kx5
12
− x4kx

2
5

24x8
,
x65
60
− x75

120x8
, and

x78
7·60 −

x78
16·60 on our way to 27

4·12! .
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In fact, this case requires j = 3 and k = 4, since we can’t have either X6 or both of X3 and
X7 precede X5. There are 4! = 24 ways of ordering the remaining variables.

Subcase 2xi: The seven smallest variables are X1,X2,X3,X4,X5,Xl and X8. This matches

the previous subcase through
x65
60
− x75

120x8
; the next two integrands are

x7l
7·60 −

x8l
8·120x8 and

x88
7·8·60 −

x88
8·9·120 . Continuing we arrive at 22

3·12! .

We must have l = 6 or l = 7. There are 3! ways of ordering the remaining variables for a
total of 12 orderings.

Subcase 2xii: The eight smallest variables are X1,X2,X3,X4,X5,Xl,Xm and X8. This

matches the previous subcase through
x7l
7·60 −

x8l
8·120x8 . Next we have x8m

7·8·60 −
x9m

8·9·120x8 . and
x98

7·8·9·60 −
x98

8·9·10·120 . Continuing we arrive at 39
5·12! .

We must have (l,m) equal to (6, 7) or (7, 6), and there are 2 ways of ordering the remaining
2 variables, for a total of 4 orderings.

This completes Case 2, which contains 1240 possible orderings up to the symmetries. The
terms in (3) corresponding to these orderings of the variables have total weight per symmetry
class of: 360 · 14

3·12! + . . .+ 4 · 39
5·12! = 235797

35·12! .

Case 3: Orderings which ensure min(X1X8,X2X5,X3X7) is attained at both X1X8 and
X3X7, but not X2X5.

Since X2 is the second smallest variable, these will occur only when X3,X7 ≤ X8, but
X8 ≤ X5. Only the simplest case is described in detail.

Subcase 3i: The five smallest variables are X1,X2,X3,X7 and X8 or X1,X2,X7,X3 and X8.

We proceed to evaluate:∫ 1

0

∫ xi10

0

. . .

∫ xi6

0

∫ x8

0

∫ x7

0

∫ x3

0

∫ x2

0

min(x1x8, x3x7)dx1dx2dx3dx7dx8 . . .dxi9dxi10

The inner integral is piecewise linear in x1, with a single break point at x1 = x3x7
x8

, however
x3x7
x8

may or may not be greater than x2. We decompose the inner integral as:∫ min(x2,
x3x7
x8

)

0

x1x8dx1 +

∫ x2

min(x2,
x3x7
x8

)

x3x7dx1

Evaluating this integral leaves us with the new inner integral:∫ x3

0

(
1

2
min(x2,

x3x7
x8

)2x8 + x2x3x7 −min(x2,
x3x7
x8

)x3x7

)
dx2

This again needs to be split, this time with breakpoint at x2 = x3x7
x8

:∫ x3x7
x8

0

(
x22x8

2
+ x2x3x7 − x2x3x7

)
dx2 +

∫ x3

x3x7
x8

(
x23x

2
7

2x8
+ x2x3x7 −

x23x
2
7

x8

)
dx2

Happily, we see some cancellation of terms, both before evaluating the integral and after. This
yields: ∫ x7

0

(
x33x

3
7

6x28
+
x33x7

2
− x33x

2
7

2x8

)
dx3
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We proceed through the following integrands:

x77
24x28

+
x57
8
− x67

8x8
;

11x68
1344

; . . . ;
165

28 · 12!

Accounting for the fact that X5 ≤ X6, there are 5!
2

orderings of the remaining variables.
With the two orderings of X3 and X7 (which do not affect the computation of the integral),
we have the total of 120 orderings corresponding to this subcase.

Subcase 3ii: The six smallest variables are X1,X2,X3,X7,X4 and X8, with X3 and X7

possibly switched.

The integrands then remain identical through
x77

24x28
+

x57
8
− x67

8x8
. These are followed by

x84
8·24x28

+
x64
6·8−

x74
7·8x8 and

x78
756

. Subsequent integrations yield 20
3·12! . There are 4!

2
orderings of the remaining

variables, and X3 and X7 can be switched, giving a total of 24 orderings.

Subcase 3iii: The six smallest variables are X1,X2,X3,X4,X7 and X8.

The integrands are identical to Subcase 3i until
x33x

3
7

6x28
+

x33x7
2
− x33x

2
7

2x8
. We proceed to:

x44x
3
7

24x28
+
x44x7

8
− x44x

2
7

8x8
;

x87
120x28

+
x67
40
− x77

40x8
;

83x78
60480

; . . .
83

12 · 12!

There are 4!
2

= 12 orderings of the remaining variables.
This completes Case 3, which comprises 156 orderings of the variables. The terms in (3)

corresponding to these orderings of the variables have total weight per symmetry class of 6651
7·12! .

Case 4: Orderings in which min(X1X8,X2X5,X3X7) is attained at all 3 terms.

This comprises a small number of orderings that feature a messy inner integral. We note
that in all these cases the two smallest variables are X1 and X2, while the third smallest
variable is either X3 or X7. Our integrand is symmetric in X3 and X7, so we will do the
computation only with X3 as the smaller of the two variables. We will proceed to evaluate
the three innermost integrals before breaking into subcases, assuming that the fourth smallest
variable is Xj: ∫ xj

0

∫ x3

0

∫ x2

0

min(x1x8, x2x5, x3x7)dx1dx2dx3

=

∫ xj

0

∫ x3

0

∫ min(x2x5,x3x7)
x8

0

x1x8dx1 +

∫ x2

min(x2x5,x3x7)
x8

min(x2x5, x3x7)dx1dx2dx3

=

∫ xj

0

∫ x3

0

(
min(x2x5, x3x7)

2

2x8
+ x2 min(x2x5, x3x7)−

min(x2x5, x3x7)
2

x8

)
dx2dx3

=

∫ xj

0

∫ x3

0

(
x2 min(x2x5, x3x7)−

min(x2x5, x3x7)
2

2x8

)
dx2dx3

=

∫ xj

0

∫ x3x7
x5

0

(
x22x5 −

x22x
2
5

2x8

)
dx2dx3 +

∫ x3

x3x7
x5

(
x2x3x7 −

x23x
2
7

2x8

)
dx2dx3

=

∫ xj

0

(
x33x

3
7x5

3x35
− x33x

3
7x

2
5

6x8x35
+
x33x7

2
− x33x

2
7

2x8
− x33x

3
7

2x25
+

x33x
3
7

2x8x5

)
dx3

=

∫ xj

0

x33

[
x7
2
− x27

2x8
− x37

6x25
+

x37
3x8x5

]
dx3 =

x4j
4

[
x7
2
− x27

2x8
− x37

6x25
+

x37
3x8x5

]
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We now proceed to the subcases which are based on the ordering of the remaining variables.

Subcase 4i: The six smallest variables are X1,X2,X3,X7,X5 and X8. Then Xj = X7 and
we need to evaluate:∫ 1

0

∫ xi10

0

∫ xi9

0

∫ xi8

0

∫ xi7

0

∫ x8

0

∫ x5

0

(
x57
8
− x67

8x8
− x77

24x25
+

x77
12x8x5

)
dx7dx5dx8dxi7dxi8dxi9dxi10

=
1

32

∫ 1

0

∫ xi10

0

∫ xi9

0

∫ xi8

0

∫ xi7

0

∫ x8

0

(
x65
2
− 5x75

21x8

)
dx5dx8dxi7dxi8dxi9dxi10

=
1

768

∫ 1

0

∫ xi10

0

∫ xi9

0

∫ xi8

0

∫ xi7

0

x78dx8dxi7dxi8dxi9dxi10 =
7!

768 · 12!
=

105

16 · 12!
.

As noted previously, there is a second ordering corresponding to this subcase, in which
X3 and X7 are reversed, and there are 4! orderings of the remaining variables, giving us 48
orderings in this case.

Subcase 4ii: The seven smallest variables are X1,X2,X3,X7,X5, Xk and X8.

This calculation is quite similar to the previous one until it reaches the integral with inte-

grand 1
32

[
x65
2
− 5x75

21x8
]. Subsequent integrands are:

1

32

[
x7k
14
− 5x8k

168x8

]
;

1

32

[
x88
112
− 5x98

1512x8

]
; and

1

1792

[
17x88
54

]
.

The remaining integrations bring us to 85
12·12! .

There are 3! orderings of the remaining variables, k may be either 4 or 6, and X3 and X7

can again be reversed, giving us a total of 24 orderings in this subcase.

Subcase 4iii: The seven smallest variables are X1,X2,X3,X7,X4, X5 and X8.

The first integration is similar to the first integration in Subcase 4i, and we proceed from
there, via the following integrands:

1

4

[
x64
12
− x74

14x8
− x84

48x25
+

x84
24x8x5

]
;

1

12096

[
29x75 −

13x85
x8

]
;

157x88
870912

.

The remaining integrations bring us to 785
108·12! .

There are 3! orderings of the remaining variables, and X3 and X7 can be again be switched,
giving 12 orderings in this subcase.

Subcase 4iv: The seven smallest variables are X1,X2,X3,X4,X7, X5 and X8. Unlike the
previous cases, we have Xj = X4, so we restart with just the inner 3 integrals evaluated at
the top of the section:∫ 1

0

∫ xi10

0

∫ xi9

0

∫ xi8

0

∫ x8

0

∫ x5

0

∫ x7

0

x44
4

[
x7
2
− x27

2x8
− x37

6x25
+

x37
3x8x5

]
dx4dx7dx5dx8dxi8dxi9dxi10

=
1

20

∫ 1

0

∫ xi10

0

∫ xi9

0

∫ xi8

0

∫ x8

0

∫ x5

0

(
x67
2
− x77

2x8
− x87

6x25
+

x87
3x8x5

)
dx7dx5dx8dxi8dxi9dxi10

=
1

540

∫ 1

0

∫ xi10

0

∫ xi9

0

∫ xi8

0

∫ x8

0

(
10x75

7
− 11x85

16x8

)
dx5dx8dxi8dxi9dxi10

=
1

540

∫ 1

0

∫ xi10

0

∫ xi9

0

∫ xi8

0

103x88
1008

dx8dxi8dxi9dxi10 =
103 · 8!

544320 · 12!
=

206

27 · 12!
.

There are 3! orderings of the remaining variables, and X3 cannot be interchanged with X7

due to the interceding X4.
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Subcase 4v: The eight smallest variables are X1,X2,X3,X7,X5, Xk, Xl and X8.

This follows Subcase 4ii until we arrive at integrand 1
32

[
x7k
14
− 5x8k

168x8

]
. We continue through

integrands
1

32

[
x8l
112
− 5x9l

1512x8

]
and

x98
96768

and eventually to 4
15·12! .

There are two orderings of the remaining variables, (k, l) can be (4, 6) or (6, 4) and X3 and
X7 may be reversed, giving a total of 8 orderings in this subcase.

Subcase 4vi: The eight smallest variables are X1,X2,X3,X7,X4, X5, X6 and X8.

This follows Subcase 4iii until we arrive at the integrand 1
12096

[
29x75 −

13x85
x8

]
. Two more

integrations bring integrands:

1

12096

[
29x86

8
− 13x96

9x8

]
and

1

12096

[
31x98
120

]
.

Continuing we get 31
4·9! . There are two orderings of the remaining variables, and X3 and X7

can be reversed, giving a total of 4 orderings in this subcase.

Subcase 4vii: The eight smallest variables are X1,X2,X3,X4,X7, X5, X6 and X8.

This follows Subcase 4iv until we arrive at the integrand 1
540

[
10x75
7
− 11x85

16x8

]
. Continuing, we

see:
1

540

[
10x86
56
− 11x96

144x8

]
and

1

540

[
123x98
10080

]
on our way to 41

5·12! . In this subcase, X3 and X7 cannot be interchanged, and there are 2
orderings of the remaining 2 variables.

This completes Case 4, which contains the remaining 104 possible orderings of the variables,
and the terms in (3) corresponding to these orderings of the variables have total weight per
symmetry class of 3627

5·12! .

Summing over the four cases, the contributions of 13140
12!

, 235797
35·12! , 6651

7·12! and 3627
5·12! respectively,

give a total of 107763
5·12! summed over the 5040 symmetry class representatives in (3). Multiplying

by the 720 symmetries of the variables, we find that Eu(5) = 35921
1108800

= 0.032396284271.
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