Global minimization of rational functions using semidefinite programming

Etienne de Klerk ${ }^{\dagger}$, Radinka Dontcheva ${ }^{\dagger}$, Dorina Jibetean ${ }^{\ddagger}$

${ }^{\dagger}$ Delft University of Technology, ${ }^{\ddagger}$ CWI, Amsterdam

Rational function minimization

Let p, q and p_{1}, \ldots, p_{k} be polynomials with real coefficients defined on \mathbb{R}^{n}. (p and q relatively prime.)

Rational function minimization

Let p, q and p_{1}, \ldots, p_{k} be polynomials with real coefficients defined on \mathbb{R}^{n}. (p and q relatively prime.) We will consider the optimization problem:

$$
p^{*}:=\inf _{x \in S} \frac{p(x)}{q(x)}
$$

where S is the semi-algebraic set given by

$$
S:=\left\{x \in \mathbb{R}^{n}: p_{i}(x) \geq 0, i=1, \ldots, k\right\} .
$$

Rational function minimization

Let p, q and p_{1}, \ldots, p_{k} be polynomials with real coefficients defined on \mathbb{R}^{n}. (p and q relatively prime.) We will consider the optimization problem:

$$
p^{*}:=\inf _{x \in S} \frac{p(x)}{q(x)}
$$

where S is the semi-algebraic set given by

$$
S:=\left\{x \in \mathbb{R}^{n}: p_{i}(x) \geq 0, i=1, \ldots, k\right\} .
$$

Applications: Global and combinatorial optimization, statistics, geometry, economics ...

Possible approaches

- If the infimum is attained one can solve the first order optimality condition equations. Excellent
review: B. Sturmfels, Solving Systems of Polynomial Equations, AMS, 2002. If the inf is not attained ...

Possible approaches

- If the infimum is attained one can solve the first order optimality condition equations. Excellent review: B. Sturmfels, Solving Systems of Polynomial Equations, AMS, 2002. If the inf is not attained ...
- Global optimization codes - can converge to local minima.

Possible approaches

- If the infimum is attained one can solve the first order optimality condition equations. Excellent
review: B. Sturmfels, Solving Systems of Polynomial Equations, AMS, 2002. If the inf is not attained ...
- Global optimization codes - can converge to local minima.
- Today's talk: approaches involving semidefinite programming (SDP).

Different cases

We investigate SDP-based approaches for the following cases:

- $S=\mathbb{R}^{n}$ and $n=1$ (Unconstrained minimization: univariate case);

Different cases

We investigate SDP-based approaches for the following cases:

- $S=\mathbb{R}^{n}$ and $n=1$ (Unconstrained minimization: univariate case);
- $S=\mathbb{R}^{n}$ and $n=2$ (Unconstrained minimization: bivariate case);

Different cases

We investigate SDP-based approaches for the following cases:

- $S=\mathbb{R}^{n}$ and $n=1$ (Unconstrained minimization: univariate case);
- $S=\mathbb{R}^{n}$ and $n=2$ (Unconstrained minimization: bivariate case);
- $S=\mathbb{R}^{n}$ and general n (Unconstrained minimization: general case);

Different cases

We investigate SDP-based approaches for the following cases:

- $S=\mathbb{R}^{n}$ and $n=1$ (Unconstrained minimization: univariate case);
- $S=\mathbb{R}^{n}$ and $n=2$ (Unconstrained minimization: bivariate case);
- $S=\mathbb{R}^{n}$ and general n (Unconstrained minimization: general case);
- S is compact, connected and general n (Constrained case);

Unconstrained case

Consider the unconstrained problem.

$$
\begin{aligned}
p^{*} & :=\inf _{x \in \mathbb{R}^{n}} \frac{p(x)}{q(x)} \\
& =\sup \left\{\rho: \frac{p(x)}{q(x)}-\rho \geq 0 \quad \forall x \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

Unconstrained case

Consider the unconstrained problem.

$$
\begin{aligned}
p^{*} & :=\inf _{x \in \mathbb{R}^{n}} \frac{p(x)}{q(x)} \\
& =\sup \left\{\rho: \frac{p(x)}{q(x)}-\rho \geq 0 \quad \forall x \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

We can replace the nonnegativity condition by a simpler one ...

Unconstrained case (ctd)

Theorem (Jibetean) Assume $p^{*}>-\infty$. Then q does not change sign on \mathbb{R}^{n}.

Unconstrained case (ctd)

Theorem (Jibetean) Assume $p^{*}>-\infty$. Then q does not change sign on \mathbb{R}^{n}. If q does not change sign one has:

$$
\frac{p(x)}{q(x)}-\rho \geq 0 \quad \forall x \in \mathbb{R}^{n}
$$

iff

$$
p(x)-\rho q(x) \geq 0 \quad \forall x \in \mathbb{R}^{n} .
$$

Unconstrained case (ctd)

Theorem (Jibetean) Assume $p^{*}>-\infty$. Then q does not change sign on \mathbb{R}^{n}. If q does not change sign one has:

$$
\frac{p(x)}{q(x)}-\rho \geq 0 \quad \forall x \in \mathbb{R}^{n}
$$

iff

$$
p(x)-\rho q(x) \geq 0 \quad \forall x \in \mathbb{R}^{n} .
$$

D. Jibetean. Global optimization of rational multivariate functions. Technical Report PNA-R0120, CWI, Amsterdam, 2001.

Unconstrained case (ctd)

Theorem (Jibetean) Assume $p^{*}>-\infty$. Then q does not change sign on \mathbb{R}^{n}. If q does not change sign one has:

$$
\frac{p(x)}{q(x)}-\rho \geq 0 \quad \forall x \in \mathbb{R}^{n}
$$

iff

$$
p(x)-\rho q(x) \geq 0 \quad \forall x \in \mathbb{R}^{n} .
$$

D. Jibetean. Global optimization of rational multivariate functions.

Technical Report PNA-R0120, CWI, Amsterdam, 2001.
This leads us to the theory of nonnegative polynomials.

Preliminaries

Let p be a polynomial defined on \mathbb{R}^{n}.

- p is a sum of squares (SOS) if there exist polynomials p_{i} such that $p=\sum_{i} p_{i}^{2}$.

Preliminaries

Let p be a polynomial defined on \mathbb{R}^{n}.

- p is a sum of squares (SOS) if there exist polynomials p_{i} such that $p=\sum_{i} p_{i}^{2}$.
- p is a form if it is homogeneous (all monomials have the same degree).

Preliminaries

Let p be a polynomial defined on \mathbb{R}^{n}.

- p is a sum of squares (SOS) if there exist polynomials p_{i} such that $p=\sum_{i} p_{i}^{2}$.
- p is a form if it is homogeneous (all monomials have the same degree).
- A form p is positive semidefinite (PSD) if $p(x) \geq 0$ for all $x \in \mathbb{R}^{n}$.

Preliminaries

Let p be a polynomial defined on \mathbb{R}^{n}.

- p is a sum of squares (SOS) if there exist polynomials p_{i} such that $p=\sum_{i} p_{i}^{2}$.
- p is a form if it is homogeneous (all monomials have the same degree).
- A form p is positive semidefinite (PSD) if $p(x) \geq 0$ for all $x \in \mathbb{R}^{n}$.
- A form p is positive definite (PD) if $p(x)>0$ for all $x \in \mathbb{R}^{n} \backslash\{0\}$.

Homogenization

Each polynomial has an associated form, obtained by introducing a new homogenizing variable t as follows:

$$
p(x) \Rightarrow p\left(\frac{x}{t}\right) t^{\operatorname{deg}(p)}
$$

where $\operatorname{deg}(p)$ is the degree of p.

Homogenization

Each polynomial has an associated form, obtained by introducing a new homogenizing variable t as follows:

$$
p(x) \Rightarrow p\left(\frac{x}{t}\right) t^{\operatorname{deg}(p)}
$$

where $\operatorname{deg}(p)$ is the degree of p. Example:

$$
x^{2}-2 x+1 \Rightarrow x^{2}-2 x t+t^{2} .
$$

Homogenization

Each polynomial has an associated form, obtained by introducing a new homogenizing variable t as follows:

$$
p(x) \Rightarrow p\left(\frac{x}{t}\right) t^{\operatorname{deg}(p)}
$$

where $\operatorname{deg}(p)$ is the degree of p. Example:

$$
x^{2}-2 x+1 \Rightarrow x^{2}-2 x t+t^{2}
$$

Nonnegativity and SOS properties are preserved under this transformation.

Hilbert's 17th problem

Conjecture by Hilbert in 1900: Let p be a real PSD form on \mathbb{R}^{n}.

Hilbert's 17th problem

Conjecture by Hilbert in 1900: Let p be a real PSD form on \mathbb{R}^{n}. Then there exist polynomials q_{i} and r_{i} such that

$$
p(x)=\sum_{i}\left(\frac{q_{i}(x)}{r_{i}(x)}\right)^{2} .
$$

(A PSD form is a sum of squares of rational functions.)

Hilbert's 17th problem

Conjecture by Hilbert in 1900: Let p be a real PSD form on \mathbb{R}^{n}. Then there exist polynomials q_{i} and r_{i} such that

$$
p(x)=\sum_{i}\left(\frac{q_{i}(x)}{r_{i}(x)}\right)^{2} .
$$

(A PSD form is a sum of squares of rational functions.)

- Artin proved the conjecture in full in 1927.

Hilbert's 17th problem

Conjecture by Hilbert in 1900: Let p be a real PSD form on \mathbb{R}^{n}. Then there exist polynomials q_{i} and r_{i} such that

$$
p(x)=\sum_{i}\left(\frac{q_{i}(x)}{r_{i}(x)}\right)^{2} .
$$

(A PSD form is a sum of squares of rational functions.)

- Artin proved the conjecture in full in 1927.
- Review paper: B. Reznick. Some concrete aspects of Hilbert's 17th Problem. In Real algebraic geometry and ordered structures, 251-272. AMS, 2000.

Nonnegativity vs SOS

Consider real n-variate polynomials with degree d. Nonnegativity and sum of squares are the same if:

- $n=1$ (univariate polynomials) (result by Markov?);

Nonnegativity vs SOS

Consider real n-variate polynomials with degree d. Nonnegativity and sum of squares are the same if:

- $n=1$ (univariate polynomials) (result by Markov?);
- $d=2$ (quadratic polynomials on n variables);

Nonnegativity vs SOS

Consider real n-variate polynomials with degree d. Nonnegativity and sum of squares are the same if:

- $n=1$ (univariate polynomials) (result by Markov?);
- $d=2$ (quadratic polynomials on n variables);
- $n=2$ and $d \leq 4$ (bivariate polynomials of degree at most 4) (result by Hilbert);

Nonnegativity vs SOS

Consider real n-variate polynomials with degree d. Nonnegativity and sum of squares are the same if:

- $n=1$ (univariate polynomials) (result by Markov?);
- $d=2$ (quadratic polynomials on n variables);
- $n=2$ and $d \leq 4$ (bivariate polynomials of degree at most 4) (result by Hilbert);

In all other cases counterexamples exist (e.g. the Motzkin form; see Reznick's paper).

The sum of squares cone

We fix a basis of monomials

$$
\tilde{x}:=\left(1, x_{1}, \ldots, x_{n}, x_{1}^{2}, \ldots, x_{n}^{d}\right) \operatorname{dim}:\binom{n+d}{d} .
$$

The sum of squares cone

We fix a basis of monomials

$$
\tilde{x}:=\left(1, x_{1}, \ldots, x_{n}, x_{1}^{2}, \ldots, x_{n}^{d}\right) \quad \operatorname{dim}:\binom{n+d}{d} .
$$

Notation: We denote the cone in $\mathbb{R}^{\binom{n+2 d}{2 d}}$ generated by squares of polynomials on \mathbb{R}^{n} of degree at most d by $\Sigma_{n, d}^{2}$ (sum-of-squares (SOS) cone).

The sum of squares cone

We fix a basis of monomials

$$
\tilde{x}:=\left(1, x_{1}, \ldots, x_{n}, x_{1}^{2}, \ldots, x_{n}^{d}\right) \operatorname{dim}:\binom{n+d}{d} .
$$

Notation: We denote the cone in $\mathbb{R}^{\binom{n+2 d}{2 d}}$ generated by squares of polynomials on \mathbb{R}^{n} of degree at most d by $\Sigma_{n, d}^{2}$ (sum-of-squares (SOS) cone).
(We drop the subscripts when they are clear from the context.)

The sum of squares cone (cdl.)

Theorem: The cone $\Sigma_{n, d}^{2}$ is convex, closed, pointed, solid, and is the image of a linear map of the cone of PSD matrices of size $\binom{n+d}{d} \times\binom{ n+d}{d}$.

The sum of squares cone (cdl.)

Theorem: The cone $\Sigma_{n, d}^{2}$ is convex, closed, pointed, solid, and is the image of a linear map of the cone of PSD matrices of size $\binom{n+d}{d} \times\binom{ n+d}{d}$.
Theorem 17.1 in Y. Nesterov. Squared functional systems and optimization problems. In J.B.G. Frenk et al. eds., High performance optimization, 405-440. KAP, 2000.

The sum of squares cone (cdt.)

Theorem: The cone $\Sigma_{n, d}^{2}$ is convex, closed, pointed, solid, and is the image of a linear map of the cone of PSD matrices of size $\binom{n+d}{d} \times\binom{ n+d}{d}$.

Theorem 17.1 in Y. Nesterov. Squared functional systems and optimization problems. In J.B.G. Frenk et al. eds., High performance optimization, 405-440. KAP, 2000.
Implication: Conic linear optimization over the cone $\Sigma_{n, d}^{2}$ can be done using semidefinite programming (SDP) (the so-called Gram matrix method);

Example (Parrilo)

Is $P(x):=2 x_{1}^{4}+2 x_{1}^{3} x_{2}-x_{1}^{2} x_{2}^{2}+5 x_{2}^{4}$ a sum of

 squares?
Example (Parrilo)

Is $P(x):=2 x_{1}^{4}+2 x_{1}^{3} x_{2}-x_{1}^{2} x_{2}^{2}+5 x_{2}^{4}$ a sum of squares?

$$
P(x)=\left[\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
x_{1} x_{2}
\end{array}\right]^{T}\left[\begin{array}{ccc}
2 & -\lambda & 1 \\
-\lambda & 5 & 0 \\
1 & 0 & -1+2 \lambda
\end{array}\right]\left[\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
x_{1} x_{2}
\end{array}\right] .
$$

Example (Parrilo)

Is $P(x):=2 x_{1}^{4}+2 x_{1}^{3} x_{2}-x_{1}^{2} x_{2}^{2}+5 x_{2}^{4}$ a sum of squares?
$P(x)=\left[\begin{array}{c}x_{1}^{2} \\ x_{2}^{2} \\ x_{1} x_{2}\end{array}\right]^{T}\left[\begin{array}{ccc}2 & -\lambda & 1 \\ -\lambda & 5 & 0 \\ 1 & 0 & -1+2 \lambda\end{array}\right]\left[\begin{array}{c}x_{1}^{2} \\ x_{2}^{2} \\ x_{1} x_{2}\end{array}\right]$
If we call the 3×3 matrix in the last expression $M(\lambda)$, then $M(\lambda)$ defines an affine space.

Example (Parrilo)

Is $P(x):=2 x_{1}^{4}+2 x_{1}^{3} x_{2}-x_{1}^{2} x_{2}^{2}+5 x_{2}^{4}$ a sum of squares?
$P(x)=\left[\begin{array}{c}x_{1}^{2} \\ x_{2}^{2} \\ x_{1} x_{2}\end{array}\right]^{T}\left[\begin{array}{ccc}2 & -\lambda & 1 \\ -\lambda & 5 & 0 \\ 1 & 0 & -1+2 \lambda\end{array}\right]\left[\begin{array}{c}x_{1}^{2} \\ x_{2}^{2} \\ x_{1} x_{2}\end{array}\right]$
If we call the 3×3 matrix in the last expression $M(\lambda)$, then $M(\lambda)$ defines an affine space. SDP problem: is there a λ such that $M(\lambda) \succeq 0$ (positive semidefinite)?

Example (ctd.)

for $\lambda=3, M(\lambda)$ is positive semidefinite, and

$$
M(3)=L^{T} L, \quad L=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
2 & -3 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

Example (ctd.)

for $\lambda=3, M(\lambda)$ is positive semidefinite, and

$$
M(3)=L^{T} L, \quad L=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
2 & -3 & 1 \\
0 & 1 & 3
\end{array}\right],
$$

and consequently

$$
P(x)=\tilde{x} L^{T} L \tilde{x}=\|L \tilde{x}\|^{2},
$$

where $\tilde{x}=\left[\begin{array}{lll}x_{1}^{2} & x_{2}^{2} & x_{1} x_{2}\end{array}\right]^{T}$.
Thus P can be written as a sum of squares.

Unconstrained univariate case

 If q does not change sign on \mathbb{R}, then$$
\begin{aligned}
\inf _{x \in \mathbb{R}} \frac{p(x)}{q(x)} & =\sup _{t, x}\{t: p(x)-t q(x) \geq 0 \forall x \in \mathbb{R}\} \\
& =\sup _{t, x}\left\{t: p(x)-t q(x) \in \Sigma^{2}\right\} \\
& =\sup _{t, x}\left\{t: p(x)-t q(x)=\tilde{x}^{T} M \tilde{x}\right\}
\end{aligned}
$$

for some $M \succeq 0$, where

$$
\tilde{x}^{T}=\left[1 x x^{2} \ldots x^{\frac{1}{2} \max \{\operatorname{deg}(p), \operatorname{deg}(q)\}}\right] .
$$

Unconstrained univariate case

Let $p(x)-t q(x)=\sum_{\alpha} a_{\alpha}(t) x^{\alpha}$. NB: $a_{\alpha}(t)$ is affine in t.

Unconstrained univariate case

Let $p(x)-t q(x)=\sum_{\alpha} a_{\alpha}(t) x^{\alpha}$. NB: $a_{\alpha}(t)$ is affine in t. Then the optimization problem becomes: maximize t such that

$$
a_{\alpha}(t)=\sum_{i+j=\alpha} M_{i j}, \quad M \succeq 0 .
$$

This is an SDP problem!

Unconstrained univariate case

 Let $p(x)-t q(x)=\sum_{\alpha} a_{\alpha}(t) x^{\alpha}$. NB: $a_{\alpha}(t)$ is affine in t. Then the optimization problem becomes: maximize t such that$$
a_{\alpha}(t)=\sum_{i+j=\alpha} M_{i j}, \quad M \succeq 0
$$

This is an SDP problem! (Result already obtained by Nesterov for $q(x) \equiv 1$.)
Y. Nesterov. Squared functional systems and optimization problems.

In J.B.G. Frenk et al. eds., High performance optimization, 405-440.
KAP, 2000.

Example

$$
\frac{p(x)}{q(x)}:=\frac{x^{2}-2 x}{(x+1)^{2}} .
$$

Example (ctd)

$$
\frac{p(x)}{q(x)}:=\frac{x^{2}-2 x}{(x+1)^{2}} .
$$

Example (ctd)

$$
\frac{p(x)}{q(x)}:=\frac{x^{2}-2 x}{(x+1)^{2}}
$$

Equivalent problem: $\sup t$ such that
$(1-t) x^{2}-2(1+t) x-t=\left[\begin{array}{l}1 \\ x\end{array}\right]^{T}\left[\begin{array}{ll}M_{00} & M_{01} \\ M_{10} & M_{11}\end{array}\right]\left[\begin{array}{c}1 \\ x\end{array}\right]$,
for some $M \succeq 0$.

Example (ctd)

From (2):
$M_{00}=-t, \quad M_{01}=M_{10}=-(1+t), \quad M_{11}=1-t$.

Example (ctd)

From (2):

$$
M_{00}=-t, \quad M_{01}=M_{10}=-(1+t), \quad M_{11}=1-t .
$$

We therefore get

$$
\min _{x \in \mathbb{R}} \frac{p(x)}{q(x)}=\max _{t, M} t
$$

such that

$$
M=\left[\begin{array}{cc}
-t & -(1+t) \\
-(1+t) & 1-t
\end{array}\right] \succeq 0 .
$$

Example (ctd)

From (2):
$M_{00}=-t, \quad M_{01}=M_{10}=-(1+t), \quad M_{11}=1-t$.
We therefore get

$$
\min _{x \in \mathbb{R}} \frac{p(x)}{q(x)}=\max _{t, M} t
$$

such that

$$
M=\left[\begin{array}{cc}
-t & -(1+t) \\
-(1+t) & 1-t
\end{array}\right] \succeq 0 .
$$

Note that the optimal value is $p^{*}=-1 / 3$.

Unconstrained bivariate case

 If q does not change sign on \mathbb{R}^{2}, then$$
\inf _{x \in \mathbb{R}^{2}} \frac{p(x)}{q(x)}=\sup _{t, x}\left\{t: p(x)-t q(x) \geq 0 \forall x \in \mathbb{R}^{2}\right\}
$$

Unconstrained bivariate case

If q does not change sign on \mathbb{R}^{2}, then

$$
\inf _{x \in \mathbb{R}^{2}} \frac{p(x)}{q(x)}=\sup _{t, x}\left\{t: p(x)-t q(x) \geq 0 \forall x \in \mathbb{R}^{2}\right\}
$$

Remark: This problem also has an exact SDP reformulation, using results by De Klerk and Pasechnik, and by Nesterov.

Unconstrained bivariate case

If q does not change sign on \mathbb{R}^{2}, then

$$
\inf _{x \in \mathbb{R}^{2}} \frac{p(x)}{q(x)}=\sup _{t, x}\left\{t: p(x)-t q(x) \geq 0 \forall x \in \mathbb{R}^{2}\right\}
$$

Remark: This problem also has an exact SDP reformulation, using results by De Klerk and Pasechnik, and by Nesterov.
E. de Klerk, D.V. Pasechnik (2002). Products of positive forms, linear matrix inequalities, and Hilbert 17-th problem for ternary forms. European J. of Operational Research, to appear.

Constrained case

Consider a semi-algebraic set

$$
S=\left\{x \in \mathbb{R}^{n}: p_{i}(x) \geq 0(i=1, \ldots, k)\right\} .
$$

Constrained case

Consider a semi-algebraic set

$$
S=\left\{x \in \mathbb{R}^{n}: p_{i}(x) \geq 0(i=1, \ldots, k)\right\} .
$$

General constrained problem: find

$$
p^{*}=: \inf _{x \in S} \frac{p(x)}{q(x)}
$$

Constrained case

Consider a semi-algebraic set

$$
S=\left\{x \in \mathbb{R}^{n}: p_{i}(x) \geq 0(i=1, \ldots, k)\right\} .
$$

General constrained problem: find

$$
p^{*}=: \inf _{x \in S} \frac{p(x)}{q(x)} .
$$

(We will return to the unconstrained problem presently.)

Constrained case

Theorem (Jibetean) Assume that S is full dimensional and connected. If $p^{*}>-\infty$ then q does not change sign on S. If q does not change sign on S, then

$$
\frac{p(x)}{q(x)} \geq \alpha \forall x \in S \Longleftrightarrow p(x)-\alpha q(x) \geq 0 \forall x \in S
$$

Constrained case

Theorem (Jibetean) Assume that S is full dimensional and connected. If $p^{*}>-\infty$ then q does not change sign on S. If q does not change sign on S, then

$$
\frac{p(x)}{q(x)} \geq \alpha \forall x \in S \Longleftrightarrow p(x)-\alpha q(x) \geq 0 \forall x \in S
$$

D. Jibetean. PhD Thesis, CWI, Amsterdam, 2003.

Constrained case

Theorem (Jibetean) Assume that S is full dimensional and connected. If $p^{*}>-\infty$ then q does not change sign on S. If q does not change sign on S, then

$$
\frac{p(x)}{q(x)} \geq \alpha \forall x \in S \Longleftrightarrow p(x)-\alpha q(x) \geq 0 \forall x \in S
$$

D. Jibetean. PhD Thesis, CWI, Amsterdam, 2003.

Consequence

$$
\inf _{x \in S} \frac{p(x)}{q(x)}=\sup \{\rho: p(x)-\rho q(x)>0 \quad \forall x \in S\}
$$

Constrained univariate case

Univariate constrained problem: Assume q does not change sign on \mathbb{R}^{2} (else $p^{*}=-\infty$). Then
$p^{*}=: \inf _{x \in S} \frac{p(x)}{q(x)}=\sup \{\rho: p(x)-\rho q(x)>0 \quad \forall x \in S\}$,
where S is a line segment or an interval.

Constrained univariate case

Univariate constrained problem: Assume q does not change sign on \mathbb{R}^{2} (else $p^{*}=-\infty$). Then
$p^{*}=: \inf _{x \in S} \frac{p(x)}{q(x)}=\sup \{\rho: p(x)-\rho q(x)>0 \quad \forall x \in S\}$,
where S is a line segment or an interval.

Remark: This problem has an exact SDP reformulation using the theorem by Jibetean and results by Nesterov.

Constrained multivariate case

Technical assumption: S is compact and there exists

 a$$
\bar{p} \in \Sigma^{2}+p_{1} \Sigma^{2}+\ldots+p_{k} \Sigma^{2}
$$

such that $\{x: \bar{p}(x) \geq 0\}$ is compact.

Constrained multivariate case

Technical assumption: S is compact and there exists a

$$
\bar{p} \in \Sigma^{2}+p_{1} \Sigma^{2}+\ldots+p_{k} \Sigma^{2}
$$

such that $\{x: \bar{p}(x) \geq 0\}$ is compact.

Theorem (Putinar): For a given polynomial p_{0} one has $p_{0}(x)>0$ for all $x \in S$ iff

$$
p_{0} \in \Sigma^{2}+p_{1} \Sigma^{2}+\ldots+p_{k} \Sigma^{2} .
$$

Constrained multivariate case

Technical assumption: S is compact and there exists a

$$
\bar{p} \in \Sigma^{2}+p_{1} \Sigma^{2}+\ldots+p_{k} \Sigma^{2}
$$

such that $\{x: \bar{p}(x) \geq 0\}$ is compact.

Theorem (Putinar): For a given polynomial p_{0} one has $p_{0}(x)>0$ for all $x \in S$ iff

$$
p_{0} \in \Sigma^{2}+p_{1} \Sigma^{2}+\ldots+p_{k} \Sigma^{2} .
$$

M. Putinar. Positive polynomials on compact semi-algebraic sets. Ind. Univ. Math. J. 42:969-984, 1993.

Constrained multivariate case

Consider the minimization problem

$$
p^{*}=\inf _{x \in S} \frac{p(x)}{q(x)} .
$$

Constrained multivariate case
 Consider the minimization problem

$$
p^{*}=\inf _{x \in S} \frac{p(x)}{q(x)} .
$$

By Putinar's and Jibetean's theorems we have

$$
\begin{aligned}
p^{*} & =\sup \{\rho: p(x)-\rho q(x)>0 \forall x \in S\} \\
& =\sup \left\{\rho:(p-\rho q) \in \Sigma^{2}+p_{1} \Sigma^{2}+\ldots+p_{k} \Sigma^{2}\right\} \\
& \geq \sup \left\{\rho:(p-\rho q) \in \Sigma_{n, t}^{2}+p_{1} \Sigma_{n, t}^{2}+\ldots+p_{k} \Sigma_{n, t}^{2}\right\} \\
& :=\rho_{t}(\text { for any integer } t \geq 1)
\end{aligned}
$$

Constrained multivariate case

We have that $\rho_{i} \leq \rho_{i+1} \leq p^{*}$ and

$$
\lim _{t \rightarrow \infty} \rho_{t}=p^{*} .
$$

Constrained multivariate case

We have that $\rho_{i} \leq \rho_{i+1} \leq p^{*}$ and

$$
\lim _{t \rightarrow \infty} \rho_{t}=p^{*} .
$$

Computation of ρ_{t} : SDP problem with matrices of size $\binom{n+t}{t} \times\binom{ n+t}{t}$ and at $\operatorname{most} \max \{\operatorname{deg}(p), \operatorname{deg}(q)\}$ constraints - "polynomial" complexity for $t=O(1)$.

Constrained multivariate case

We have that $\rho_{i} \leq \rho_{i+1} \leq p^{*}$ and

$$
\lim _{t \rightarrow \infty} \rho_{t}=p^{*}
$$

Computation of ρ_{t} : SDP problem with matrices of size $\binom{n+t}{t} \times\binom{ n+t}{t}$ and at most $\max \{\operatorname{deg}(p), \operatorname{deg}(q)\}$ constraints - "polynomial" complexity for $t=O(1)$.

These results by already obtained by Lasserre for $q(x) \equiv 1$ (polynomial objective function).
J.B. Lasserre. Global optimization with polynomials and the problem of moments. SIOPT, 11:296-817, 2001.

Unconstrained case

Return to the unconstrained case

$$
\inf _{x \in \mathbb{R}^{n}} \frac{p(x)}{q(x)} .
$$

Unconstrained case

Return to the unconstrained case

$$
\inf _{x \in \mathbb{R}^{n}} \frac{p(x)}{q(x)} .
$$

Artificial constraint $\|x\|^{2} \leq R$ for some 'sufficiently large' R.

Unconstrained case

Return to the unconstrained case

$$
\inf _{x \in \mathbb{R}^{n}} \frac{p(x)}{q(x)} .
$$

Artificial constraint $\|x\|^{2} \leq R$ for some 'sufficiently large' R.
Now we have $\min _{x \in S} \frac{p(x)}{q(x)}$ where S is the compact semi-algebraic set

$$
S:=\left\{x \in \mathbb{R}^{n}: R-\|x\|^{2} \geq 0\right\} .
$$

Unconstrained case

Return to the unconstrained case

$$
\inf _{x \in \mathbb{R}^{n}} \frac{p(x)}{q(x)} .
$$

Artificial constraint $\|x\|^{2} \leq R$ for some 'sufficiently large' R.
Now we have $\min _{x \in S} \frac{p(x)}{q(x)}$ where S is the compact semi-algebraic set

$$
S:=\left\{x \in \mathbb{R}^{n}: R-\|x\|^{2} \geq 0\right\} .
$$

No a priori choice for R available in general.

Software

- Lasserre'a approach implemented in the software GloptiPoly.

Software

- Lasserre'a approach implemented in the software GloptiPoly.
- Extended Gram matrix method implemented in SOStools by Parrilo et al.

Software

- Lasserre'a approach implemented in the software GloptiPoly.
- Extended Gram matrix method implemented in SOStools by Parrilo et al.

These are add-on routines for the SDP solver SeDuMi by Sturm.

- Lasserre'a approach implemented in the software GloptiPoly.
- Extended Gram matrix method implemented in SOStools by Parrilo et al.

These are add-on routines for the SDP solver SeDuMi by Sturm. All freely available via Helmberg's SDP page:
http://www-user.tu-chemnitz.de/~helmberg/semidef.html

- Lasserre'a approach implemented in the software GloptiPoly.
- Extended Gram matrix method implemented in SOStools by Parrilo et al.

These are add-on routines for the SDP solver SeDuMi by Sturm. All freely available via Helmberg's SDP page:
http://www-user.tu-chemnitz.de/~helmberg/semidef.html
GloptiPoly and SOStools extremely useful to prove global optimality in small problems.

Discussion

- We have extended results by Nesterov and Lasserre to include rational objective functions.

Discussion

- We have extended results by Nesterov and Lasserre to include rational objective functions.
- Techniques from real algebraic geometry available to compute all KKT points, but SDP approach computationally attractive.
See: P. Parrilo and B. Sturmfels. Minimizing polynomial functions, 2001. (Available at arXiv.org e-Print archive)

Discussion

- We have extended results by Nesterov and Lasserre to include rational objective functions.
- Techniques from real algebraic geometry available to compute all KKT points, but SDP approach computationally attractive.
See: P. Parrilo and B. Sturmfels. Minimizing polynomial functions, 2001. (Available at arXiv.org e-Print archive)
- SDP approach competitive with state-of-the-art global optimization software.

Discussion

- We have extended results by Nesterov and Lasserre to include rational objective functions.
- Techniques from real algebraic geometry available to compute all KKT points, but SDP approach computationally attractive.
See: P. Parrilo and B. Sturmfels. Minimizing polynomial functions, 2001. (Available at arXiv.org e-Print archive)
- SDP approach competitive with state-of-the-art global optimization software.
- Need for large-scale (parallel?) SDP solvers to solve the large SDP relaxations.

