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Abstract 

In an effort to better understand the dynamics of sap flow, with a particular interest in winter sap flow in 

maple trees, a PDE model is created and tested.  The model follows the work done by Chuang et al., and treats 

the wood as a porous medium.  Darcy’s Law and conservation laws are used to link sap flux to transpiration.  

A comparison of results to those of Chuang et al. is made to determine the validity of the model. 

 

Introduction 

Developing a complete model for water transport 

in tree boles remains an attractive topic in the 

field of physiological ecology. 

A commonly used model for the water transport is 

the RC-model, which likens the system to an 

electrical circuit.  This model is often employed 

because while relatively simple, employing only 

ODEs, it is still able to produce results similar to 

experimental data.  In particular, the RC model is 

able to mimic the lag between water uptake 

through the roots, flux through the tree, and 

transpiration in the crown. 

A detailed RC-model is formulated and explored 

by Loustau et al. [1] who claim the model provides 

a basis for interpreting vertical variations in sap 

flux.  They also provide a method to obtain model 

parameters R and C through experimentation. 

The common use of RC-models is in spite of a 

number of criticisms made against the model.  

Major problems with the model noted by Chuang 

et al. include unaccounted for loses of water when 

artificially shifting and altering flux curves to 

match transpiration curves, and the possibility of 

negative saturations with no real physical 

meaning.  Aumann and Ford [2] also show that the 

definition for the capacitance leads to an  

unrealistic notion that a during a change in 

pressure lasting minutes, water saturation would 

change as much as if that same change in pressure 

lasted days. 

Arguably the greatest problem with the RC-model 

is fundamental – there simply is no physical 

reason to choose this model.  Trees are not 

electrical circuits, and the analogy is never fully 

explained.  RC-models with varying amounts of 

complexity can produce results that have been 

shown to be reasonably accurate, but the fact that 

the model begins without a physical basis limits 

the ability to improve it, and makes the model a 

difficult choice to justify. 

An alternative model based on actual physiology is 

a PM (porous media) model.  Such a model 

considers the wood to be similar to soils or other 

porous media.  They combine Darcy’s Law for fluid 

flow in a porous medium, conservation laws, and 

include an addition term to account for sinks 

through the leaves. 

Chuang et al. [3] have derived a PM model which 

they use as a link between sap flux and 

transpiration.  The model does not have the 

artificial loss of water they critiqued the RC 

models for, nor does it allow negative saturation, 

or have the unrealistic capacitance. 

This report primarily attempts to reproduce the 

findings of Chuang et al. by applying a PM model 

similar to the one used by them. 
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Nomenclature 
  

A Cross sectional area (𝑚2) 
C Hydraulic capacitance (𝑚−1) 
D Local tree diameter  𝑚  
E Transpiration rate  𝑘𝑔 𝑚2𝑠   
j Volume flux (𝑚3 𝑠 ) 
K Hydraulic conductivity  𝑚/𝑠  
l Leaf area per stem length  𝑚  
p Pressure  𝑘𝑔 𝑚2𝑠2   
Q Sink term (𝑠−1) 
s Saturation  𝑚3 𝑚3   
t Time  𝑠  
v Darcy velocity  𝑚 𝑠   
z Position  𝑚  
∆z Distance between cells  𝑚  
λ Transpiration scaling term 
ψ Pressure head 
τ Period of fluctuation  8.64 × 104  𝑠  
 
Constants and Parameters 
 

g Gravitational constant  9.8 𝑚 𝑠2   
H Tree height  6.7 𝑚  
𝐾𝑚𝑎𝑥   Max. conductivity  5.36 × 10−7 𝑚/𝑠  
n Fitting parameter (400) 
N Number of cell divisions (100) 
𝑝𝑜   Retention Potential coefficient 

 6.8 × 106  𝑘𝑔 𝑚2𝑠2   
𝑠𝑚𝑎𝑥   Max. Saturation (0.5735) 
β Fitting parameter (3.5) 
ε Fitting parameter (10−5) 
ρ Water density  1 × 103 𝑘𝑔 𝑚3   
𝜓𝑜   Min. Pressure head  2.93 × 105  

 

 

Mathematical Model 

The model used to represent the tree involved 

several approximations, some of which are 

reasonable, many of which are very useful 

approximations but are questionably accurate.  

Ideally these could be refined in future study.  The 

first such approximation is made in describing the 

tree as a one dimensional object.  Cross sectional 

area is considered, but each cross section is 

considered uniform, and sap flow is described as 

being vertical but not radial. 

The equations governing the flow of sap are then 

created by combining conservation laws with 

Darcy’s Law for porous media flow.  First, we 

consider a thin disc shaped cross section of the 

tree.  The change in the volume of liquid in this 

region, 

  𝑠𝐴 𝑑𝑧
𝑏

𝑎

 , 

must equal the net flow of fluid into the region, 

𝑣𝐴|𝑧=𝑎 −  𝑣𝐴|𝑧=𝑏  . 

Here s is the saturation (the volume fraction 

𝑉𝑓𝑙𝑢𝑖𝑑 𝑉𝑇𝑜𝑡𝑎𝑙 ), A (𝑚2) is the cross sectional area, 

and 𝑣(𝑚 𝑠 ) is the velocity of the fluid.  By the 

Fundamental Theorem of Calculus, this is 

equivalent to 

− 
𝜕

𝜕𝑧
 𝑣𝐴 𝑑𝑧 .

𝑏

𝑎

 

Allowing for a source term, we then have 

𝜕

𝜕𝑡
  𝑠𝐴 𝑑𝑧

𝑏

𝑎

= − 
𝜕

𝜕𝑧
(𝑣𝐴)𝑑𝑧

𝑏

𝑎

+  𝑄𝐴𝑑𝑧
𝑏

𝑎

 . 

The choice of 𝑎 and 𝑏 is arbitrary, so we can 

reduce this to 

𝜕

𝜕𝑡
 𝑠𝐴 +  

𝜕

𝜕𝑧
 𝑣𝐴 =  𝑄𝐴 

or further reduce to 

𝜕𝑠

𝜕𝑡
+  

1

𝐴

𝜕

𝜕𝑧
 𝑣𝐴 =  𝑄 .         (1) 

The next part of the model comes from Darcy’s 

Law for porous media, which describes the 

volume flux  𝑗 (𝑚3 𝑠 ) 

𝑗 = −
𝐾𝐴

𝜌𝑔

𝜕𝑝

𝜕𝑧
 . 

Here g (𝑚 𝑠2 ) is the gravitational constant, p (𝑃𝑎) 

is the pressure, and K (𝑚 𝑠 ) is the Hydraulic 

Conductivity. 
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Because the flow is occurring in the vertical 

direction where gravitational forces will have an 

impact, we adapt this to 

𝑗 = −
𝐾𝐴

𝜌𝑔

𝜕

𝜕𝑧
(𝑝 + 𝜌𝑔𝑧) 

Next, we define the pressure head 𝜓 (𝑚) by  

𝜓 =
𝑝

𝜌𝑔
  . 

In our case, 𝜌 is the density of water and we can 

take it to be a constant.  We then have that 

𝑗 = −
𝐾𝐴

𝜌𝑔

𝜕

𝜕𝑧
 𝜓𝜌𝑔 + 𝜌𝑔𝑧 = −𝐾𝐴

𝜕

𝜕𝑧
 𝜓 + 𝑧  .   (2) 

If we note that = 𝑗/𝐴 , we get an equation for 𝑣: 

𝑣 = −𝐾
𝜕

𝜕𝑧
 𝜓 + 𝑧 =  −𝐾  1 +

𝜕𝜓

𝜕𝑧
  .          (3) 

We can then substitute (2) back into (1) 

𝜕𝑠

𝜕𝑡
− 

1

𝐴
 
𝜕

𝜕𝑧
 𝐾𝐴  − 

1

𝐴
 
𝜕

𝜕𝑧
 𝐾𝐴

𝜕𝜓

𝜕𝑧
 =  𝑄 . 

By assuming 𝜓 is a function of saturation, and vice 

versa, we can define another variable, the 

hydraulic capacitance, as 𝐶 =
𝜕𝑠

𝜕𝜓
  (𝑚−1).  We then 

have 

𝜕𝑠

𝜕𝑡
− 

1

𝐴
 
𝜕

𝜕𝑧
 𝐾𝐴  − 

1

𝐴
 
𝜕

𝜕𝑧
 
𝐾𝐴

𝐶

𝜕𝑠

𝜕𝑧
 =  𝑄 .         (4) 

This is a PDE for 𝑠 only; we need only to define the 

transport coefficients, K and C, the cross sectional 

area A, and the source term Q for the model to be 

well defined. 

 

Transport Coefficients, Area, and Sink Term 

The hydraulic conductivity, K(s), and the hydraulic 

capacitance, C(s), are both dependant on 

saturation and are generally determined through 

experimentation.  A primary goal of this research 

is to compare the results of this model to the 

results found by Chuang et al. [3], so for that 

reason we use here the expressions for these 

parameters described in their paper.  For 

hydraulic conductivity they proposed the Weibull 

function 

𝐾 𝑠 = 𝐾𝑚𝑎𝑥 𝑒𝑥𝑝  − 
−𝜌𝑔𝜓

𝑝𝑜

 
𝛽

  , 

where 

𝜓 𝑠 =  𝜓𝑜  1 −  
𝑠𝑚𝑎𝑥

𝑠  
1

𝑛 
  . 

Here, 𝐾𝑚𝑎𝑥 = 5.36 × 10−7  𝑚/𝑠,  𝑝𝑜 = 6.8 × 106 ,  

𝛽 = 3.5, and 𝜓𝑜 = 2.93 × 105.  𝑠𝑚𝑎𝑥  represents the 

maximum possible saturation, and is equal to 

0.5735. 

For the hydraulic capacitance, Chuang et al. 

proposed the equation 

𝐶 𝑠 =
𝑛 𝑠𝑚𝑎𝑥

𝜓𝑜

 
𝑠

𝑠𝑚𝑎𝑥

 

 𝑛+1 
𝑛 

 

with 𝑛 = 400 as a fitting parameter. 

Chuang et al. also provide tree diameter, D, as a 

function of height, 

𝐷 = 0.129 𝑒𝑥𝑝 −1.42𝑧 𝐻   

where H is the height of the tree, in this case 6.7m.  

This is easily converted to an equation for A, 

𝐴 𝑧 = 𝜋  
0.129

2
𝑒𝑥𝑝 −1.42𝑧 𝐻   

2

 . 

Lastly, the sink term, 𝑄 𝑧, 𝑡 , is given by 

𝑄 𝑧, 𝑡 = − 𝑙 𝐸
𝜌 𝐴  .               (5) 

Here 𝑙 𝑧   𝑚2 𝑚   is the leaf area density and 

represents the quantity of leaf area per unit length 

of trunk at a given height, and is given by 

𝑙(𝑧) = 91.9
𝐻 𝑠𝑒𝑐𝑕2 6 𝑧

𝐻 − 2.4  . 

This equation fails to consider localized details, 

such as the exact locations and sizes of the 

branches which we assume are the means by 

which water is extracted from the tree, but we 
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assume that these variations will have little effect 

on the behaviour of the tree on the larger scale. 

𝐸 𝑡, 𝑧    𝑘𝑔 𝑚2𝑠   is the transpiration rate, and 

gives the rate at which water leaves the tree per 

unit area.  Chuang et al. calculated this as a result 

of their paper; however we instead use a sine 

curve as an approximation.  𝐸 seems to vary with 

the quantity of daylight, so that it is high in 

midday and nearly zero at night.  The sine wave 

provides a convenient approximation for this, 

although it should be noted it fails to capture some 

of the characteristics of the actual curve, 

particularly during the night where the actual 

transpiration rate remains close to zero for 

several hours.  The equation for the transpiration 

rate is 

𝐸 𝑡, 𝑧 = 𝜀 𝜆 𝑠𝑖𝑛2 𝜋 𝑡 𝜏   ,  (6) 

with fitting parameter 𝜀 = 10−5  and period 

𝜏 = 8.64 × 104 , the number of seconds in a day. 

𝜆(𝑧) is a scaling term introduced to give a height 

dependence to 𝐸, as necessary to match 

experimental data.  This dependence likely exists 

due to leaves lower in the tree being shaded by 

those above them, resulting in reduced effective 

light and a lower transpiration rate.  The equation 

for 𝜆 which was found to provide results most 

similar to experimental data taken from [1] is 

𝜆 𝑧 = 2.3 𝑎𝑡𝑎𝑛 10 𝑧 + 1.67  . 

 

Boundary Conditions 

In addition to (3), we enforced boundary 

conditions at the roots  𝑧 = 0  and at the crown 

 𝑧 = 𝐻 . 

We assume that at all times the roots are able to 

uptake however much water is required by tree, 

and therefore that a reasonable boundary 

condition at the bottom of the tree would be 

maximum saturation in the wood, 

𝑠 = 𝑠𝑚𝑎𝑥  |𝑧=0  .                         (7) 

At the top of the tree, we impose a limitation on 

the flux.  It would make little physical sense to 

suppose that sap flows out of the top of the tree 

(and not through the leaves, a possible sink which 

is already included in the source term), so we 

enforce a zero flux condition.  Setting the flux 

equal to zero, we find our upper boundary 

condition 

𝑗 = −𝐾𝐴
𝜕

𝜕𝑧
 𝜓 + 𝑧 = −𝐾𝐴 − 

𝐾𝐴

𝐶

𝜕𝑠

𝜕𝑧
= 0      (8) 

 1

𝐶

𝜕𝑠

𝜕𝑧
  
𝑧=𝐻

= −1 . 

Turning attention from Chuang et al., we consider 

another possible upper boundary condition.  In 

the case of a maple tree, the area of interest might 

be only the lower trunk.  In this case there would 

be little or no branches within the area of interest, 

and the sink term (5) would be equal to zero.  

Instead of a distributed sink term, the sink could 

be incorporated into the upper boundary 

condition by setting the flux to some positive 

value, 𝑗𝑜  

𝑗 =  𝐾𝐴 +  
𝐾𝐴

𝐶

𝜕𝑠

𝜕𝑧
 
𝑧=𝐻

= 𝑗𝑜 𝑡 . 

Nadezhdina Et al. [4] provide data for sap flux 

which we can use to find an approximation of  𝑗𝑜 .  

Their data shows 6 𝑐𝑚3 𝑐𝑚2𝑕𝑟 = 2.16 ×

10−7  𝑚3 𝑚2𝑠  is a typical peak value, so we use 

for 𝑗𝑜  

𝑗𝑜 = 2.16 × 10−7  𝑠𝑖𝑛2 𝜋 𝑡 𝜏   .            (9) 

 

Discretization 

To solve for the saturation 𝑠 throughout the tree, 

(4) was first discretized in space and then the 

resultant system of ODEs was solved over time. 

We divided the tree, which covers the vertical 

length [0,H], into 𝑁 = 100 equally spaced cells of 

length ∆𝑧 = 𝐻/𝑁.  We consider only the values for 

saturation at the centers of these cells, which are 

taken as approximate representative averages of 

the saturation throughout the subdivision.   
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We thus are considering the points 𝑧1 , … , 𝑧𝑁  , 

where 𝑧𝑖 =  𝑖 −
1

2
 ∆𝑧 , on which are defined the N 

variables 𝑠1 , … , 𝑠𝑁  , where 𝑠𝑖(𝑡) = 𝑠(𝑡, 𝑧𝑖). 

The discrete formula for (4) is, 

 

𝑑𝑠𝑖
𝑑𝑡

−
1

𝐴𝑖∆𝑧
 𝐾

𝑖+
1
2
𝐴

𝑖+
1
2
− 𝐾

𝑖−
1
2
𝐴

𝑖−
1
2
  

−    
1

𝐴𝑖 ∆𝑧 
2

  

𝐾
𝑖+

1
2
𝐴

𝑖+
1
2

𝐶
𝑖+

1
2

 𝑠𝑖+1 − 𝑠𝑖 
  

−  
𝐾

𝑖−
1
2

𝐴
𝑖−

1
2

𝐶
𝑖−

1
2

 𝑠𝑖 − 𝑠𝑖−1  = 𝑄𝑖               (9) 

Here the spatial derivatives have been replaced by 

central difference approximations,  

𝑑𝑓(𝑧)

𝑑𝑧
=

1

∆𝑧
 𝑓 𝑧 + 𝑕 − 𝑓 𝑧 − 𝑕   . 

The subscripts 𝑖 ±
1

2
 on A, K and C variables mean 

that they are to be defined on the cell boundaries.  

We give these values as 

𝐴
𝑖±

1
2

= 𝐴 𝑠
𝑖±

1
2
 =  𝐴  

𝑠𝑖±1 + 𝑠𝑖
2

  

And similarly for K and C. 

The boundary conditions describe conditions at 

the cell edges at the limits of the defined area.  To 

derive a discrete formulation of these we need to 

consider two additional imaginary cells, each also 

of length ∆𝑧, at the lower and upper boundaries of 

the tree.  We call the saturations at the midpoints 

of these cells 𝑠0  and 𝑠𝑁+1  respectively.  

We find the discrete form of the lower boundary 

condition, (7), by noting that 

𝑠1/2 =  𝑠0 + 𝑠1 2 = 𝑠𝑚𝑎𝑥  

Simplifies easily to 

𝑠0 = 2 𝑠𝑚𝑎𝑥 − 𝑠1   .                       (10) 

The upper boundary condition, (8), becomes 

1

∆𝑧 𝐶
𝑁+

1
2

 𝑠𝑁+1 − 𝑠𝑁  = −1 

Or 

𝑠𝑁+1  = 𝑠𝑁 − ∆𝑧 𝐶𝑁  .                   (11) 

Note that in (11) we have defined C using the 

interior value 𝑠𝑁  rather than the boundary value, 

reducing the solution at this point to first order 

accuracy.  The benefit of this is in keeping the 

equation linear for 𝑠𝑁+1 , and the loss in accuracy 

at this single point should have negligible effect on 

the results for the interior points. 

In summation, the system of ODEs given by (9) 

applied to each 𝑠𝑖  along with (10) and (11) give 

N+2 equations for N+2 variables.  We wrote the 

equations out in a Matlab code and solved them 

using a standard ODE solver, ode15s, providing 

ourselves with values for saturation at each height 

for each time step over the simulations duration.   

We used a time step of one hour, and used a total 

duration of six days, although in each case results 

of the first day were identical to those for the final 

day – the system quickly arrived at the resultant 

behaviours independent of the initial conditions 

used. 

 

Results 

Computing the results of the system of ODEs, 

we found values of saturation at each height 

for each time step.  The available 

experimental data was given as flux 

measurements, so in order to make 

comparisons we then used (7) to compute 

flux measurements at each height and time. 

Some sets of the flux measurements were 

multiplied by ρ⁄(A(z)) in order to change the 

units from  m^3⁄s to  kg⁄(m^2 s)in order to 

match units with available data for 

comparison. 
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The first goal was to find a steady state, 

reached with a constant zero transpiration.  

This was done primarily as a starting point 

from which additional complexity could be 

added, but it does highlight what would 

happen during extended periods of zero 

transpiration, such as during winter, under 

this model.  The motion here was driven only 

by diffusion and gravity.  The result (not 

shown) was a linear decrease in saturation 

with height, and a near zero flux throughout 

the tree. 

Following this, we set the transpiration to a 

small positive constant value  10−6 , 

introducing a constant driving pressure to the 

system.  Next the transpiration rate was set 

equal to the sine function in (6), with λ=1 so 

that it varied with time but not height.  This 

gave the system daily fluctuations as would 

be expected in a realistic model. 

 

Fig. 1: Saturation and flux data plotted against height, 

data calculated with constant transpiration value. 

 

 

 

Fig. 2: Saturation and flux data plotted against height, 

transpiration value included time dependency as in (6) 

but no height dependency. 

Finally, we added height dependence by 

taking values of peak sap flux as reported in 

[1] at different heights in the tree and fitting 

an arctangent to the data, a choice made after 

extensive testing of different possible fits.  

The arctangent best captured the steep 

incline necessary to capture the behaviour of 

the sap flux. 

 

Fig. 3: Fit of arctangent used to provide vertical scaling 

to transpiration.  
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The result of this dependence was a shift 

from fluctuations of a fairly constant shape to 

a system which is bimodal during the midday 

and almost parabolic at night. 

 

Fig. 4: Flux data plotted against height, calculated with a 

transpiration dependant on both time and height. 

These results are an excellent qualitative 

match to the measured data presented by 

Chuang et al. [3].  It should be noted that the 

time of day in figure 5 does not match the 

same times as in figure 7.  This is a problem 

with the inaccuracy in our approximation for 

E.  Chuang et al. calculated a transpiration 

rate that remained at nearly zero for several 

hours during the night.  (6) instead has E only 

briefly reach zero during the night, as a result 

the flux does not reach values quite as low as 

seen by Chuang et al.  However, the 

transpiration rate does drop sufficiently for 

us to observe the relaxation phenomenon 

resulting in the single node.  

Fig. 5: Sap flux plotted against height.  The left plot has a 

curve for 12 to 4pm, and the right 10pm to 1am. 

 

Fig. 6: Taken from [3], experimentally measured midday 

flux data vs relative height. 

 

Fig. 7: Taken from [3], experimentally measured night 

time flux data vs relative height. 
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Physically, each mode shown during midday 

can be explained.  The lower mode, present 

before height dependence, is simply a result 

of l; this peak is at the location where l is 

greatest and therefore Q is high.  The higher 

node is a result of the transpiration E being 

much greater at the top of the tree, a result of 

multiplying E by λ.  By adding a small 

constant to λ and therefore reducing the 

shrinking effects on the lower regions of the 

tree, or subtracting a constant to increase the 

effect, it is possible to make either node 

dominant.  Fitting parameters were chosen 

for λ such that the final flux matched 

experimental data. 

 

Fig. 8: This plot shows the leaf area per stem length 

(dotted line), the transpiration scaling coefficient 

(dotted line), and their product (solid line).  The 

bimodal characteristic is clearly visible here.  

 Fig. 9: Demonstration of emphasizing either mode by 

adding or subtracting a small constant to 𝜆.  Here the 

left plot was made by subtracting 0.2 from 𝜆, and the 

right by adding 0.3. 

Next, we altered the model by removing the 

distributed sink term and changing the zero 

flux upper boundary condition to incorporate 

the transpiration.  The formulation for A was 

also changed; when considering a section of 

trunk only it no longer makes sense to have 

the peak be such a small fraction of the area 

of the base – instead the area was taken to be 

a constant value equal to 𝐴(𝑧 = 0).  Again, we 

started with a constant transpiration.  In this 

case, flux throughout the trunk was very 

nearly constant, as would be necessary for 

the conservation of water volume. 

We then reintroduced the time dependence of 

the transpiration by setting the upper 

boundary flux to (8).  Initially the size of the 

flux was kept very small, then was slowly 

increased, allowing us to observe the 

transition. 

 

Fig. 10: Sap flux plotted against height.  Here the sink 

term has been incorporated into the upper boundary. 

Here we can see that as the system is forced 

from the top of the trunk area, the sap flux 

trough the rest of the tree simply lags behind; 

the flux at any height is approximately a 

sinusoidal function of time.  This is a simpler 

result than the patterns observed with a 

distributed sink term, and therefore this 

would likely be the better implementation of 

the sink term in cases where we are 

interested only in the trunk section of a tree. 
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