
Math 467 Homework Set 1: some solutions
> with(DEtools): with(plots):
Warning, the name changecoords has been redefined


Problem 1: 2.2.7
Find the fixed points, determine their stability, for

=
∂
∂
t

( )x t −cos x ex

> plot(cos(x) - exp(x),x = -5*Pi..Pi,y=-2..2);
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It is easier to visualize plotting the curves of cos x and ex separately:
> plot({cos(x),exp(x)},x = -5*Pi..Pi,y = -1.4..2);
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The fixed points are at the intersections of these two curves.  Let’s find the first few numerically, 
specifying the intervals for the numerical solution, which we know from the behaviour of cos x:
> x0 := fsolve(exp(x)-cos(x),x,-1..1);

x1 := fsolve(exp(x)-cos(x),x,-Pi..-1);




x1 := fsolve(exp(x)-cos(x),x,-Pi..-1);

x2 := fsolve(exp(x)-cos(x),x,-2*Pi..-Pi);

x3 := fsolve(exp(x)-cos(x),x,-3*Pi..-2*Pi);

x4 := fsolve(exp(x)-cos(x),x,-4*Pi..-3*Pi);

 := x0 0.

 := x1 -1.292695719

 := x2 -4.721292759

 := x3 -7.853593280

 := x4 -10.99559106

We observe that the roots xk for ≤2 k are close to the zeros of cos x, since ex is small:
> evalf(seq(-(k-1/2)*Pi,k=2..4));

, ,-4.712388981 -7.853981635 -10.99557429

From the sign of −ex cos x, we can see that the fixed points xk are stable if k is odd, and unstable if 
k is even.
We can deduce the qualitative behaviour of the solutions from the fixed points and their stability.  
Direct numerical integration using Maple gives:
> eqp1 := diff(x(t),t) = exp(x(t)) - cos(x(t));

initconds := 
[[x(0)=1],[x(0)=0],[x(0)=-1],[x(0)=-2],[x(0)=-4],[x(0)=x2],[x(0)
=-5],[x(0)=-7],

[x(0)=-8]]:

DEplot(eqp1,x(t),t=0..8,x=-9..2,initconds,linecolor=black,stepsi
ze=0.01);

> 

 := eqp1 =
∂
∂
t

( )x t −e
( )x t

( )cos ( )x t

–8

–6

–4

–2

0

2

x(t)

2 4 6 8
t

A closed-form analytical solution is not available, since it would require the integration of 
1

−ex cos x
 .



Problem 2: 2.2.8
We seek a dynamical system yielding the given flow.  A possible answer is given by 


=
d ( )x t

dt
( )+x 1 2 ( )x −x 2

> eqp2 := diff(x(t),t) = (x(t)+1)^2 * x(t) * (x(t)-2):

initconds2 := 
[[x(0)=-1.5],[x(0)=-1],[x(0)=-0.8],[x(0)=0],[x(0)=1.2],

[x(0)=2],[x(0)=2.001]]:

DEplot(eqp2,x(t),t=0..5,x=-2..3,initconds2,linecolor=black,steps
ize=0.01);
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This is one of many possible answers; others are obtained by multiplying the vector field by ( )g x , 
where g is positive except possibly at one or more of the fixed points.

Problem 3: 2.2.13 - the Skydiver
> m := ’m’: g := ’g’: k := ’k’:

eqp3 := diff(v(t),t) = g - k*v(t)^2/m;

 := eqp3 =
∂
∂
t

( )v t −g
k ( )v t 2

m
The command odeadvisor indicates the solution method for this first-order ODE.
> odeadvisor(eqp3);

[ ]_quadrature

To find the solution, we separate variables, and integrate; the integration of ( )−a2 v2
( )-1

(where 

=a
gm

k
) is best performed using partial fractions.  Maple can also solve this equation 

analytically:
dsolve(eqp3);



=( )v t









tanh

g m k ( )+t _C1

m
g m k

k

In fact, this solution is only valid if m, g and k are all positive, and if <−
mg

k
( )v t .  It seems that 

Maple automatically made these assumptions; in this case they are justified, but this example 
shows that in general Maple’s analytical solutions are not always reliable: do the calculations by 
hand, and show your working! (you can use Maple to check, if you like).  That is, the solution 
produced by Maple is only the general solution for <a ( )v 0  (the problem is to take care with 
absolute value signs ...).  We can find the particular solution satisfying the initial condition 

=( )v 0 0:
> solp3 := rhs(dsolve({eqp3,v(0)=0}));

 := solp3









tanh

g m k t

m
g m k

k
Now we can use Maple to find the asymptotic behaviour:
> limit(solp3,t=infinity);

lim
→t ∞









tanh

g m k t

m
g m k

k
Evidently, now (finally!) Maple is concerned about the sign of the variables.  Let’s try specifying 
that all variables are positive:
> limit(solp3,t=infinity) assuming (g>0,m>0,k>0);

g m k

k
This gives the correct terminal velocity.  We can write the formula for ( )v t  in terms of the terminal 
velocity V:

vsol := simplify(subs(m=k*V^2/g,solp3)) assuming (k>0,V>0);

 := vsol






tanh

t g

V
V




This answer is much more easily obtained by the graphical method.  We plot 
dv

dt
 against v 

(choosing some values of the variables):

g := 10: m := 0.1: k := 1:

plot(g - k*v*v/m,v=-1.5..1.5);

m := ’m’: g := ’g’: k := ’k’:
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Now let’s use the numbers given:

The average velocity is (in ft/sec)

Vavg := (31400-2100)/116; evalf(Vavg);

 := Vavg
7325

29

252.5862069

The distance travelled as a function of time is ( )s t  satisfying =
ds

dt
v and =( )s 0 0.


s1 := int(vsol,t) assuming (V>0,g>0);

 := s1 − −
1

2

V2 





ln −
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t g

V
1

g
This solution doesn’t look too correct: it is giving negative arguments of the ln function (and is 
thus complex-valued).  Let’s try to help Maple a bit, by performing the appropriate substitution by 
hand...

s2 := Int(vsol,t) assuming (V>0,g>0);


> s3 := value(student[changevar](tau=t*g/V,s2,tau));
> s := subs(tau=t*g/V,s3);

 := s2 d

⌠

⌡








tanh

t g

V
V t

 := s3
V2 ( )ln ( )cosh τ

g

 := s

V2 





ln







cosh

t g

V

g
> g := 32.2: t := 116: s; dist := 31400-2100;




> g := 32.2: t := 116: s; dist := 31400-2100;

solve(s=dist,V);

.03105590062 V2 





ln







cosh

3735.2

V

 := dist 29300

-252.5862069
In the command solve, Maple attempts an analytical solution; in this case it gets it wrong (I’m not 
sure why; but the given value is the average velocity computed previously, which cannot also be 
the terminal velocity).  For a problem with purely floating-point solutions, we should use fsolve 
(and look for the positive solution):

Vterm := fsolve(s=dist,V,V=0..infinity);

 := Vterm 265.6854815
From this value of the terminal velocity, we can compute the drag constant k.  Note that the weight 
(in pounds) is mg.

weight := 261.2:

kdrag := solve(sqrt(weight/k)=Vterm,k);

 := kdrag .003700305037
> m := ’m’: g := ’g’: k := ’k’: s := ’s’: t := ’t’:

Problem 4: 2.3.2 - Autocatalysis

The fixed points are readily found to be 0 and 
k_1 a

( )k_ -1
> fp4 := k_1*a*x - km_1*x^2;

solve(fp4,x);

 := fp4 −k_1 a x km_1 x2

,0
k_1 a

km_1
=x 0 is unstable, the other fixed point is stable.


We can do a quick graphical analysis, and plot some typical solutions, if we assume values for the 
constants:

a := 1: k_1 := 1: km_1 := 1:

plot(fp4,x=-0.5..1.5);
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> DEplot(diff(x(t),t)=a*k_1*x(t)-km_1*x(t)^2,x(t),t=0..5,x=-0.2..2
,[[x(0)=-0.0],[x(0)=0.1],[x(0)=0.7],[x(0)=1.7]],linecolor=black)



,[[x(0)=-0.0],[x(0)=0.1],[x(0)=0.7],[x(0)=1.7]],linecolor=black)
;
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Problem 5: 2.3.3 - Tumour growth

We plot the vector field and some solutions for some values of a and b:
> a := 2.1: b := 0.75:

plot(-a*N*ln(b*N),N=0..2);
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Clearly the fixed point =N 0 is unstable, and =N
1

b
 is stable.

> DEplot(diff(N(t),t)=-a*N(t)*ln(b*N(t)),N(t),t=0..5,N=-0.1..2,[[N
(0)=0.01],[N(0)=1.2],[N(0)=1.8]],linecolor=black);
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Problem 6: 2.4.7 - Pitchfork bifurcation
> f6 := (x,a) -> a*x - x^3;

 := f6 →( ),x a −a x x3

We plot the three vector fields next to each other, using the array function:

p6a := plot(f6(x,-1),x=-1.5..1.5,y=-2..2,tickmarks=[0,0]):

p6b := plot(f6(x,0),x=-1.5..1.5,y=-2..2,tickmarks=[0,0]):

p6c := plot(f6(x,1),x=-1.5..1.5,y=-2..2,tickmarks=[0,0]):
> plots6 := array(1..1,1..3):

plots6[1,1]:=p6a: plots6[1,2]:=p6b: plots6[1,3]:=p6c:

display(plots6);
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For ≤a 0, there is a unique fixed point at =x 0, which is stable; for <a 0 this is found by linear 
stability analysis (since f’(0) = <a 0), while for =a 0, linear stability analysis does not prove 
stability (decay towards the origin is slower than exponential - see the next problem), but a look at 

the plot of −x3 shows that the origin is stable.




If <0 a, there are three fixed points, at =x 0, =x − a  and =x a .  Now f’(0) = a is positive, so the 
origin is unstable, while the other two fixed points are stable, with f’ = −2 a.  This is also apparent 
from the graphs. 
> 

Problem 7: 2.4.9 - Critical slowing down
Reset variables:

x0 := ’x0’:
> eqp7 := diff(x(t),t) = - x(t)^3;

 := eqp7 =
∂
∂
t

( )x t − ( )x t 3

Find the analytical solution with arbitrary initial condition:

xsa := dsolve({eqp7,x(0)=x0},x(t)) assuming x0>0;

xsb := dsolve({eqp7,x(0)=x0},x(t)) assuming x0<0;

xsz := dsolve({eqp7,x(0)=0},x(t));

 := xsa =( )x t
1

+2 t
1

x02

 := xsb =( )x t −
1

+2 t
1

x02

 := xsz =( )x t 0
> limit(xsa,t=infinity);

limit(xsb,t=infinity);

=lim
→t ∞

( )x t 0

=lim
→t ∞

( )x t 0

So the solutions approach zero for arbitrary initial conditions; however, the decay is proportional 

to 
1

t
, not exponential.

We plot the solutions of this equation and of =
dx

dt
−x on the same graph:


lineq := diff(x(t),t) = -x(t):

linsoln := dsolve({lineq,x(0)=10},x(t));

critsoln := dsolve({eqp7,x(0)=10},x(t));

 := linsoln =( )x t 10 e
( )−t



 := critsoln =( )x t
1

+2 t
1

100
> plot([rhs(linsoln),rhs(critsoln)],t=0..10);
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Note that the solution to =
dx

dt
−x3 decays much more rapidly initially, but then slows down once 

<x 1.
Problem 8: 2.5.1 - Reaching origin in finite time

The origin =x 0 is a stable fixed point for any real <0 c.  We plot a few representative vector 
fields:
> plot(-x^(1/2),x=0..2,tickmarks=[0,0]);

plot(-x^1,x=0..4,-4..0.5,tickmarks=[0,0]); 
plot(-x^2,x=0..2,y=-4..0.5,tickmarks=[0,0]);



We know that for =c 1, the decay towards the origin is exponential, and x approaches 0 
asymptotically.  When <1 c, the decay is slower than exponential, as we derived in Problem 7.  So 
the only possibility for the solution to decay to zero in finite time is for <c 1.

The time taken from =x 1 to =x 0 is 

T = int(-1/x^c,x=1..0);

=T −








lim

→ +x 0
−

−x
( )− +c 1

1

−c 1

When <1 c, the limit diverges; when =c 1, T is also infinite ( =T −lim ln x).  When <c 1, the time is 
finite:

T = int(-1/x^c,x=1..0) assuming c < 1;

=T −
1

−c 1
Problem 9: 2.5.1 - Blow-up

We know that solutions ( )y t  of =
dy

dt
+1 y2 blow up in finite time.  Now for <1 x, the solutions ( )x t  

of =
dx

dt
+1 x10 grow more rapidly than ( )y t , since <x2 x10 for <1 x.  Thus the solutions ( )x t  must 

also blow up in finite time.  This is not yet a complete argument, though, since it is only valid for 

<1 x; but since ≤1 +1 x10, we know that solutions beginning at any initial condition x0 will reach 
=x 1 at the latest at time =t −1 x0; and since we reach =x 1 in finite time, we can then begin the 

comparison with ( )y t .
An alternative argument: suppose =( )x 0 x0.  The time taken to diverge (reach =x ∞) is given by

T = Int(1/(1+x^10),x=x0..infinity);



=T d

⌠

⌡


x0

∞

1

+1 x10 x

If this is finite for all x0, then we have finite-time blow-up.  But we have

T < Int(1/(1+x^10),x=-infinity..infinity): so

Int(1/(1+x^10),x=-1..1) + 2*Int(1/(1+x^10),x=1..infinity): 

and introducing appropriate comparisons, we find

T < Int(1/1,x=-1..1) + 2*Int(1/(1+x^2),x=1..infinity);

<T +d
⌠
⌡


-1

1

1 x 2 d

⌠

⌡


1

∞

1

+1 x2 x

Thus an estimate of the upper bound for the blow-up time for any initial condition is 
> int(1,x=-1..1) + 2*int(1/(1+x^2),x=1..infinity);  evalf(%); 

(clearly finite)

+2
π
2

3.570796327
The actual upper bound is

int(1/(1+x^10),x=-infinity..infinity); evalf(%);

1

5

π






sin

π
10

2.033281478
We plot some numerical solutions:
DEplot(diff(x(t),t)=1+x(t)^(10),x(t),t=0..3,x=-3..5,[[x(0)=-1.1]]
,stepsize=0.01,linecolor=black);
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