[ Math 467 Homework Set 1. some solutions
> wth(DEtools): with(plots):
{V\arni ng, the nane changecoords has been redefined
. Problem 1: 2.2.7
[ Find the fixed points, determine their stability, for

a X
— X(t) =cosx — €

r> plot(cos(x) - exp(x),x = -5*Pi..Pi,y=-2..2);

' Itiseasier to visudize plotting the curves of cosx and € separately:
> plot({cos(x),exp(x)},x = -5*Pi..Pi,y =-1.4..2);

14 -12 -10 8 -6 -4 -2 [0

" The fixed points are at the intersections of these two curves. Let’sfind the first few numerically,
specifying the intervals for the numerical solution, which we know from the behaviour of cosx:
> x0 : = fsolve(exp(x)-cos(x),x,-1..1);

x1 := fsolve(exp(x)-cos(x),x,-Pi..-1);




x2 = fsolve(exp(x)-cos(x),x,-2*Pi..-Pi);
x3 := fsolve(exp(x)-cos(x),x,-3*Pi..-2*Pi);
x4 = fsolve(exp(x)-cos(x),X,-4*Pi..-3*Pi);

x0:=0.
x1:=-1.292695719
X2 :=-4.721292759
X3 :=-7.853593280
x4 :=-10.99559106

We observe that the roots xk for 2 < k are close to the zeros of cosx, sincee*issmall:
> eval f(seq(-(k-1/2)*Pi, k=2..4));

-4.712388981, -7.853981635, -10.99557429

From the sign of " — cosx, we can see that the fixed pointsxk are stable if k is odd, and unstable if

kiseven.

We can deduce the qualitative behaviour of the solutions from the fixed points and their stability.
L Direct numerical integration using Maple gives:

> eqpl :=diff(x(t),t) = exp(x(t)) - cos(x(t));

I nitconds : =

[[x(0)=1],[x(0)=0], [x(0)=-1],[x(0)=-2],[x(0)=-4],[x(0)=x2],[x(0)
:'5]’[X(O):'7]’

[x(0)=-8]]: o | |
DEpl ot (egpl, x(t),t=0..8,x=-9..2,initconds,|inecol or=bl ack, st epsi
ze=0.01);

0
eqpl = p X(t)=e —cogx(t))

X(t)

=_=_=_

" A closed-form analytical solution isnot available, since it would require the integration of
1

. e—cosx




= Problem2: 2.2.8

[ We seek adynamical system yielding the given flow. A possible answer is given by
$=(x+1)2x(x—2)

S eqp2 (= diff(x(t),t) = (x(t)+1)"2 * x(t) * (x(t)-2):

I nitconds2 : =

[[x(0)=-1.5], [x(0)=-1],[x(0)=-0.8],[x(0)=0],[x(0)=1.2],

[ x(0)=2],[x(0)=2.001]]:

i ze=0.01) ;
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i Thisis one of many possible answers; others are obtained by multiplying the vector field by g(x),
| L wheregis positive except possibly at one or more of the fixed points.

. Problem 3: 2.2.13 - the Skydiver

r>m:="m: g :=" k :

: =9 : "k
eqp3 = diff(v(t),t)

=g - k*v(t)r2/m
kv(t)?

0
eqp3-—atV(t)—9‘ m

: The command odeadvisor indicates the solution method for this first-order ODE.
> odeadvi sor (egp3);

L [_quadrature]
-1
To find the solution, we separate variables, and integrate; the integration of (a2 - v2) (Where

m
a= gT) is best performed using partial fractions. Maple can also solve this equation

anayticaly:
dsol ve(eqp3l);

DEpl ot (egp2, x(t),t=0..5,x=-2..3,initconds2,!inecol or=bl ack, steps



@/ mk (t+_C1
tanh J r(n_ ) g mk

k

v(t) =

In fact, this solution is only valid if m, g and k are all positive, and if — % <v(t). It seemsthat

Maple automatically made these assumptions; in this case they are justified, but this example
shows that in general Maple' s analytical solutions are not always reliable: do the calculations by
hand, and show your working! (you can use Mapleto check, if you like). That is, the solution

produced by Maple is only the general solution for a <v(0) (the problem is to take care with
absolute value signs....). We can find the particular solution satisfying the initial condition

v(0)=0:
> sol p3 : = rhs(dsol ve({eqgp3, v(0)=0}));

E[gmkt%/—
tanh g mk
m

L k
' Now we can use Maple to find the asymptotic behaviour:

>limt(solp3,t=infinity);
gmkt
tanh g mk
m

t- o k

[ Evidently, now (finally!) Maple is concerned about the sign of the variables. Let’stry specifying
| that all variables are positive:
r>limt(solp3,t=infinity) assum ng (g>0, n»0, k>0);

solp3 =

lim

ﬁgmk
L k
| Thisgivesthe correct terminal velocity. We can write the formula for v(t) in terms of the terminal

velocity V.
vsol := sinplify(subs(nm=k*V*2/g, sol p3)) assum ng (k>0,V>0);

-~ 9 %v
vsol ;= tanh%v—

dv
This answer is much more easily obtained by the graphical method. We plot—

at againstv
(choosing some values of the variables):

g:=10: m:=0.1: k := 1:

plot(g - k*v*v/mv=-1.5..1.5);

m:="m: g:="'¢g: k :="k:
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~10-

" Now let’s use the numbers given:
The average velocity is (in ft/sec)
Vavg : = (31400-2100)/116; eval f(Vavg);

Voo B2
8= 99
252 5862069

ds
The distance travelled as a function of time isqt) satisfying =~ at =vand q0)=0.
sl :=int(vsol,t) assum ng (V>0,g>0);

LV |n§anh%—% % v '”éa”h%_%* %

ThISSO| ution doesn’t ook too correct: |t isgiving negatlve arguments of thelnfunction (and is
thus complex-valued). Let’stry to help Maple abit, by performing the appropriate substitution by
hand...

s2 :=Int(vsol,t) assum ng (V>0,g>0);

sl.=-

> s3 : = val ue(student[changevar](tau=t*g/V,s2,tau));
> s .= subs(tau=t*g/V, s3);

" QEV
2= tanh%v— dt

_ V2 In(cosh(1))

SCREEE

g
(> g :=32.2. t .= 116: s; dist := 31400-2100;

si=




sol ve(s=di st,V);

7352
03105590062 V> In%osh%%

dist := 29300
| -252.5862069
[ In the command solve, Maple attempts an analytical solution; in this case it gets it wrong (I’ m not
sure why; but the given value is the average velocity computed previously, which cannot also be
the terminal velocity). For a problem with purely floating-point solutions, we should use fsolve
(and look for the positive solution):
Vterm:= fsolve(s=dist,V,V=0..infinity);
L Vterm := 265.6854815
" From this value of the terminal velocity, we can compute the drag constant k. Note that the weight
(in pounds) is mg.
wei ght := 261. 2:
kdrag : = sol ve(sqrt(wei ght/k)=VtermKk);

kdrag := .003700305037
>m:="m: g:='¢g: k:="k': s:="s":t  ="t’

- Problem 4: 2.3.2 - Autocatalysis

The fixed points are readily found to be 0 and : (1;
> fpd .= k_1*a*x - km 1*x"2;
sol ve(fp4, x);
fpd:=k lax-km 1x°
kla
"km_1

' x=0isunstable, the other fixed point is stable.

We can do a quick graphical analysis, and plot some typical solutions, if we assume values for the
constants:

a:=1. k1 :=1: km1l := 1:

pl ot (f p4, x=-0.5..1.5);
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S DEpl ot (di ff(x(t),t)=a*k_1*x(t)-km1*x(t)"2,x(t),t=0..5,x=-0.2..2

[[x(0)=-0.0], [x(0)=0. 1T, [x(0)=0. 7], [x(0)=1.7]]. i necol or =bl ack)
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- Problem 5: 2.3.3 - Tumour growth

[ We plot the vector field and some solutions for some values of a and b:
r>a :=2.1. b :=0.75:
pl ot (-a*N*I n(b*N), N=0. . 2);

1

0.57

-1.5

1
Clearly the fixed point N =0 is unstable, and N :E Is stable.

> DEpl ot (di ff(N(t),t)=-a*N(t)*In(b*N(t)),N(t),t=0..5 N=-0.2..2,[[N
(0)=0.01],[N(0)=1.2],[N(0)=1.8]],!linecol or=bl ack) ;
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(x,a) -> a*x - x"3;

r> f6 :

f6:=(x a) » ax—-x°
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di spl ay(pl ots6);

. Problem 6: 2.4.7 - Pitchfork bifurcation



Fora <0, thereisaunique fixed point at x =0, which is stable; for a <0 thisis found by linear
stability analysis (since f’(0) =a <0), whilefor a =0, linear stability analysis does not prove
stability (decay towards the origin is slower than exponential - see the next problem), but alook at
the plot of -x* shows that the originis stable.

If 0 <a, there are three fixed points, at x=0, x = —\/; and x :\/;. Now f’(0) = ais positive, so the
origin is unstable, while the other two fixed points are stable, withf’ = -2 a. Thisis aso apparent

from the graphs.
[ >

. Problem 7: 2.4.9 - Critical slowing down

[ Reset variables:
| X0 = "x0':
> eqp7 :=diff(x(t),t) = - x(t)"3;
a 3
—‘X(t)=-><(t)

" Find the analytical solution with arbltrary |n|t|al condition:

xsa : = dsol ve({eqp7, x(0)=x0},x(t)) assum ng x0>0;
xsb : = dsol ve({eqp7, x(0)=x0},x(t)) assum ng x0<O0;
xsz := dsol ve({eqp7, x(0)=0}, x(t));
xsa:=x(t) =
2t+—
x0°
xsh:=x(t)=-
(t) N 1
—
x0°
L xsz:=Xx(t)=0
r>limt(xsa, t=infinity);
limt(xsb,t=infinity);
lim x(t)=0
t - o
lim x(t)=0

L t - o
[ So the solutions approach zero for arbitrary initial conditions; however, the decay is proportiona

1
to T not exponential.
L t

dx
We plot the solutions of this equation and o E =—x on the same graph:

lineqg := diff(x(t),t) = -x(t):
linsoln := dsolve({lineq, x(0)=10}, x(t));
critsoln := dsolve({egp7, x(0)=10}, x(t));

linsoln := x(t) =10 e(_t)



critsoln:=x(t) =
I 2t+ﬁ)
r> plot([rhs(linsoln),rhs(critsoln)],t=0..10);

10i

dx
Note that the solution to E = decays much more rapidly initially, but then slows down once

L x<1.

. Problem 8: 2.5.1 - Reaching origin in finitetime

| Theoriginx=0isastable fixed point for any real 0 <c. We plot afew representative vector
| fields:
> plot(-x~(1/2),x=0..2,tickmarks=[0,0]);

pl ot (-x"1,x=0..4,-4..0.5,tickmarks=[0,0]);

pl ot (-x"2,x=0..2,y=-4..0.5,tickmarks=[0,0]);




' Weknow that for ¢ = 1, the decay towards the origin is exponential, and x approaches 0
asymptotically. When 1 <c, the decay is slower than exponential, as we derived in Problem 7. So
the only possibility for the solution to decay to zero in finitetimeisforc<1.

Thetimetakenfromx=1tox=0is
T =int(-1/x"c,x=1..0);

(c+1)
T=Hiim -> _1%
=—Him -———
L o 0+ C_l

' When 1 <c, thelimit diverges, whenc =1, Tisalsoinfinite (T=-limInx). Whenc<1, thetimeis
finite:
T =1int(-1/x"c,x=1..0) assumng c < 1;

. Problem 9: 2.5.1 - Blow-up

d
We know that solutionsy(t) of d_>t/ =1+ y2 blow up in finitetime. Now for 1 <X, the solutions x(t)

dx
of =1+ x™ grow more rapidly thany(t), sincex® <x™ for 1 <x. Thus the solutions x(t) must

also blow up in finitetime. Thisis not yet a complete argument, though, sinceit isonly valid for
1<x butsince1 <1 +x™, we know that solutions beginning at any initial condition x0 will reach
x =1 at the latest at timet =1 — x0; and since we reach x = 1 in finite time, we can then begin the
L comparison with y(t).

" An alternative argument: supposex(0) = x0. The time taken to diverge (reach x = «) is given by
T =1nt(1/(1+x"10), x=x0..infinity);




1

1+X10
L X0
" If thisisfinite for all x0, then we have finite-time blow-up. But we have
T <Int(1l/(1+x710),x=-infinity..infinity): so
Int(1/(1+x710),x=-1..1) + 2*Int(1/(1+x*10),x=1..infinity):
and introducing appropriate comparisons, we find
T<Int(1/1,x=-1..1) + 2*Int(1/(1+x"2),x=1..infinity);

T= dx

o)

! 1
T<¢ldx+2 2dx
-1

1+x
L 1
[ Thus an estimate of the upper bound for the blow-up time for any initial condition is
>int(1,x=-1..1) + 2*int(1/(1+x*2),x=1..infinity); evalf(%;
(clearly finite)
LS

I
2*3

3.570796327

" The actual upper bound is
int(1/(1+x"10),x=-infinity..infinity); evalf(%;

Tt

.HE
sing |

2.033281478

1
5

" We plot some numerical solutions:
DEpl ot (di ff(x(t),t)=1+x(t)"(10),x(t),t=0..3,x=-3..5,[[x(0)=-1.1]]
, sStepsi ze=0. 01, | i necol or =bl ack);




