

Problem 2: 2.2.8

We seek a dynamical system yielding the given flow. A possible answer is given by

 $\frac{d x(t)}{d x(t)} = (x+1)^2 x(x-2)$ dt > eqp2 := diff(x(t),t) = $(x(t)+1)^2 * x(t) * (x(t)-2)$: initconds2 := [[x(0)=-1.5], [x(0)=-1], [x(0)=-0.8], [x(0)=0], [x(0)=1.2],[x(0)=2], [x(0)=2.001]]:DEplot(eqp2,x(t),t=0..5,x=-2..3,initconds2,linecolor=black,steps ize=0.01); 3-́ x(t) 0 1 11 11 1 1 1 1

This is one of many possible answers; others are obtained by multiplying the vector field by g(x), where g is positive except possibly at one or more of the fixed points.

Problem 3: 2.2.13 - the Skydiver

> m := 'm': g := 'g': k := 'k': eqp3 := diff(v(t),t) = g - k*v(t)^2/m; $eqp3 := \frac{\partial}{\partial t}v(t) = g - \frac{kv(t)^2}{m}$

The command odeadvisor indicates the solution method for this first-order ODE. > odeadvisor(eqp3);

[_quadrature]

To find the solution, we separate variables, and integrate; the integration of $(a^2 - v^2)^{(-1)}$ (where $a = \sqrt{\frac{gm}{k}}$) is best performed using partial fractions. Maple can also solve this equation analytically: dsolve(eqp3);

$$\mathbf{v}(t) = \frac{\tanh\left(\frac{\sqrt{g \ m \ k} \ (t + _Cl)}{m}\right)\sqrt{g \ m \ k}}{k}$$

In fact, this solution is only valid if *m*, *g* and *k* are all positive, and if $-\sqrt{\frac{mg}{k}} < v(t)$. It seems that

Maple automatically made these assumptions; in this case they are justified, but this example shows that in general Maple's analytical solutions are not always reliable: do the calculations by hand, and show your working! (you can use Maple to check, if you like). That is, the solution produced by Maple is only the general solution for a < v(0) (the problem is to take care with absolute value signs ...). We can find the particular solution satisfying the initial condition v(0) = 0:

> solp3 := rhs(dsolve({eqp3, v(0)=0}));
solp3 :=
$$\frac{\tanh\left(\frac{\sqrt{g \, m \, k} \, t}{m}\right)\sqrt{g \, m \, k}}{k}$$

Now we can use Maple to find the asymptotic behaviour:
> limit(solp3,t=infinity);

$$\lim_{t \to \infty} \frac{\tanh\left(\frac{\sqrt{g \ m \ k} \ t}{m}\right)\sqrt{g \ m \ k}}{k}$$

Evidently, now (finally!) Maple is concerned about the sign of the variables. Let's try specifying that all variables are positive:

> limit(solp3,t=infinity) assuming (g>0,m>0,k>0);

$$\sqrt{\frac{gmk}{gmk}}$$

This gives the correct terminal velocity. We can write the formula for v(t) in terms of the terminal velocity *V*:

vsol := simplify(subs(m=k*V^2/g,solp3)) assuming (k>0,V>0); $vsol := tanh\left(\frac{tg}{V}\right)V$

This answer is much more easily obtained by the graphical method. We plot $\frac{dv}{dt}$ against v

(choosing some values of the variables): g := 10: m := 0.1: k := 1: plot(g - k*v*v/m,v=-1.5..1.5); m := 'm': g := 'g': k := 'k':

Now let's use the numbers given:
The average velocity is (in fivec)
Vavg := (31400-2100)/116; evalf(Vavg);
Vavg := (31400-2100)/116; evalf(Vavg);
Vavg :=
$$\frac{7325}{29}$$

252.5862069
The distance travelled as a function of time is $s(t)$ satisfying $\frac{ds}{dt} = v$ and $s(0)=0$.
s1 := int(vsol,t) assuming (V>0,g>0);
 $sl := \frac{1}{2} \frac{V^2 \ln \left(\tanh \left(\frac{lg}{V} \right) - 1 \right)}{g} - \frac{1}{2} \frac{V^2 \ln \left(\tanh \left(\frac{lg}{V} \right) + 1 \right)}{g}$
This solution desen't too correct: it is giving negative arguments of the ln function (and is
thus complex-valued). Let's try to help Maple a bit, by performing the appropriate substitution by
hand...
s2 := Int(vsol,t) assuming (V>0,g>0);
> s3 := value(student[changevar](tau=t*g/V,s2,tau));
> s := subs(tau=t*g/V,s3);
 $s2 := \int tam \left(\frac{lg}{V} \right) V dt$
 $s3 := \frac{V^2 \ln (cosh(\tau))}{g}$
 $s := \frac{V^2 \ln (cosh(\tau))}{g}$
 $s := \frac{g}{g}$
[> g := 32.2: t := 116: s; dist := 31400-2100;

solve(s=dist,V);

.03105590062
$$V^2 \ln\left(\cosh\left(\frac{3735.2}{V}\right)\right)$$

dist := 29300

-252.5862069

In the command solve, Maple attempts an analytical solution; in this case it gets it wrong (I'm not sure why; but the given value is the average velocity computed previously, which cannot also be the terminal velocity). For a problem with purely floating-point solutions, we should use fsolve (and look for the positive solution):

Vterm := fsolve(s=dist,V,V=0..infinity);

From this value of the terminal velocity, we can compute the drag constant *k*. Note that the weight (in pounds) is *mg*.

weight := 261.2: kdrag := solve(sqrt(weight/k)=Vterm,k); kdrag := 002700205

kdrag := .003700305037 > m := 'm': g := 'g': k := 'k': s := 's': t := 't':

Problem 4: 2.3.2 - Autocatalysis

The fixed points are readily found to be 0 and $\frac{k_l a}{k_l(-1)}$ > fp4 := k_1*a*x - km_1*x^2; solve(fp4,x); $fp4 := k_l a x - km_l x^2$ $0, \frac{k_l a}{km_l}$

x = 0 is unstable, the other fixed point is stable.

We can do a quick graphical analysis, and plot some typical solutions, if we assume values for the constants:

a := 1: k_1 := 1: km_1 := 1: plot(fp4,x=-0.5..1.5);

> DEplot(diff(x(t),t)=a*k_1*x(t)-km_1*x(t)^2,x(t),t=0..5,x=-0.2..2 ,[[x(0)=-0.0],[x(0)=0.1],[x(0)=0.7],[x(0)=1.7]],linecolor=black)

For $a \le 0$, there is a unique fixed point at x = 0, which is stable; for a < 0 this is found by linear stability analysis (since f'(0) = a < 0), while for a = 0, linear stability analysis does not prove stability (decay towards the origin is slower than exponential - see the next problem), but a look at the plot of $-x^3$ shows that the origin is stable.

If 0 < a, there are three fixed points, at x = 0, $x = -\sqrt{a}$ and $x = \sqrt{a}$. Now f'(0) = *a* is positive, so the origin is unstable, while the other two fixed points are stable, with f' = -2 *a*. This is also apparent from the graphs.

Problem 7: 2.4.9 - Critical slowing down

Reset variables: x0 := 'x0':> eqp7 := diff(x(t), t) = - $x(t)^{3}$; $eqp7 := \frac{\partial}{\partial t} \mathbf{x}(t) = -\mathbf{x}(t)^3$ Find the analytical solution with arbitrary initial condition: xsa := dsolve($\{eqp7, x(0)=x0\}, x(t)\}$ assuming x0>0; $xsb := dsolve(\{eqp7, x(0)=x0\}, x(t)\})$ assuming x0<0; $xsz := dsolve(\{eqp7, x(0)=0\}, x(t));$ $xsa := \mathbf{x}(t) = \frac{1}{\sqrt{2t + \frac{1}{x0^2}}}$ $xsb := \mathbf{x}(t) = -\frac{1}{\sqrt{2t + \frac{1}{x0^2}}}$ $xsz := \mathbf{x}(t) = 0$ > limit(xsa,t=infinity); limit(xsb,t=infinity); $\lim x(t) = 0$ $t \rightarrow \infty$ $\lim x(t) = 0$ $t \rightarrow \infty$ So the solutions approach zero for arbitrary initial conditions; however, the decay is proportional to $\frac{1}{\sqrt{t}}$, not exponential. We plot the solutions of this equation and of $\frac{dx}{dt} = -x$ on the same graph: lineq := diff(x(t),t) = -x(t): linsoln := dsolve({lineq,x(0)=10},x(t)); critsoln := dsolve($\{eqp7, x(0)=10\}, x(t)\};$

linsoln :=
$$\mathbf{x}(t) = 10 \mathbf{e}^{(-t)}$$

Note that the solution to $\frac{dx}{dt} = -x^3$ decays much more rapidly initially, but then slows down once x < 1.

Problem 8: 2.5.1 - Reaching origin in finite time

The origin x = 0 is a stable fixed point for any real 0 < c. We plot a few representative vector fields:

> plot(-x^(1/2),x=0..2,tickmarks=[0,0]); plot(-x^1,x=0..4,-4..0.5,tickmarks=[0,0]); plot(-x^2,x=0..2,y=-4..0.5,tickmarks=[0,0]);

We know that for c = 1, the decay towards the origin is exponential, and *x* approaches 0 asymptotically. When 1 < c, the decay is slower than exponential, as we derived in Problem 7. So the only possibility for the solution to decay to zero in finite time is for c < 1. The time taken from x = 1 to x = 0 is

 $T = int(-1/x^c, x=1..0);$

$$T = -\left(\lim_{x \to 0^+} -\frac{x^{(-c+1)} - 1}{c - 1}\right)$$

When 1 < c, the limit diverges; when c = 1, *T* is also infinite ($T = -lim \ln x$). When c < 1, the time is finite:

 $T = int(-1/x^c, x=1..0)$ assuming c < 1;

$$T = -\frac{1}{c-1}$$

Problem 9: 2.5.1 - Blow-up

We know that solutions y(t) of $\frac{dy}{dt} = 1 + y^2$ blow up in finite time. Now for 1 < x, the solutions x(t)of $\frac{dx}{dt} = 1 + x^{10}$ grow more rapidly than y(t), since $x^2 < x^{10}$ for 1 < x. Thus the solutions x(t) must also blow up in finite time. This is not yet a complete argument, though, since it is only valid for 1 < x; but since $1 \le 1 + x^{10}$, we know that solutions beginning at any initial condition x0 will reach x = 1 at the latest at time t = 1 - x0; and since we reach x = 1 in finite time, we can then begin the comparison with y(t).

An alternative argument: suppose x(0) = x0. The time taken to diverge (reach $x = \infty$) is given by $T = Int(1/(1+x^{10}), x=x0..infinity)$;

 $T = \int \frac{1}{1+x^{10}} \, dx$ If this is finite for all x0, then we have finite-time blow-up. But we have $T < Int(1/(1+x^{10}), x=-infinity..infinity):$ so Int(1/(1+x^10),x=-1..1) + 2*Int(1/(1+x^10),x=1..infinity): and introducing appropriate comparisons, we find T < Int(1/1,x=-1..1) + 2*Int(1/(1+x^2),x=1..infinity); $T < \int_{-1}^{1} 1 \, dx + 2 \int \frac{1}{1 + x^2} \, dx$ Thus an estimate of the upper bound for the blow-up time for any initial condition is > int(1,x=-1..1) + 2*int(1/(1+x^2),x=1..infinity); evalf(%); (clearly finite) $2+\frac{\pi}{2}$ 3.570796327 The actual upper bound is int(1/(1+x^10),x=-infinity..infinity); evalf(%); $\frac{1}{5} \frac{\pi}{\sin\left(\frac{\pi}{10}\right)}$ 2.033281478 We plot some numerical solutions: $DEplot(diff(x(t),t)=1+x(t)^{(10)},x(t),t=0..3,x=-3..5,[[x(0)=-1.1]]$,stepsize=0.01,linecolor=black); x(t) 2 1.5 õ. 2.5 05