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Topographic Gravity Waves

Atmospheric Concerns
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. mathematical story: idealized steady 2D flows & their stability
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Atmospheric Fluid Dynamics

Fluid Dynamics & Thermodynamics

. incompressible 2D Euler equations with Boussinesq buoyancy

ux + wz = 0

Du

Dt
= −φx

Dw

Dt
− B = −φz

DB

Dt
= 0

. adiabatic buoyancy, B (buoyant ↔ light) & geopotential, φ (pressure)

. 2D advection:
D

Dt
=
∂

∂t
+ u

∂

∂x
+ w

∂

∂z

Streamfunction & Vorticity

. streamfunction, Ψ → u = Ψz ; w = −Ψx

. vorticity, η → η = uz − wx = ∇2Ψ
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Stratified Potential Flow

Vorticity/Buoyancy Formulation

. vorticity inversion: ∇2Ψ = η

Dη

Dt
+ Bx = ηt + J(η,Ψ) + Bx = 0

DB

Dt
= Bt + J(B,Ψ) = 0

. 2D streamfunction advection → Jacobian determinant

J(f,Ψ) =

˛̨̨̨
fx Ψx
fz Ψz

˛̨̨̨
= ufx + wfz

Steady Flow

. zero Jacobian condition: J(B,Ψ) = 0 → B is constant along streamlines

. upstream/mean conditions (uniform wind & constant stratification):

Ψ = U z + ψ

B = N 2z + b

ff
→ B =

U
N 2

Ψ

. vorticity condition for disturbance streamfunction, ψ(x, z)

J(η,Ψ) +
N 2

U
Ψx = J

 
∇2
ψ −

N 2

U
z,Uz + ψ

!
= 0
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Long’s 1953 Theory

Helmholtz Equation

. linear Helmholtz equation for steady 2D streamfunction, ψ(x, z)

∇2
ψ +

„N
U

«2

ψ = 0

. special nonlinear solutions for constant stratification & uniform incident wind

Scales

. simple topographic case: three length scales

L = mountain width ; U/N = wave height ; H = mountain height

. two dimensionless parameters

σ ≡
U
NL

, nonhydrostatic parameter ; A ≡
NH
U

, height parameter

Nondimensionalized Problem

. Helmholtz equation (σ → 0, hydrostatic case)

σ
2
ψxx + ψzz + ψ = 0

. zero surface streamfunction: Ψ(x,Ah(x)) = Ah(x) + ψ(x,Ah(x)) = 0
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Long 1955: Theory & Experiment

σ2ψxx + ψzz + ψ = 0

Finite Amplitude Topography

. on streamline boundaries: ψ = Ah(x) + ψ(x,Ah(x)) = constant
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A Fourier Approach

Fourier Modes, ei(kx+mz)

. Helmholtz dispersion relation: m2 = 1− σ2k2

. sign choice → far-field conditions: upward group velocity or decay (Lyra, 1940)

m(k) =

(
sign(k)

p
1− σ2k2 for |σk| ≤ 1 (long scale radiation)

i
p
σ2k2 − 1 for |σk| ≥ 1 (short scale decay)

General Helmholtz Solution

. Fourier integral representation with far-field conditions

ψ(x, z) = −A
Z +∞

−∞
ĉ(k) e

i(kx+m(k)z)
dk

. z = Ah(x) surface condition: Ah(x) + ψ(x,Ah(x)) = 0

h(x) −
∫ +∞

−∞
ĉ(k) ei(kx+m(k)Ah(x)) dk = 0

. linear integral operator on ĉ(k) → Fredholm integral equation of first-kind

. numerically equivalent to a matrix inversion
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Weak Topographic Approximation

h(x) −
∫ +∞

−∞
ĉ(k) eikx dk = 0

A→0 “Linear” Limit is Fourier Inversion: ĉ(k) = ĥ(k)

. hydrostatic (σ = 0) & critical overturning (A = 0.85); computed via FFTs
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. bottom (zero) streamline does not match topographic surface: h(x) = 1/(1 + x2)

. FFT-based iterative solvers for exact surface condition (Raymond, 1972; Laprise/Peltier, 1988)

7



Direct Steady Solve

h(x) −
∫ +∞

−∞
ĉ(k) ei(kx+m(k)Ah(x)) dk = 0

Numerical Discretization

. collocation points: {x1 . . . xα . . . xN} & N knowns: hα = h(xα)

. wavenumbers: {k1 . . . kβ . . . kN} & N unknowns: ĉβ ≈ ĉ(kβ)

. approximate integral for each xα by trapezoidal rule over β = 1 . . . N

hα −
N∑
β=1

ĉβ ei(kβxα+m(kβ)Ah(xα)) wβ ∆k︸ ︷︷ ︸
Kα,β

= 0

Matrix Inversion

. N linear equations in N unknowns: ~(hα) =
ˆ
Kα,β

˜ ~`cβ´
. m(k) is discontinuous at k = 0 → half-line integrals

. full matrix K can be ill-conditioned → catastrophic loss of precision as N increases
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Numerical Implementation

Fourier Conditioning

. for A = 0 linear theory, discrete Fourier transform is well-conditioned

. equi-spaced discretizations with ∆k∆x = 2π/N is essential

. hydrostatic critical overturning case (Lilly/Klemp 1979)

. N = 256, x∞ = 8π: 1.1s to solve & 2.0s to plot, log-condition number = 2.85

. Fourier representation allows periodic wrap-around → large computational domains
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Critical Overturning I

Gaussian Topography

. critical height A as a function of nonhydrostatic parameter σ

. wavebreaking limit for stable (density) stratification

. Fourier formulation (o) limited by large condition numbers

. ill-conditioning edge: ∼7 digits lost

. σ = 0.35 flow
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Potential Theory

Gxx + Gzz + G = δ(~x− ~ξ )

Helmholtz Free-Space Green’s Function (σ = 1)

. radiating solution for a delta-function source at ~ξ: G(~x− ~ξ )

. classical, time-harmonic scattering problem in electromagnetics/acoustics

. delta-function response in 2D involves Hankel functions: J0(r)± i Y0(r)

. sign choice determined by far-field radiation condition (implied by time-harmonicity)

Boundary Integral Method

. µ(s), weighted surface distribution of Green’s functions

. ~ξ (s), parametrization of surface boundary (clockwise)

ψ(~x) = −A
Z
S
µ(s) 2

∂G
∂n

(~x− ~ξ (s)) ds

. need topographic Green’s function G(~x− ~ξ ) & weights µ(s)
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Lyra’s Topographic Green’s Function

Delta-Function Topography (linear theory)

. from Lyra 1940 & 1943 (via Alaka 1960) for σ = 1 as Bessel series

Gz(r, θ) =
1

2
Y1(r) sin θ +

1

π

∞X
1

4n

4n2 − 1
J2n(r) sin 2nθ

. Lyra’s critical overturning solution: Ψ = z + 4.06 Gz(r, θ)
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. left/right asymmetric Greens function: waves must be downstream (Miles/Huppert 1968)
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Fredholm Integral Equation of Second-Kind

Singular Integral Representation

. Plemelj formula for surface values, ~xS

ψ(~xS) = −A µ(~xS)−A
Z
S
µ(s) 2

∂G
∂n

(~xS − ~ξ (s)) ds

. surface boundary condition → second-kind integral equation for µ(~xS)

µ(~xS) +
∫
S
µ(s) 2

∂G
∂n

(~xS − ~ξ (s)) ds = h(~xS)

. kernel function is continuous at ~xS = ~ξ (s) → curvature contribution

. discretized quadrature gives diagonally-dominant matrix → well-conditioned inversion

. amplitude parameter, A, enters through surface parametrization: ~ξ (s) =

„
x(s)

Ah(x(s))

«
. small A limit: µ(~xS) → h(~xS)

. nonhydrostatic parameter, σ, handled by rescaling in x (singular as σ → 0)
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Critical Overturning II

Strongly Nonhydrostatic (σ ≥ 0.3)

. boundary integral method (∗) remains well-conditioned

. accurate inversion for deviation from Lyra’s overturning solution

. σ = 1.0 & A = 1.39 shown above

. near-surface extrapolations for plotting contours
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Large Amplitude Solutions

Slow Decay

. boundary integral method limited by downstream wake in µ(x)

. use Lyra’s analytical solution as first guess

ψ(~x) = ΛGz(~x)−A
Z
S
µ(s) 2

∂G
∂n

(~x− ~ξ (s)) ds

. accurate computation based on surface residual: hr(x) = h(x) + ΛGz(x, h(x))

. Λ obtained by good guesswork (4.06 for critical overturning)
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Question of Stability

Gravity Wave Instability

. Mied (1976), plane gravity waves are parametrically unstable

. Lilly/Klemp (1979), instability observed for sinusoidal topography

. Scinocca/Peltier (1994), unstable dynamics from critical overturning

Time-Dependent Simulations (Craig Epifanio, Texas A&M)

. twin peaks, nearly-hydrostatic (σ = 0.1), vertical motion w plots

. initialized from potential flow

. small height → stability to Long’s solution

. medium height → oscillatory instability to blow-up
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Linear Stability of Long’s Steady Solutions

Hydrostatic (σ = 0) Disturbance Equations (David Alexander & Youngsuk Lee, SFU)

. non-constant coefficients from Long’s streamfunction ψ(x, z)

ψ̃zzt − ψ̃x + b̃x + J(ψ̃zz + ψ̃, z + ψ) = 0

b̃t + J(b̃− ψ̃, z + ψ) = 0

. 2D PDE eigenvalue problem for ψ̃ → ψ̃(x, z)eλt & b̃→ b̃(x, z)eλt

Numerical Linear Algebra

. buoyancy coordinates for regular lower boundary: (x, z) → (x,B(x, z))

. self-adjoint formulation → Arnoldi iterative search for eigenvalues
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A Search for Eigenvalues . . .

Simulated Instability vs Unstable Eigenfunction

Analytical & Computational Issues

. 1, 2 & 3-mountain instabilities

. parametric dependences: mountain heights & spacings

. fine-tuning damping layers (aloft & lateral)

. unstable spectrum: multiple discrete or continuous?

. physical & mathematical mechanisms for instability?
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A Resonant Triad Mechanism?

Fourier Spectral Plots (low frequency branch, ω = 0.23)
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A Resonant Triad Mechanism?

Fourier Spectral Plots (high frequency branch, ω = 0.43)
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In Closing

Direct Steady Solve

. non-iterative formulations for exact topographic surface condtion

. Fourier-based 1st-kind solver: near-hydrostatic regime (0 ≤ σ < 0.5)

. Green’s function-based 2nd-kind solver: hydrostatic regime (0.3 ≥ σ < 4+)

. overturning criterion to strongly nonhydrostatic regime

. accurate solutions for linear stability analysis

Linear Stability

. identification of linear instabilities for multiply-peaked terrain

. benchmark against time-dependent simulations

. triad resonance mechanism

. height & separation criterion for instability

. implications for atmospheric wave drag estimates/parametrizations?
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Triad Resonance

Eigenfunction Spectra

. Fourier spectra computed in isentropic coordinates

. Long’s w(x,B) is 2π-periodic in B; ψ̃(x,B) has zero BCs at top & bottom

. F [ψ̃](k,m) spectral peaks concentrated on linear dispersion relation: ω(k,m) = Im(λ)

. wavevectors of largest peaks related by a Long wavevector

Triad Resonance

. non-constant coefficients involve multiplications of ψ̃(x,B) by Long’s u(x,B) & w(x,B)

. multiplication of Fourier modes ↔ addition of wavevectors
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