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Spectrum of Resonant Instabilities

Figure 1: Spectrum of Resonant Instabilities: DNS (Lin2000) vs
Floquet Unravelled Spectrum (djm & ybb)

Equations for a Stratified Fluid

2D incompressible Euler with Boussinesq Buoyancy
& Constant Stratification

Dη

Dt
= −bx ;

Db

Dt
= −w ; ∇ · ~u = 0

• Buoyancy b(x, z, t) and vorticity η(x, z, t)

• 2D velocity (x, z components): ~u = (u,w)
Streamfunction ψ(x, z, t): u = ψz, w = −ψx

• Advection from Jacobian:
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• Vorticity: η = ψzz + δ2ψxx;

Hydrostatic limit: δ → 0 ; Laplacian: δ → 1

Streamfunction Formulation

ηt + bx + J(η, ψ) = 0

bt − ψx + J(b, ψ) = 0

ψzz + δ2ψxx = η

Exact Nonlinear Wave Solutions

(

ψ
b

)

=

(

−Ω
K

)

2ε sin(Kx +Mz − Ωt)

• Primay wavenumbers: (K,M)

• Linear dispersion relation: Ω2(K,M) =
K2

M2 + δ2K2

Linearized Equations

η̃t + b̃x − 2εJ
(

Ωη̃ + (K2/Ω)ψ̃ , sin(Kx +Mz −Ωt)
)

= 0

b̃t − ψ̃x − 2εJ
(

Ωb̃ +Kψ̃ , sin(Kx +Mz −Ωt)
)

= 0

• Goal: to characterize the linear instabilities of a primary wave

• Linearize w.r.t the nonlinear wave
(

ψ
b

)

=

(

−Ω
K

)

2ε sin(Kx +Mz − ωt) +

(

ψ̃(x, z, t)

b̃(x, z, t)

)

• Linear PDEs with periodic, non-constant coefficients

• A problem for Floquet Theory

Instabilities via Floquet Theory

Mathieu Equation

ü + (α + ε sin t)u = 0

Figure 2: Spectrum of Mathieu Instabilities

• Floquet theory:

~u(t) = eiωt
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= exponential part × co-periodic part

• ω(α; ε), Floquet exponent with Im ω > 0 → instability.

Floquet Fourier Analysis for PDEs

• Product of exponential & co-periodic Fourier series

(

ψ̃

b̃

)

= ei(kx+mz−ωt)
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• Secondary/perturbed wavenumbers: (k,m)

• Floquet exponent Im ω(k,m; ε) > 0 → instability

• Hill’s infinite matrix & generalized eigenvalue problem
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• 2×2 real blocks: Mn(k,m); Sn(k,m) symmetric ; Λn(k,m) diagonal

• Truncate −N ≤ n ≤ N & compute 4N + 2 eigenvalues {ω(k,m; ε)}

Unravelling the Spectrum

• Choose primary wavenumbers (K,M) = (1,1);
finite wave amplitude: ε = 0.1; hydrostatic: δ = 0

Figure 3: Raw Floquet spectrum vs unravelled Floquet spectrum

• Artificial periodicity due to index shifts → multiple counting

(

ψ̃

b̃

)

= ei((k+q)x+(m+q)z−(ω+Ωq)t)
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• Resolution: to associate ω(k,m) with the instabilities given by its cor-
responding physical wave resonance.

• QUESTION 1. Which ω’s from computation correspond to the insta-
bilities given physical wave resonance theory ?

Perturbation Analysis

• Complex eigenvalues/instabilities arise from multiple root perturbation

• Resonance trace: ω(k,m) + nω(K,M) = ω(k + nK,m + nM)

→ where multiple roots live on.

Triad (n = 1) and Quartet (n = 2) Resonance
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Figure 4: Triad resonant traces identified by corresponding resonance (color)

• Upward and downward ~cg(k,m) ; Active and inert resonant traces

• ANSWER 1. By small ε pertubation, ω±(k,m; ε) ∼ ±Ω(k,m)
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Figure 5: Unstable triad/quartet resonat traces via perturbation

Figure 6: Spectrum Im ω± vs frequency Re ω−
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Figure 7: Spectrum Im ω± vs frequency Re ω−

Nonhydrostatic Limit Spectrum

Figure 8: Spectrum vs frequency for the upward/downward ~cg with δ = 1

• Laplacian: δ = 1 ; Primary wavenumbers: (K,M) = (17,10).

• Spectrum of resonant instabilities (Im (ω(k,m))) and frequency of res-
onant instabilities (Re (ω(k,m)))

• Resonant traces correspond to jumps and branch-cuts in the Re
(ω(k,m)) figure

Figure 9: Correspondence between resonanting wave modes

Future Work

• Using Floquet spectral theory, to show in frequency plot (Re ω), reso-
nant traces are continuous along instabilities and have branch-cuts along
stabilities.

• To fully understand the wave resonance structure in the unravelled spec-
trum.
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