A Few Surprises Yet
in Steady 2D Topographic Wave Flows

> nonlinearity & rotational influences on wave generation

> a rotating version of Long's theory
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Linear Theory: Tiny Rossby Number

Quasigeostrophic Flow Over A Ridge
> small height gaussian ridge (A = NH/U = 0.25)
> predominantly balanced QG flow (R = U/ fL = 0.25)

> very weak wave anomalies near leeward surface (Pierrehumbert, 1984)

linear theory: isentropes (R = 0.25, A =0.25)
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Regimes for 2D Steady Topographic Flows
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Linear Theory: Small Rossby Number

Appearance of Waves
> steady uniform flow, constant stratification
> intermediate case: QG summit flow with short waves (R = 0.50)

> development of downstream (dispersive) wavetrain

linear theory: isentropes (R = 0.50, A = 0.25)
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Linear Theory: Intermediate Rossby Number

Fully Developed Wave Field
> strong waves with similar scale to QG summit flow (R = 1.0)

> significant wave radiation aloft

linear theory: isentropes (R = 1.00, A = 0.25)
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> as R 7, waves grow in amplitude (exponentially) & wavelength (linearly)




Linear Theory: A Singular Numerical Problem

Fourier Integral Solution (Queney, 1947)
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Buoyancy Anomaly

> linear waves with rotation, stratification & topography
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> 2D linear dispersion relation gives a singular exponent at k = R~1
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Singular Integrand ... ... leads to Aliasing Errors
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> rotating wave case prone to severe numerical Fourier errors
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Three Questions

a: Is There an Analog to Long's Theory that includes Coriolis Rotation?
> Long's theory (1953) for buoyancy anomaly
> steady, nonlinear & non-rotating flows are obtained exactly via linear Helmholtz solutions

— no obvious extension to include rotation

b: What is the Nature of Pierrehumbert’s Finite R Singularity?
> semi-geostrophic approximation: Pierrehumbert (1985)

> SG solutions have singular breakdown at finite Rossby number

— a true finite amplitude flow transition, or merely a manifestation of SG approximation?

c: How can Waves be Generated at Small Rossby Number?
> Pierrehumbert/Wyman (1985) & Trib/Davies (1995)
> wave generation by finite amplitude ridges at small R
> relaxation of time-dependent flow computations

— how does nonlinearity circumvent quasigeostrophic balance?



a: Long's Theory for Non-Rotating Topographic Waves

An Exact Nonlinear Theory for Buoyancy
> steady, non-rotating & hydrostatic/nonhydrostatic (Long, 1953)
> 2D helmholtz equation: stratified (A = N H/U) & nonhydrostatic Qwv
A2b4boy + 62 A% =0 5 b(a, ) =0
> downstream waves derive from radiation boundary conditions

— except hydrostatic waves (5°=0) are nondispersive
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> nonlinear fluid system reduces to a single equation for buoyancy

Klemp & Lilly, 1979



Isentropic Coordinates

2D Primitive Equations

> nondimensional: steady, rotating & nonhydrostatic

>  potential temperature 6 as vertical coordinate (6, = 1/zp)

Du —R 'v = — A°M, — 6%z;Dw
Dv + R 'u = R~1

62 zgDw + A%z = — A*M,
Dz — w = 0

> Montgomery potential: M = ¢ — 26

> steady 2D advection: D = u 9, ; incident wind ©*° =1

> 2D divergence: zg ugy — zg ug + wg = 0

Steady Streamline Property
> divergence + thermodynamic — {u zg}y = 0
— squeezing isentropes (streamlines) accelerates flow
> velocity relations: w =1/z9 ; w = zg/z2y
> across-ridge flow: vy = R ™1 (29 — 1)

> eliminating M through vorticity . . . then a miracle happens . . .




A Master Equation for Buoyancy

Vertical Displacement Equation

> includes both f-plane and non-hydrostatic effects

\»w Zzx T+ QNIM zp9 — Nzxz = 0 ; n = Aﬁw + %mng — %wga

1
2 0

> surface condition: z(x,0) = & radiation BCs
> nonlinearity in horizontal vorticity n

>  equivalent to Long’s equation without rotation Gwlw — 0)

Hydrostatic Buoyancy Equation (6% = 0)

>  constant stratification: z = 6 — b(x, 0)

2 —2 3 _ . -
A%bzz + R @%.TT@ g&galo ) @IHIS

> surface condition: b(x,0) = — & radiation BCs

> linearizing (u ~ 1) recovers queney
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b: Nonlinear Flows

Isentropic Coordinate Singularities

> breakdowns in coordinate inversion of z = 6 — b(x, 0)

1 1 oo isentrope collapsing, u — oo
%N = —u = — . .
zp 1 — by 0  isentrope overturning, u — 0O

Semigeostrophic Approximation

> small R extension of quasigeostrophy: Robinson (1960), Pierrehumbert (1985)
> SG truncation of hydrostatic master equation

> isentrope collapse must occur above -dependent critical value of R.A

Enhanced Wave Generation & Singularity Suppression?

3

> approach to collapse invalidates SG approximation, as nonlinearity u~ must become large

> seems nonlinearity suppresses collapse singularity through enhanced wave generation
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c: Nonlinear Waves at Tiny Rossby Number

Nonlinear Wave Generation
> moderate height gaussian ridge (A = NH/U = 1.00)
> tiny Rossby number flow (R = U/ fL = 0.25)

> time-transient computation to steady state

> how are these waves generated?
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Direct Steady Solve

Solution at R = 0.25; A = 1.00

> iterate on nonlinearity in hydrostatic master equation: u®'® — pNEY s eV
—2 3 n 1
A0, + R%05 +{ ()P0} =0 i Wt =
TT 1— @m
linear solution: b°(z, 6) waves after convergent iterations: b(x, 0)
o:xﬁ. b(x,z) & streamlines/isentropes m:x.u_ b(x,z) & streamlines/isentropes
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Streamline Comparison
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Possible Nonlinear Mechanisms

> nonlinear modification of local Rossby number
— enhanced topographic wave generation at ridge summit

— modification of wave propagation (rays) in interior

> nonlinear wave generation in interior?

N 3
A%bL, + R Zbgy + brpgs = — AQ:ov — 1) @mmva

buoyancy anomaly & streamlines/isentropes
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Generation /Enhancement/Refraction

Nonlinear Corrections

nonlinear correction waves
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Other Fields
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Nonlinear Waves at Small & Moderate Rossby Number

Nonlinear Wave Enhancement

> moderate height gaussian ridge (A = 1.00)
> Rossby number flows (R = 0.50,1.00)

> time-transient computation to steady state

R = 0.50
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> wave amplitudes approach overturning as R~
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Summary

Master Equation for Buoyancy

> single equation for 2D topographic wave flow spanning non-hydrostatic to QG regimes

> quantitative tool for understanding nonlinear wave processes

> key issue: stability & accuracy of numerical solves

one iteration at R = 0.50 time-dependent computation

w._.?d_ b(x,z) & streamlines/isentropes
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