Internal gravity waves in a saturated, moist-neutral atmosphere

- ▷ upstream wave of subsidence in start-up for moist topographic flow
- ▷ asymmetric buoyancy response of cloud-free air to up/down displacements
- cloud-edge motion by a gravity-wave shock

▷ David J Muraki (Simon Fraser Univ) & Rich Rotunno (NCAR)

Start-Up for Moist 2D Flow Over Topography .

Saturated, Moist-Neutral Atmosphere

- ▷ WRF: full-physics, topographic lower boundary (Miglietta/Rotunno, 2005)
 - ▷ waves trapped by tropopause boundary (Keller, et al., 2012)

 \triangleright why is there an upstream propagating wave of subsidence \rightarrow de-saturated, cloud-free air?

Desaturation of Cloud-Free, Moist-Neutral Air -

Primary Cause: Asymmetry to Up/Down Displacements

- ▷ saturated & cloud-free $(q_c = 0)$ at zero displacement $(\delta = 0)$
- \triangleright UPward displacement ($\delta > 0$):
 - \triangleright release of latent heat by condensation \rightarrow neutral buoyancy (reversible)
 - $\triangleright \approx \text{constant } \theta_e$, Clausius-Clapeyron thermodynamics
- ▷ DOWNward displacement ($\delta < 0$):
 - $_{\triangleright}$ unsaturated (no available cloud water) \rightarrow stratified buoyancy
 - \triangleright constant N^2

Buoyancy as a Function of Displacement, $b(\delta)$

> critical sensitivity of wave propagation to downward displacement

A Hierarchy of Models, Part I ____

Dynamics of Asymmetric Buoyancy

- ▷ 2D "linear" Boussinesq primitive equations & linearized topographic boundary
 - \triangleright vertical motion, w

displacement, δ

- \triangleright 2D vorticity/streamfunction: $u = \psi_z$, $w = -\psi_x$
 - $\begin{aligned} &(\eta_t + U\eta_x) &+ (b(\delta))_x &= 0\\ &(\delta_t + U\delta_x) &+ \psi_x &= 0\\ &\psi_{xx} + \psi_{zz} &= \eta \end{aligned}$
- \triangleright the upstream propagating wave of subsidence persists ...

A Hierarchy of Models, Part II ____

Dynamics of Asymmetric Buoyancy

$$\triangleright$$
 1D "linear" single vertical-mode & ($U = 0$) initial displacement

 \triangleright vertical motion, $w \rightarrow w(x,0) \sin z$

displacement, $\delta \rightarrow \delta(x,0) \sin z$

 \triangleright 2D vorticity/streamfunction: $w = -\psi_x$

$$\eta_t + (b(\delta))_x = 0$$

$$\delta_t + \psi_x = 0$$

$$\psi_{xx} - \psi = \eta$$

A Hierarchy of Models, Part II _____

Dynamics of Asymmetric Buoyancy

$$\triangleright$$
 1D "linear" single vertical-mode & ($U = 0$) initial displacement

 \triangleright vertical motion, $w \rightarrow w(x,0) \sin z$

displacement, $\delta \rightarrow \delta(x,0) \sin z$

A Hierarchy of Models, Part II _____

Dynamics of Asymmetric Buoyancy

 \triangleright vertical motion, $w \to w(x, t) \sin z$ displacement, $\delta \to \delta(x, t) \sin z$

the upstream propagating wave of subsidence yet persists ⊳

A Hierarchy of Models, Part III _____

Dynamics of Asymmetric Buoyancy

 $\label{eq:constraint} \begin{array}{l} \triangleright \quad 1 \text{D "linear" single vertical-mode, hydrostatic & ($U=0$) initial displacement$$$$ \\ \cr \begin{subarray}{c} \mathsf{streamfunction}, $\psi \to \psi(x,t) \sin z$$ \\ \end{array} \end{array} \\ \begin{array}{l} \text{displacement, } \delta \to \delta(x,t) \sin z \\ \end{array} \end{array}$

 \triangleright ... & the upstream propagating wave of subsidence stubbornly remains

A Hierarchy of Models, Part III ____

Dynamics of Asymmetric Buoyancy

 $\label{eq:constraint} \begin{array}{l} \triangleright \quad 1 \text{D "linear" single vertical-mode, } U=0, \mbox{ hydrostatic \& initial displacement} \\ \\ \triangleright \quad \text{streamfunction, } \psi \rightarrow \psi(x,t) \sin z \qquad \qquad \mbox{ displacement, } \delta \rightarrow \delta(x,t) \sin z \end{array}$

 $\triangleright~$ PDE conservation laws for ψ and δ

$$\begin{aligned} -\psi_t &+ (b(\delta))_x &= 0\\ \delta_t &+ \psi_x &= 0 \end{aligned}$$

▷ so now ... why is there an upstream propagating wave of subsidence?

Two Buoyancy Regimes _

Saturated, No Propagation vs Unsaturated Gravity Waves

- b hydrostatic waves have a characteristic speed
- \triangleright saturated (SA): upward displacement, $\delta > 0$
 - $_{\triangleright}\;$ wavespeed = 0 \rightarrow no buoyancy waves
- \triangleright unsaturated (UN): downward displacement, $\delta < 0$
 - \triangleright wavespeed = $\pm c \rightarrow$ wave equation $(\delta_{tt} c^2 \delta_{xx} = 0)$

▷ what happens at the upstream "collision" of SAturated & UNsaturated air ...?

Two Buoyancy Regimes _

Saturated, No Propagation vs Unsaturated Gravity Waves

- b hydrostatic waves have a characteristic speed
- ▷ saturated (SA): upward displacement, $\delta > 0$
 - $_{\triangleright}~$ wavespeed = 0 \rightarrow no buoyancy waves
- \triangleright unsaturated (UN): downward displacement, $\delta < 0$
 - \triangleright wavespeed = $\pm c \rightarrow$ wave equation $(\delta_{tt} c^2 \delta_{xx} = 0)$

 $\triangleright \quad \ldots \text{an upstream propagating shock} \rightarrow \text{wave of subsidence}$

 $_{\triangleright}~$ speed pprox - c/2 by Rankine-Hugoniot (consistent with MR, 2005)

Hydrostatic Solution by Method of Characteristics .

Characteristics, Shocks & $\delta=0$ Discontinuities

▷ space-time (Hovmüller) map of SAturated & UNsaturated regions

Hydrostatic Solution by Method of Characteristics .

Characteristics, Shocks & $\delta=0$ Discontinuities

▷ space-time (Hovmüller) map of SAturated & UNsaturated regions

Upstream Wave of Subsidence

 \triangleright 1D nonhydrostatic displacement, $\delta(x, t)$: wave regions & shock-like transitions

In Closing .

⊳ WRF

Dynamics of Saturated, Moist-Neutral Air

asymmetric vertical motions about cloud-free state ⊳

2D

- topographic start-up: upstream wave of subsidence as a (hydrostatic) propagating shock ⊳
- gravity-wave shock: a new mechanism for the motion of cloud-edges (in moist-neutral air) ⊳
- upstream wave of downward vertical motion ⊳
- 1D nonhydrostatic a) w 新設設設 -100 -50 x[km] +50 +100 -5 0 x-axis x-axis

In Closing _

Dynamics of Saturated, Moist-Neutral Air

- ▷ asymmetric vertical motions about cloud-free state
- ▷ topographic start-up: upstream wave of subsidence as a (hydrostatic) propagating shock
- ▷ gravity-wave shock: a new mechanism for the motion of cloud-edges

In Closing ____

Dynamics of Saturated, Moist-Neutral Air

- ▷ asymmetric vertical motions about cloud-free state
- ▷ topographic start-up: upstream wave of subsidence as a (hydrostatic) propagating shock
- ▷ gravity-wave shock: a new mechanism for the motion of cloud-edges
- ▷ hole-punch clouds (Heymsfield, et al, 2010/11)

▷ WRF simulations: Morrison & Thompson (NCAR)