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Nearly all analytical models of lock-exchange flow are based on the shallow-water ap-
proximation. Since the latter approximation fails at the leading edges of the mutually
intruding fluids of lock-exchange flow, solutions to the shallow-water equations can be
obtained only through the specification of front conditions. In the present paper, an-
alytic solutions to the shallow-water equations for non-Boussinesq lock-exchange flow
are given for front conditions deriving from free-boundary arguments. Analytic solutions
are also derived for other proposed front conditions — conditions which appear to the
shallow-water system as forced boundary conditions. Both solutions to the shallow-water
equations are compared with numerical solutions of the Navier-Stokes equations and a
mixture of successes and failures is recorded. The apparent success of some aspects of
the forced solutions of the shallow-water equations, together with the fact that in a real
fluid the density interface is a free boundary, shows the need for an improved theory
of lock-exchange flow taking into account nonhydrostatic effects for density interfaces
intersecting rigid boundaries.
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1. Introduction

Lock-exchange flow results from the adjustment under gravity of two fluids of differ-
ent densities initially separated by a vertical partition in a horizontal channel (Fig. 1a).
In addition to gravity and pressure-gradient forces, a model of lock-exchange flow must
reckon with stress at the channel walls, stress and diffusion between the two fluids and,
in cases involving a liquid-gas interface, surface-tension effects. Given the mathemati-
cal complexity attached to these processes, the more tractable two-layer shallow-water
equations, in which the aforementioned processes are either neglected or simply repre-
sented, have been applied to lock-exhange flow by Rottman & Simpson (1983, RS), Keller
& Chyou (1991), Klemp, Rotunno & Skamarock (1994, KRS), Shin, Dalziel & Linden
(2004), Lowe, Rottman & Linden (2005, LRL) among others. Judging the relative merits
of these differing applications of the shallow-water equations against laboratory data is
difficult owing to the influence of the aforementioned neglected effects. However the gap
between shallow-water theory and laboratory experiments can be bridged in certain cases
by using numerical integrations of less approximate fluid-flow equations as surrogates for
laboratory data as in KRS and Birman, Martin & Meiburg (2005). In this article we
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Figure 1. Schematic of lock-exchange flow based on a) laboratory data and b) typical solutions
to the shallow-water equations. The vertical line at x̃ = 0 indicates the lock center where the
heavier and lighter fluids are initially separated; the horizontal channel walls are separated in
the vertical by a distance H. After the release of the lock the heavier (lighter) fluid flows to

the right (left) at speed ũf (ṽf ) with thickness h̃f (d̃f ) measured some distance behind the
complicated flow at the leading edge.

extend the Boussinesq (density ratio of lighter to heavier fluid r ≈ 1), two-layer shallow-
water theory put forward by KRS to the non-Boussinesq case and then evaluate it and
another shallow-water theory against compatible (i.e. free-slip, no surface-tension, etc.)
numerical integrations of the Navier-Stokes equations for lock-exchange flow.

As the shallow-water equations (SWE) are based on the hydrostatic approximation,
they are incapable of describing flow with strong horizontal variation, such as at the
leading edges of the mutually intruding interfaces shown in Fig. 1a. In order to use the
SWE in such cases, one admits solution discontinuities and appeals to a more complete
physical theory for conditions that apply across them. RS proposed using a formula
developed by Benjamin (1968) [his Eq. (2.22)] to relate the right-going front speed ũf to

its depth h̃f in a Boussinesq ‘dam-break’ calculation using the two-layer SWE. Benjamin’s
formula, based on mass and momentum balance across a control volume moving with a
steadily propagating ‘gravity current’ (e.g. Simpson & Britter 1979), gives ũf in terms

of the height h̃f of the lower fluid well behind the complex flow of the gravity-current
head; in solutions of the SWE, Benjamin’s control volume containing the gravity-current
head is represented by a simple discontinuity as shown in Fig. 1b. In their application
of the two-layer SWE to the Boussinesq lock-exchange problem, RS found that the left-
going interface (Fig. 1a), which was left to evolve freely, immediately became multi-
valued (see Fig. 7c of RS). KRS resolved the latter problem by recognizing that the
left-going interface must also be represented by a discontinuity that satisfies Benjamin’s
front condition (Fig. 1b); Fig. 7d of KRS gives the solution of the SWE for the lock-
exchange problem in the Boussinesq limit.

A continuing source of discussion in the literature is that the Benjamin front condition
admits a special dissipation-free solution along with a continuum of solutions having
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dissipation. KRS pointed out that the dissipation-free front condition in the SWE would
imply a front speed that is greater than the speed at which information can travel to
it from the lock center (violating ‘causality’) in both the Boussinesq (r ≈ 1) and cavity
(r → 0) limits (see Fig. 3 of KRS). On the other hand some laboratory investigators
promote the relevance of the dissipation-free front condition to experimental flows (e.g.
Shin et al. 2004), while other laboratory experiments (Simpson & Britter 1979) and
numerical experiments (Härtel, Meiburg & Necker 2000; Bryan & Rotunno 2008) find
flows consistent with a dissipative front condition for Boussinesq lock-exchange flow.
For non-Boussinesq conditions (r < 1), laboratory experiments (Keller & Chyou 1991;
Gröbelbauer, Fannelop & Britter 1993; Lowe, Rottman & Linden 2005) and numerical
simulations (Birman, Martin & Meiburg 2005; Étienne, Hopfinger & Saramito 2005;
Bonometti, Blachandar & Magnaudet 2008) show that as r decreases from unity, the
right-going front of relatively heavy fluid increases in speed and becomes more turbulent,
while the speed of the left-going front of relatively light fluid remains unchanged and
becomes less turbulent.

This latter feature led Keller & Chyou (1991) to consider the left-going front as the
realization of the dissipation-free Benjamin front condition. Following Keller & Chyou
(1991), LRL used two-layer shallow-water theory to construct the solution between the
dissipation-free left-going upper front and a right-going front obeying the (generally dis-
sipative) Benjamin front condition across the range of r (Fig. 4b of LRL). The ‘causality’
problem raised by KRS of the impossibility of information flow in the SWE from lock
center to the dissipation-free front was not addressed.

In the present paper, we extend the KRS Boussinesq two-layer shallow-water theory
to apply across the range of r. As in KRS, the present theory is based on the two-
layer SWE and the application of the Benjamin front condition to the left- and right-
going fronts, respectively. As with the KRS numerical integrations of the SWE in the
Boussinesq limit, the present non-Boussinesq solutions require the dissipative Benjamin
front condition across the range 0 < r 6 1 for solutions that obey causality. We then verify
that these numerical solutions are unique through an independent, exact analysis using
the method of characteristics. For comparison with the present solutions, we have also
constructed analytical solutions following the LRL approach described above. These exact
solutions offer a mathematically firm explanation for the numerical-solution features such
as the apparent ‘expansion fans’ and ‘zones of constant state’ that appear. Perhaps more
important is that the exact analysis gives a clear picture of information flow through the
system as seen by the shallow-water theory.

To evaluate the present and the LRL SWE solutions, we have carried out two- and
three-dimensional numerical simulations using the Navier-Stokes (NS) equations. The
simulations are carried out under free-slip conditions at the channel walls and without
surface-tension effects. One effect contained in the NS equations but not in the SWE
is interfacial instability; hence viscous effects are unavoidable as they effect the growth
and ultimate disposition of unstable waves growing on the interface. As pointed out by
(Benjamin 1968, p. 224-225) the upper gravity current is completely stable as r → 0 while
it is unstable as r → 1; on the other hand the lower gravity current is unstable at any r.
Consistent with the foregoing arguments, the present numerical solutions indicate that
the character (laminar or turbulent) of the upper front is a function of both r and the
relative strength of viscous effects through the Reynolds number Re. For Re greater than
some threshold that depends on r, we find better agreement between the NS solutions
with the present extension of the KRS theory than with the LRL theory; however for
Re less than that threshold, the numerical solutions indicate better agreement with the
LRL theory than with the present one.
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Hence we are led to the conclusion that for relatively smaller Re, the solution to
the Navier-Stokes equations for the lock-exchange problem is outside the SWE solution
space for solutions respecting the causality condition. Our exact analysis of the LRL
SWE solutions indicates that all information flows from left-going dissipation-free front
inward towards the lock center. From the point of view of the SWE, the left-going front
must thus be viewed as an external agent; that is, the mathematical problem becomes a
forced- (rather than a free-) boundary problem.

Numerical solutions of two-layer SWE for non-Boussinesq lock-exchange flow are de-
scribed next in § 2. Motivated by these numerical solutions, which are consistent with
information flow from the lock center outward, § 3 describes an exact ‘causal’ analytical
solution to SWE using the method of characteristics. For reasons listed above, we also
give in § 3, analytical solutions of the SWE for prescribed frontal parameters at the left-
going front of lighter fluid; these solutions do not respect ‘causality’ but may nonetheless
be useful descriptions of fluid flow features that are beyond shallow-water theory. In § 4
the SWE solutions to those of the less-approximate NS equations and, in particular, ex-
amines the variation of the solutions with both density ratio r and Re. A summary and
concluding remarks are given in § 5.

2. Numerical Solution of the Two-Layer Shallow Water Equations

Following RS, Keller & Chyou (1991) and LRL, the two-layer SWE equations for flow
in a horizontal channel neglecting stress, diffusion and surface tension, can be written in
terms of the lower-layer height and velocity; in nondimensional form these are

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0 (2.1)

and
∂u

∂t
+ a

∂u

∂x
+ b

∂h

∂x
= 0, (2.2)

where

a = u
(1 − h)2 − rh(1 + h)

(1 − h)2 + rh(1 − h)
and b =

(1 − h)3 − ru2

(1 − h)3 + rh(1 − h)2
. (2.3a, b)

In (2.1)-(2.3), h = h̃/H and u = ũ/
√

g′H, where h̃ is the depth, and ũ the velocity, of
the lower layer; the independent variables are x = x̃/H and t = t̃

√

g′/H; the reduced
acceleration due to gravity is defined by g′ = (1 − r)g. For future reference, note that
d = d̃/H = 1 − h and, by continuity, v = ṽ/

√
g′H = −uh/d, where v is the velocity and

d is the depth of the upper layer. The initial condition is u(x, 0) = 0, and h(x, 0) = 1 for
x 6 0 and h(x, 0) = 0 for x > 0.

As mentioned in the Introduction, RS used a front condition to represent the grav-
ity current at the leading edge of the right-going fluid in a Boussinesq shallow-water
calculation, while the left-going intrusion was left to evolve freely. As evidenced by the
result of that calculation (Fig. 7c of RS), h(x, t) for the left-going interface immediately
became multi-valued for t > 0. KRS demonstrated, through an evaluation of the wave-
propagation characteristics at the leading edge of the disturbance propagating to the left
into a reservoir of depth h (where 0 < h 6 1 with h = 1 representing lock-exchange
flow), that deeper heights travel slower than shallower heights for h > 0.5; hence multi-
valued solutions are to be expected, and the application of a front condition is required
for Boussinesq lock-exchange flow. For the present non-Boussinesq case, the wavespeeds
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associated with system (2.1)-(2.2) are given by

c±(u, h) =
1

2
(u + a) ± 1

2

√

(u + a)2 − 4(au − bh) (2.4)

[Eq. (3.13) of LRL]; setting u = 0 in (2.4) gives

c− ≈ −
√

h(1 − h)

1 − (1 − r)h
(2.5)

for a disturbance propagating to the left into a reservoir of height h. Following KRS one
can deduce that lower heights travel faster than higher heights for h > (1+

√
r)−1. In the

Boussinesq limit, r = 1 and KRS’s result is recovered showing that lower heights travel
to the left faster than higher ones for h > 0.5. The present analysis of Eq. (2.5) shows
that lower heights travel faster than higher heights for any finite r 6= 0 and hence there
is the necessity for a front condition for lock-exchange flow (h = 1). We note in passing
that (2.5) illustrates just one of the many intricacies associated with a moving contact

line (Shikhmurazaev 2008, Chapter 5). In the foregoing argument we are first considering
the limit h → 1 (lock exchange) and then r → 0 (cavity). However had we first taken
r → 0, Eq. (2.5) would then have given the classical one-layer result c− = −

√
h implying

that that the lower fluid takes no notice of the upper fluid, and therefore, of the upper
bounding surface, even in the limit h → 1.

Following Benjamin (1968), application of mass and momentum conservation across
the front of each gravity current gives

vf = −
√

df (2 − df )(1 − df )

1 + df

≡ −B(df ), (2.6)

for the left-going front, and

uf =

√

1

r

hf (2 − hf )(1 − hf )

1 + hf

=

√

1

r
B(hf ) . (2.7)

for the right-going front.
With the front conditions (2.6)-(2.7), numerical solutions of (2.1)-(2.2) are computed

across the range of r and shown in Fig. 2. Figures 2a, c and e show snapshots at t = 10 of
the interface height h(x) for r = 1.0, 0.7 and 0.4, respectively, while Figs. 2b, d and f show
the corresponding velocities u(x) and v(x) in the lower and upper layers, respectively.
For the Boussinesq case (Figs. 2a, b), the solution has the required reflective symmetry
[h(x) = d(−x) , u(x) = −v(−x)]; the frontal parameters, hf = df = 0.3473 and uf =
−vf = 0.527 (cf. KRS’s Fig. 7d). For the density ratio r = 0.7, Fig. 2c indicates that
h(x) is no longer symmetric, although the front heights are still equal to their values in
the r = 1 case (Fig. 2a). Moreover the velocity distributions (Fig. 2d), indicate that the
lower-fluid front speed has increased, while that of the upper fluid has remained as it was
in the r = 1 case (Fig. 2b). With the density ratio reduced to r = 0.4, Fig. 2e indicates
no change in the thickness df of the left-going front, while that of the right-going front
hf is reduced, with respect to the r = 1.0 and 0.7 cases; the velocity distributions in Fig.
2f indicate a further speed increase of the right-going front, but no change in that of the
left-going front. In contrast with the r = 1.0 and 0.7 cases, the case with r = 0.4 has
both h and u independent of x for some distance behind the right-going front.

To aid in the interpretation of the numerical solutions shown in Fig. 2, we examine the
corresponding wavespeeds c±(u, h) given by (2.4). Figure 2b shows for the r = 1.0 case
that 0 < c+ 6 u and, by symmetry, v 6 c− < 0. With the density ratio r = 0.7, Fig. 2d
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Figure 2. Numerical solutions of the two-layer shallow water equations with the front conditions
(2.6)-(2.7) for r = 1.0, 0.7 and 0.4. For each r, the height of the interface is displayed in a), c)
and e), and the layer velocities and wavespeeds (2.4) are displayed in b), d) and f).

shows that, as in the case with r = 1.0, 0 < c+ 6 u, but that c+ is closer in magnitude
to u throughout the interval between the fronts. On the other hand for c−, Fig. 2d for
r = 0.7 shows that v 6 c− 6 0 for x 6 0 and that c− > 0 for x > 0, indicating that no
information can travel from the right to the left of x = 0. At a density ratio of r = 0.4,
Fig. 2f shows that c+ > u, while the distribution of c− is qualitatively the same as for
the r = 0.7 case.

3. Solutions of the SWE by the Method of Characteristics

The solution to the lock-exchange problem shares with the classic dam-break and (con-
stant velocity) piston problems the property that the governing equations, front condi-
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tions, and the initial conditions are without any implied space or time scales (Whitham
1974, p. 191). As a result, for t > 0, solutions must only depend on the similarity variable
x/t, and the time evolution is simply a linear-in-time dilatation of the spatial structure.
In this section, the spatial profile, as a function of x/t, is determined by the method of
characteristics.

The hyperbolic equations (2.1)-(2.2) can be written as
(

h
u

)

t

+

[

u h
b a

](

h
u

)

x

= ~0 (3.1)

where the wavespeeds c± (2.4) are obtained as the eigenvalues of the matrix. Multipli-
cation by the left-eigenvector (a − c±,−h) gives the Riemann invariant relation

(a − c±)
dh

dt
− h

du

dt
= 0 (3.2)

where the derivatives are along characteristic trajectories (or ‘rays’) defined by dx±/dt =
c± (Whitham 1974, p. 116). As the Riemann invariant relation has no explicit dependence
on x or t, it can be integrated as the ordinary differential

du

dh
=

a − c±(u, h)

h
, (3.3)

giving a relation between u and h along rays x±(t) (Courant & Friedrichs 1948, p. 44). In
the present application we will be concerned with two specific solutions of (3.3), these are
the (fastest) inbound rays that are launched from each of the two fronts. We define u+(h)
using (3.3) with the c+(u, h) wavespeed and starting values given by the left-going frontal
parameters (uL, hL). Likewise, we define u−(h) with the c−(u, h) wavespeed initialized
with the right-going frontal parameters (uR, hR).

3.1. Free-boundary solutions

The locations of the left- and right-going fronts that delimit the propagation of the lock-
exchange flow into regions of the quiescent fluid are determined here by free-boundary
arguments. First, conservation of mass dictates that the fronts move with the fluid speed;
hence, on a ray diagram, the right-going front is the event line x/t = uR, and the
left-going front is the event line x/t = vL. Second, the assumption that the Benjamin
relation applies provides another condition:

√
ruR = B(hR) (2.7) for the right-going

and vL = −B(dL) (2.6) for the left-going front. Determination of both frontal variables,
(uR, hR), or (vL, dL), requires a third condition. There are two possible scenarios for
completing the front specification, and we refer to these as the characteristic Benjamin

front and the time-like Benjamin front (Courant & Friedrichs 1948, p. 84; John 1981, p.
28). These are defined below, where the right-going front is considered first.

The right-going front speed (uR) must satisfy the inequality

c−R < uR 6 c+

R (3.4)

to satisfy ‘causality’, that is, forbidding the front to propagate faster than the right-
side characteristic speed (c+

R), and requiring that the front have influence on the trailing
region of disturbed fluid. The case of equality in (3.4) defines the characteristic Benjamin
front, where the event line coincides with the right-going c+-ray. In this case, the third
front condition is

uR = c+

R = c+(uR, hR) . (3.5)

It follows from the characteristic equation (2.4) that (3.5) is satisfied only when the
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coefficient b(uR, hR) = 0, so that from (2.3b),

r u2
R = (1 − hR)3 . (3.6)

Simultaneous solution of (3.6) with the Benjamin front condition (2.7) gives the unique
solution

√
r uR ≈ 0.5273 ; hR ≈ 0.3473 (3.7)

for the frontal parameters. It may be verified from (2.4) that for frontal parameters (3.7),
c−R < uR, as required by (3.4).

For the time-like Benjamin front, the frontal parameters are determined by a third
condition that is dictated by an inbound ray (from the left). In this case the front speed
uR satisfies the strict inequality

c−R < uR < c+

R (3.8)

implying that the c+-rays (from the left-going front) now propagate faster through the
disturbed fluid and overtake the right-going front. Therefore in this case the right-going
front parameters (uR, hR) derive from the solution of (3.3) for u+(h) for rays emanating
from the left-going front together with the condition (2.7).

Considering now the left-going front, the causality inequality analogous to (3.4) is

c−L 6 vL < c+

L . (3.9)

A left-going characteristic Benjamin front is thus defined by

vL = c−L = c−(uL, hL) (3.10)

and gives the third determining condition. Following the same logic as for the right-going
front, the condition (3.10) leads to the relation

v2
L = (1 − dL)3 (3.11)

in analogy with (3.6). For the left-going characteristic front then, combining (3.11) with
the Benjamin front condition (2.6) gives the numerical solution for the frontal parameters

vL ≈ −0.5273 ; dL ≈ 0.3473 (3.12)

in analogy with (3.7) except in this case the result is independent of r. The upper-fluid
values (3.12) correspond to the lower-fluid values

uL ≈ 0.2806 ; hL ≈ 0.6527 . (3.13)

There is also the possibility for a left-going time-like Benjamin front. In this case, the
third condition would be obtained by an inbound ray (from the right). Our calculations
of c−L using uL = u−(hL) from the solution of (3.3) show, however, that there are no
solutions for which the case of c−L < vLis physically realized. The analysis of c− from the
numerical SWE solutions shown in Figs. 2d and f is consistent with this result.

We are now ready to construct solutions to the SWE by the method of characteristics
and begin with the Boussinesq case (r = 1.0). Consistent with Fig. 2a, we assume that
both left- and right-moving fronts are of the characteristic Benjamin type and that there-
fore on a ray diagram the region of disturbed flow lies inside the cone c−L 6 x/t 6 c+

R.
Figure 3a shows the Riemann invariant u−(h) that emanates from the right-moving front
[where (u−, h) = (uR, hR) given by (3.7)] together with the Riemann invariant u+(h) that
emanates from the left-going front [where (u+, h) = (uL, hL) given by (3.13)]. There is a
unique crossing point where u+(hc) = u−(hc) = uc, where uc ≈ 0.44 and hc = 0.5. This
crossing point thus defines two cones of influence on a ray diagram: the right-moving
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front influences the region c−c 6 x/t 6 c+

R while the left-moving front influences the re-
gion c−L 6 x/t 6 c+

c , where c−c = c−(uc, hc) and c+
c = c+(uc, hc). The overlapping zones

of influence thus define a cone c−c 6 x/t 6 c+
c where h = hc and u = uc is the ”zone of

constant state” required to satisfy both Riemann invariant conditions. Referring to Fig.
4a, the upper panel shows this ”zone of constant state” (thin line segment) in terms of
h(x/t) and corresponds to the cone c−c 6 x/t 6 c+

c in the ray diagram directly below.
The other curves in Fig. 3a are the wavespeeds and the upper-layer velocities as deter-
mined by their respective Riemann invariant velocities u±(h). Figure 3a indicates that
the region vL 6 x/t 6 c−c is uninfluenced by the u−(h) Riemann invariant and hence
that region must be an expansion fan. The solution h(x/t) can be deduced parametrically
from

x/t = c−[u+(h)] (3.14)

where c−[u+] is defined by the values on the so-labelled curve in Fig. 3. Likewise the
region c+

c 6 x/t 6 uR is also an expansion fan with the solution given parametrically by

x/t = c+[u−(h)] . (3.15)

The solution h(x/t) for these two expansion fans is shown by the thick line segments in
the upper panel of Fig. 4a. Finally, the rays are computed using dx±/dt = c± with (3.14)
or (3.15) and shown as thin lines in the lower panel of Fig. 4a. It may be verified that
the analytical solution for h(x/t) shown in Fig. 4a is essentially identical to the SWE
numerical solution shown in Fig. 2a.

Following the same procedure as for the Boussinesq case, we next construct the solution
for the non-Boussinesq case r = 0.7. Figure 3b shows that the r-dependence in the right-
going front speed (2.7) produces an upward shift in u−(h) so that the intersection with the
(unchanged) u+(h) shifts to hc ≈ 0.3907. Otherwise the logic of the solution construction
is identical to the Boussinesq case, and the spatial profile is illustrated in Fig. 4b. In this
case with r = 0.7, the zone of constant state shifts towards the right-going front and
there is a narrowing of the right-side expansion fan. Again the analytical solution for
h(x/t) shown in the upper panel of Fig. 4b is again identical with the SWE numerical
solution shown in Fig. 2b,

With further decreases in r, the right-side expansion fan is eventually eliminated at a
critical value of r where c+

c = uR. At this critical value of rcr (≈ 0.5821) the solution must
undergo a change of spatial character. For r < rcr, the intersection of the two Riemann
invariant curves u+(h) and u−(h) occurs at an h-value that would be less than the value
for the right-going characteristic Benjamin front (hR) from (3.7). Specifically, the c+

c

would exceed the propagation speed uR of the assumed characteristic Benjamin front,
which suggests that left-side rays are overtaking the right-going front. The resolution
is that the construction should now assume that the right-going front parameters now
satisfy the time-like condition (3.8). Figure 3c shows the u+(h) Riemann invariant curve
extended to the value hR ≈ 0.2725 which, with uR ≈ 0.8203, also satisfies the Benjamin
front condition (2.7). In the absence of the right-side expansion fan, the right-going
front conditions are now constant-state conditions. Figure 4c (lower panel) illustrates
that the change to the time-like front is manifested by rays launched from the left-going
front catching up to the right-going front as inbound rays. All rays of the c− type carry
constant values of h and u. We note that for r < rcr the ray diagram resembles that
of the classic ”dam-break” problem (Whitham 1974, p. 457). As with the previous two
cases the analytical solution for the height h(x/t) in the upper panel of Fig. 4c matches
the SWE numerical solution shown in Fig. 2c.

A summary of the right-going frontal values of hR and uR as a function of density ratio
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Figure 3. Solution to the Riemann invariant equation (3.3) for u±(h) for density ratio r = a)
1.0. b) 0.7 and c) 0.4. Starting values for the integrations of (3.3) are indicated by the points
u− = uR, h = hR and u+ = uL, h = hL. In a) and b), (uc, hc) denotes the crossing point
where u+(h) = u−(h) and the thick solid lines indicates the parts of the u±(h) solution curves
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v± (long-dashed curves). In c) there is no crossing point which indicates a change in character
of the solution.
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respectively. In c) the right-side expansion fan disappears.
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r are shown in Fig. 5. Free-boundary solutions for r > rcr ≈ 0.5821 have a characteristic
Benjamin front, while for r < rcr have a time-like Benjamin front. As can be inferred
from Fig. 4, there are two critical features that coincide at the value rcr: (a) as r → rcr

from above, c+
c → uR (right-going expansion fan disappears); and (b) as r → rcr from

below, c+

R → uR (rays emanating from left-going front become parallel to the right-going
front).

The summary in Fig. 5 describes the unique causal solutions assuming a left-going
characteristic Benjamin front and continuity on vL 6 x/t 6 uR. To show that the present
solutions are indeed unique we consider the hypothetical case of a left-going time-like
Benjamin front. A left-going time-like Benjamin front together with a right-going time-
like Benjamin front gives rise to a contradiction because both Riemann invariants u±(h)
cannot satisfy the same end conditions u±(hR) = uR and u±(hL) = uL since an ODE
inequality would follow from c−[u−] 6= c+[u+]. A left-going time-like Benjamin front
together with a right-going characteristic Benjamin front would require c−L < vL (rays
emanating from right-going front overtaking the left-going front) which is found to occur
only for the unphysical parameter regime r > (rcr)

−1 > 1. Thus, the characteristic
solutions as described here are the unique nonlinear solutions that are continuous on
vL 6 x/t 6 uR.

3.2. Forced-boundary solutions

In this subsection we analyze the case considered by LRL of a dissipation-free, left-going
front characterized by the particular front conditions

vL = −uL = −1/2 ; dL = hL = 1/2 (3.16)

satisfying the Benjamin relation (2.6). The characteristic speeds (2.4) associated with
these conditions satisfy the inequality vL < c−L < c+

L , and hence the rays from the left-
going front are both directed into the lock exchange region implying that the frontal
motion is not influenced by the flow within the lock region. Therefore, from the point
of view of the SWE, (3.16) violates ‘causality’ as defined above (for further discussion,
see §4b) and (3.16) must be considered a forced-boundary condition. Mathematically, the
latter acts similarly to an initial condition and is commonly referred to as a space-like

curve (Courant & Friedrichs 1948, p.84; John 1981, p.28) on a ray diagram.
The construction of solutions to the SWE by the method of characteristics presented

above is changed only in that conditions (3.12)-(3.13) are replaced by (3.16). For the
range of values 0 6 r < rcr1 ≈ 0.5532, the Riemann invariant analysis leads to the
right-going front being of the time-like Benjamin type. As seen in the example shown for
r = 0.4 in Fig. 6a, the spatial profile has a constant-state generated by the propagation of
the left-going dissipation-free front for −1/2 < x/t < c−L . The non-causal, hence forced,
nature of this solution is evident in that both the c+ and c− rays are directed into the
lock-exchange region. Otherwise, the spatial structure of the solution for c−L < x/t < uR

is essentially like the free-boundary solution (Fig. 4c), consisting of an expansion fan and
a constant-state following the right-going front.

At larger values of rcr1 < r < rcr2 ≈ 0.8953, the spatial profile of the solution again
has a constant-state attached to the dissipation-free front followed by the two expansion
fans typified by the right-going characteristic Benjamin front case (e.g. Fig. 4b). This is
illustrated for the case of r = 0.7 shown in Fig. 6b. However, unlike the free-boundary
solutions, there is a second critical value of rcr2 ≈ 0.8953 where the central constant-
state coincides with the dissipation-free-front conditions. This occurs where the Riemann
invariant satisfies u−(1/2) = 1/2. The implication of this for values of r approaching
the Boussinesq case, rcr2 < r 6 1, is that solutions would seem to require c− rays
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Figure 5. Right-side-front a) speed uR, and b) height hR, as a function of r. The present
free-boundary solution (solid line) has two segments separated by the dot at r = rcr = 0.5821
indicating the density ratio dividing characteristic (r > rcr) from time-like (r < rcr) Benjamin
fronts. Solutions with the forced-boundary condition uL = hL = 1/2 and free-boundary con-
ditions for the right-side front (dashed line) have r = rcr1 = 0.5532 indicated by the star; the
square at r = rcr2 = 0.8953 is the limiting density ratio beyond which continuous solutions do
not exist for these assumed frontal conditions. The LRL solutions are same as the foregoing for
r < 0.5532 but differ for r > 0.5532 (indicated by the solid gray line). The front-speeds from
the present 2D and 3D numerical simulations are nearly identical and indicated by the ‘+’; data
from the 2D simulations of Bonometti et al. (2008) are indicated by the circles.

that cross. Mathematically, this situation is typically resolved by the appearance of a
shock, or hydraulic jump. However, we choose not to pursue the analysis further, as our
computations based on the Navier-Stokes equations (§4) suggest that the dissipation-free
front is not realized at these larger values of r. The solution for [uR(r), hR(r)] using the
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Figure 6. Analytical construction of the solution to the shallow water equations for the forced
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r = 0.4 and b) r = 0.7; c) LRL solution for r = 0.7 with forced-boundary conditions at both
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forced-boundary condition (3.16) is plotted on Fig. 5 as compared to the free-boundary
solution. It is noted that the right-going frontal parameters are little affected by this
change in the left-going front.

Finally we consider the solution procedure described in LRL (their §3). LRL solve the
Riemann invariant equation (3.3) for u+(h) starting from the left-going condition (3.16)
and look for a crossing with the Benjamin relation (2.7) to arrive at the right-going frontal
parameters (uR, hR). For r < rcr1 the LRL procedure is the same as the procedure that
leads to the flow shown in Fig. 6a. However for r > rcr1 we find that c+

c < uR implying
that rays emanating from the left-going front do not reach the right-going front; hence
in our construction of the solution for this case, the left-going rays from the right-going
characteristic Benjamin front are necessary to complete the solution through the right-
side expansion fan (Fig. 6b). Although it is possible to construct the solution for r > rcr1

(Fig. 6c) following the LRL procedure, one would need some physical basis external to
the SWE for assigning the derived frontal parameters (uR, hR) which, as for the left-
going front, must be considered a forced-boundary condition. In the limit as r → 1, the
LRL procedure produces the solution u = h = 1/2 for −1/2 < x/t < +1/2 (LRL, their
Figs. 11-12) and versions of the latter may be found in the literature dating back to the
1940s (Yih 1965, pp. 134-138). Nevertheless, as shown in Fig. 5, there is little difference
in uR(r) produced by the present, the modified LRL or the LRL solutions to the SWE;
the major difference is in hR(r) for rcr < r < 1.0.

4. Numerical simulations

To assess the solutions of the two-layer SWE presented in the previous sections, we
proceed here to more general equations of fluid motion. In the present work we follow
Étienne et al. (2005) who give the equations of motion for a mixture of two incompress-
ible fluids of different densities. The fluid density is given by ρ̃ = ρhΦ + ρl(1 − Φ) or,
nondimensionalizing by the density of the heavier fluid ρh, ρ = r + (1 − r)Φ , where Φ
is the heavier-fluid volume fraction and ρl is the density of the lighter fluid. Using the
same nondimensionalization as used for the shallow-water equations in §2, the equations
expressing conservation of mass of the mixture, mass of the denser fluid and momentum
of the mixture are, respectively,

∂ui

∂xi

= − (1 − r)

r + (1 − r)Φ

DΦ

Dt
, (4.1)

DΦ

Dt
+ Φ

∂ui

∂xi

=
1

ReSc

∂2Φ

∂x2
i

(4.2)

and

ρ
Dui

Dt
= − ∂p

∂xi

+
2

Re

∂

∂xj

[λ(Φ)(eij −
1

3

∂uk

∂xk

δij)] −
ρ

1 − r
δi3 (4.3)

where Re = ρhUH/η and Sc = (η/ρh)/κ are respectively the Reynolds and Schmidt
numbers, η is a constant reference value for the dynamic viscosity, κ is the diffusion co-
efficient (assumed constant) and U =

√

(1 − r)gH. Étienne et al. (2005) let the dynamic
viscosity µ = ηλ(Φ) to allow for either constant dynamic viscosity (λ = 1) or constant
kinematic viscosity [λ = r + (1 − r)Φ] .

Seeking solutions that are as close as possible to the physical situation described by the
two-layer SWE, we will focus on the limiting case Sc → ∞, signifying zero cross-species
diffusion. With the assumption of constant dynamic viscosity, Eqs. (4.1)-(4.3) simplify
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to
∂ui

∂xi

= 0, (4.4)

Dρ

Dt
= 0 (4.5)

and

ρ
Dui

Dt
= − ∂p

∂xi

+
1

Re

∂2ui

∂x2
j

− ρ

1 − r
δi3 . (4.6)

Equations (4.4)–(4.6) are the same as solved by Bonometti et al. (2008) where it is noted
(p. 451) that there is in effect a finite value of Sc ≈ O(103) due to the limitations of finite-
differencing across the sharp change in ρ at the fluid-fluid interface. Again, in conformity
with the SWE, we will assume stress-free conditions at the upper and lower boundaries.
Hereinafter (4.4)–(4.6) are referred to as the Navier-Stokes (NS) equations.

As noted in the Introduction and in previous work, the interface separating the heavier-
from the lighter-fluid flows is generally unstable; hence one expects a transition to tur-
bulence beyond some threshold value of Re, and therefore, turbulent stress between the
two fluids. To avoid turbulent stresses, one might restrict attention to lower-Re (laminar)
cases; however for a low-Re flow there would then be viscous stress between the two flu-
ids. Hence stress between the fluids is a generally unavoidable difference between the NS
and the SWE solutions for lock-exchange flow. In the present paper we will present so-
lutions ranging from turbulent to laminar flow. Although the lock (Fig. 1) is in principle
two-dimensional, turbulent motion is fundamentally three-dimensional and therefore we
will explore solutions to (4.4)-(4.6) for variations in (r,Re) in both two and three dimen-
sions. Details on the numerical-solution technique, grid resolution, solution verification,
etc. are given in the Appendix.

4.1. Results and comparison with the SWE solutions

To facilitate comparison of the SWE solutions (§3) with the NS solutions, it is convenient
to plot the latter as a function of x/t at a time long enough for the establishment of
a statistically steady-state solution. Plotted in this way, long-wave features of the NS
solutions stand out more clearly, and shorter-wave features, such as the leading-edge
gravity currents are compressed, in analogue to the way they are represented in the SWE.
Figures 7a, c and d show the density field ρ(x/t, z) from two-dimensional simulations of
the cases r = 1.0, 0.7 and 0.4, respectively, with Re = 104, while Figs. 7b, d and e show the
y-averaged density field ρ(x/t, z) from three-dimensional simulations for the same cases
(all at t = 16). Beginning with the Boussinesq case r = 1, Fig. 7a indicates flow instability
along the interface between the advancing fronts; however, without the ability to produce
a turbulent cascade to smaller scales, the flow is dominated by large-scale ’billows’. In
three dimensions, Fig. 7b shows that the two-dimensional instability is able to break down
into three-dimensional turbulence which diffuses the interface. For the non-Boussinesq
case r = 0.7, the two- and three-dimensional simulations in Figs. 7c and d, respectively,
also indicate turbulent flow along the interface with a suggestion of a reduced level of
turbulence for the left-going front. However for r = 0.4, the two- and three-dimensional
simulations in Figs. 7e and f, respectively, indicate laminar flow for the left-going front and
turbulent flow for the right-going front. This simulated disappearance of turbulence from
the left-going front with decreasing r has been found in the laboratory and numerical
studies reviewed in §1. Overlaid on the three-dimensional numerical solutions are the
present and the LRL solutions to the SWE. Some general points of comparison follow.

Both the present and the LRL solutions of the SWE agree with the NS solutions in that
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Figure 7. Navier-Stokes simulations of lock-exchange flow in two dimensions for density ratios
r = a) 1.0 , c) 0.7 and e) 0.4 and in three dimensions for r = b) 1.0, d) 0.7 and f) 0.4. Shown from
the three-dimensional simulations is the y-averaged density field. The three contour intervals
displayed in all plots are 0.1, 0.5 and 0.9, with the middle value empasized. Overlaid on the
three-dimensional solutions are the present solutions to the SWE (solid gray line) and those
proposed by LRL (dashed gray line). The three horizontal gray lines in b), d) and f) mark
z = 0.3473, 0.5, and 0.6527.
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Figure 8. Across-channel-averaged density contours 0.1, 0.5 and 0.9 plotted as a function of
the distance relative to the left-going front xrel at t= 16 from three-dimensional Navier-Stokes
simulations of lock-exchange flow for r = a) 1.0, b) 0.7 and c) 0.4 which correspond, respectively,
to Figs. 7b, 7d and 7f. Overlaid is the interface as computed from Benjamin’s potential-flow
solution. The dotted lined denotes hL = 0.6527 for the left-going front according to the present
theory.

the speed of the left-going front is independent of r while that of the right-going front is
inversely proportional to r [the NS uR(r) data points, plotted in Fig. 5a, are generally
slower than the SWE solutions]; the NS solutions all have vL ≈ −0.5 as in the LRL SWE
solution as compared with vL = −0.527 in the present SWE solution. The present SWE
solution agrees with the NS solutions in that the interface generally slants from the upper
left to the lower right in all cases while the LRL solution approaches a level interface as
r → 1. In both SWE solutions the right-going front thins with decreasing r in agreement
with the NS solution. We note that the only ‘zone of constant state’ that clearly emerges
in the NS solutions is the one attached to the left-going front for r = 0.4 in agreement
with the LRL solution; otherwise the NS solutions exhibit an interface that slopes from
upper left to lower right approximately linearly in the variable x/t. Denoting the height

of the middle density contour by ĥ and letting η = x/t, this linear dependence can be
expressed as

ĥ(η) = ĥL − (ĥL − ĥR)
η − ηL

ηR − ηL

. (4.7)

Although it is difficult to identify unambiguously the parameters in (4.7) from the NS

solutions, it seems clear that, for these solutions with Re = 104, ĥL decreases with r,
reaching the asymptotic limit ĥL = 1/2 between r = 0.7 and r = 0.4.
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Figure 9. As in Fig. 7e, except for Re = 105; analytical solutions overlaid as in Fig. 7f.

4.2. Discussion

In our judgement, the foregoing NS-SWE-solution comparison indicates only limited
success for the SWE solutions. This comparison is complicated by the presence in the
NS solutions of turbulent eddies along the unstable interface between the two fluid layers
and the thickening of the intruding layers in the head regions immediately behind the
fronts. Both of these effects are absent in the idealized SWE solutions. The one place
where turbulence is suppressed in the NS solutions is in the region behind the left-moving
front for r = 0.4 and here, the solution compares favorably with the LRL SWE solution.
However, even in this case it must be recalled that the condition (3.16) is externally
‘forced’ in that there are no characteristic curves that reach the event line x/t = −0.5
from the lock region (see Fig. 6c). In the NS solution the evolving interface is obviously a
free boundary as information must come from the lock region. One can reasonably infer
that local nonhydrostatic effects must produce a propagation speed faster than that
supported by the SWE for the conditions (3.16); however, a more precise mathematical
model for this effect is unknown to the authors.

Accepting that there is an inherent tendency for the left-going front to satisfy the
conditions (3.16) for small r, we investigate the conditions under which this occurs in the

NS simulations. The tendency ĥL(r) → 1/2 with decreasing r is also accompanied by a
decrease in turbulence at the left-going front (Fig. 7). These results suggest a transition
with decreasing r from a NS solution more akin to the present SWE solution (hL = 0.6527
at a dissipative Benjamin front) to one more akin to the LRL SWE solution (hL = 0.5 at
a dissipation-free Benjamin front). To reinforce the point, we show in Fig. 8 ρ(x, z) from
the three-dimensional simulations (at t = 16) together with the potential-flow solution
found in (Benjamin 1968, his §4.3). A comparison across the range of r shows that, in



20 R. Rotunno, J. B. Klemp, G. H. Bryan and D. J. Muraki

the absence of turbulence (Fig. 8c), the NS solutions closely approximate the Benjamin
potential-flow solution; however, as shown in Fig. 8a, in the Boussinesq case turbulence
develops behind the ’head’ producing a departure from the Benjamin potential-flow so-
lution and a transition to a turbulent wake of reduced thickness. Somewhat counterintu-
itively with increasing viscosity the solution moves towards the potential-flow (inviscid)
Benjamin solution. Indeed increasing the Reynolds number to Re = 105 for this case of
r = 0.4 indicates instability and turbulence at the left-going front and a solution more
akin to the present SWE solution (Fig. 9). Hence there is a strong indication from the
present NS solutions that the character of the left-going front depends on both Re and r.
For r ≈ 1 theory indicates the upper left-going current is unstable to disturbances of all
wavelengths, but that as r decreases from unity, the longest wavelengths are stabilized
[Benjamin (1968, pp. 224–225) and Fig. 15a of LRL]. Since viscous effects are strongest at
the shorter wavelengths, and since longer wavelengths become stable for r < 1, it stands
to reason that instability is suppressed for combinations of smaller r and smaller Re; the
evidence from Fig. 8c is that viscous effects are large enough to suppress turbulence but
not large enough to cause major departures from Benjamin’s potential-flow solution for
r = 0.4 and Re = 104.

The right-going frontal parameter uR(r) (Fig. 5a) from any of the SWE solutions
compares rather well with the present NS solutions as well as those produced in 2D
simulations by Bonometti et al. (2008) over a wider range of r. There is, however, sig-
nificant disagreement between the present model and the LRL model right-going frontal
parameter hR(r) for r > rcr1 where the latter produces hR → 1/2 as r → 1. For the
Boussinesq case we believe the present model is closer to the NS solution in that Fig. 7b
shows a significant overall tilt (from upper left to lower right) of h(x/t) rather than the
level interface h(x/t) = 1/2 predicted in the LRL SWE solution (see their Figs. 12 with
r = 1).

5. Summary and Conclusions

Although the general sense of the circulation in lock-exchange flow is easily deduced
from the initial baroclinic distribution of density and pressure, more precise detail on the
motion and nature of the evolving interface requires a fluid-flow model. In the present
work we reviewed and advanced analytical models based on the shallow-water equations
for non-Boussinesq lock-exchange flow. These analytical models were then compared with
their counterpart numerical solutions based on the Navier-Stokes equations.

Nearly all of the existing analytical models of non-Boussinesq lock-exchange flow are
based on the shallow-water approximation. Since the latter approximation fails near the
leading edges of the mutually intruding flows (Fig. 1), front conditions must be given at
both left- and right-going fronts in order to find solutions to the shallow-water equations.
That a variety of such solutions exist in the literature is due to the individual investigators
choice of front conditions (e.g. KRS and LRL); furthermore permitting discontinuous
solutions between the two fronts gives an even greater variety of solutions (e.g. KC; see
Fig. 4a of LRL). In KRS the shallow-water equations were solved numerically for the
Boussinesq lock-exchange problem under the conditions that the left- and right-going
fronts satisfy the Benjamin front conditions (2.6) and (2.7), respectively, and that the
front is a free boundary influenced by the motion within the lock region (i.e. it obeys
‘causality’). The present paper has extended the KRS numerical solutions to cover non-
Boussinesq flows (Fig. 2).

Using the method of characteristics, we have found exact analytical solutions (Figs.
3-5) that verify the numerical solutions of the shallow-water equations given here and in
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KRS. They also reinforce the finding that only solutions with frontal parameters imply-
ing dissipation at the fronts obey ‘causality’ in the shallow-water equations. However it
has been noted in both laboratory and numerical experiments that the left-going front
becomes less dissipative, taking the form of a potential-flow solution found by Benjamin
(1968), as r, the ratio of lighter- to heavier-fluid density, decreases. Following LRL we have
found analytical solutions of the shallow-water equations by imposing the dissipation-
free condition on the left-going front. As noted in KRS, the dissipation-free front moves
at a speed greater the shallow-water-equation wave speed and hence, from the point
of view of shallow-water theory, must be considered a forced-boundary condition. For
r < rcr1 = 0.5532, our solutions assuming a left-going dissipation-free front have rays
emanating from the left-going front that impinge on the right-going front and thus de-
termine the right-going frontal parameters; these solutions are the same as those of LRL
(Fig. 6a) . For r > rcr1 we find that rays emanating from the left-going front do not
reach the right-going front and that the solution must be completed with a right-going
expansion fan (Fig. 6b). Notwithstanding that the left-going rays do not reach the right-
going front for r > rcr1, LRL continue to look for the intersection of the solution to the
Riemann invariant equation (3.3) with the Benjamin front condition (2.7) to find the
right-going frontal parameters; we have constructed analytical solutions (Fig. 6c), with
the understanding that these must be regarded as solutions in which both the left- and
right-going frontal parameters represent forced-boundary conditions.

In an attempt to authenticate the various solutions to the shallow-water equations,
we have carried out both two- and three-dimensional numerical solutions of the Navier-
Stokes equations for relatively large Reynolds number (Re = 104), very large Schmidt
number (Sc >> 1) and free-slip conditions at the upper and lower bounding surfaces.
For Re = 104 and r = 1, the interface separating lighter and heavier fluid is generally
turbulent; however, as found in recent numerical studies, the left-going front becomes
less turbulent with decreasing r. In the present simulations with Re = 104, the left-going
front is essentially laminar at r = 0.4 (Fig. 7e, f) and closely approximates the Benjamin
potential-flow solution (Fig. 8c). A further experiment keeping r = 0.4 but with a larger
Re shows that the left-moving front is again turbulent (Fig. 9) suggesting there is a
dependence on both Re and r that determines the character of the left-going front.

Comparison of the present (free-boundary) with the LRL (forced-boundary) solutions
of the shallow-water equations with their counterpart numerical solution of the Navier-
Stokes (NS) equations produced mixed results. Both the free and forced solutions re-
produced the NS-solution features of left-going frontal parameters (vL, dL) independent
of r, right-going front speed uR increasing with r and right-going front height hR de-
creasing with r. The present free-boundary theory produced vL = −0.527 while the
forced-boundary theory prescribed vL = −0.5 which agrees closely with the NS solu-
tions. On the other hand, in the limit as r → 1, the forced-boundary theory gives the
level interface h(x/t) = 0.5 between the left- and right-going fronts, while the present
free-boundary theory gives an interface that is tilted from lower right to the upper left
implying that both dL and hL are less than 0.5 in agreement with the NS solutions. We
noted that the only place where the NS solutions produced a zone of constant state is
in association with the left-moving front for relatively small r and Re. Both free- and
forced-boundary theories gives very similar predictions for uR(r) which in turn compared
well with the NS solutions.

In the generally nonhydrostatic NS solutions, the evolving interface is of course a
free boundary whose motion must be influenced by the flow in the lock region. We are
unaware of an analytical theory taking account nonhydrostatic effects and a density
interface intersecting the rigid surfaces that can be used to explain the evolution from
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t = 0 to the time when the steadily propagating fronts are established in lock-exchange
flow. In addition to explaining how information flows from the lock region to the fronts,
such a theory may also shed light on why the the upper-front speed vL ≈ −0.5 across
the range of r while the upper-front hL clearly varies with r in the NS solutions (Fig.
7). It may also explain why NS front speeds are relatively insensitive to the interfacial
dynamics—both two- and three-dimensional simulations (with very different versions of
interfacial turbulence) give surprisingly similar predictions for the front speeds (Fig. 5a).

D.J.M. is supported through NSERC RGPIN-238928.

Appendix A. Details of the Navier-Stokes solver

Numerical integration of the Navier-Stokes (NS) equations (4.4)–(4.6) requires solution
of an elliptic equation to determine pressure p. Solution techniques can be expensive in
three dimensions with resolution high enough for adequately resolved direct numerical
simulation (DNS), and can be difficult to implement effectively on modern distributed-
memory computing systems. As an alternative, we replace the mass-continuity equation
(4.4) with a prognostic equation for pressure. This procedure eliminates the need to solve
an elliptic equation, but introduces the need to account for acoustic waves. The latter
problem is addressed in the present study using the procedure developed by Klemp,
Skamarock & Dudhia (2007). Our derivation of an appropriate pressure equation follows
Chorin (1967); herein, we assume p is a function of ρ only, and we invoke an artificial
speed of sound cs ≡ dp/dρ, then using (4.4)–(4.5) we find

Dp

Dt
= −ρc2
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.

We set cs = 10
√

g′H to ensure that acoustic waves propagate much faster than the flow
of interest.

The time-integration method and spatial discretization follow Bryan and Rotunno
(2008, p. 548) except the subgrid turbulence parameterization of KRS is replaced by
explicit stress-divergence calculations [second term on right side of (4.6)]. The domain
extends from x = −9 to x = +9 for r = 0.99, from x = −9 to x = +11 for r = 0.7,
and from x = −9 to x = +13.5 for r = 0.4. The initial “lock” is located at x = 0. All
simulations extend from y = 0 to y = 1 and z = 0 to z = 1. Grid spacing is 1/320 in
all directions. Following previously published guidelines for consistency in DNS between
resolution and Re (Moin & Mahesh 1998, §2.1), this resolution is considered sufficient
for our nominal setting Re = 104.

Pressure at t = 0 is determined using (4.4) and (4.6). Because ui(t = 0) = 0 everywhere
and ρ(t = 0) is a function of x only, then the elliptic equation that applies at t = 0 is
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which is solved using successive over-relaxation.
To allow for development of three-dimensional motion in 3D simulations, small-amplitude

random horizontal-velocity perturbations are added to the initial state. Slightly higher
amplitude perturbations are inserted at |x| < 0.1 to crudely replicate laboratory ex-
periments in which turbulent motions are created by abrupt removal of a partition at
t ≈ 0.

The solver is evaluated in two ways: comparison against a laboratory result, and com-
parison against previously published numerical simulations. For the first evaluation, we
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Figure 10. Direct numerical simulation of a Boussinesq lock-exchange laboratory experiment at
t = 7 showing a rendition of the middle density surfaces (upper panel), an across-channel average
of the density field (middle panel) and a shadowgraph image from the laboratory experiment of
Shin et al. (2004).

run a three-dimensional simulation and compare against the Boussinesq lock-exchange
experiment of (Shin et al. 2004, their Fig. 2). Our numerical simulation uses r = 0.99 and
Re = 104, similar to values for the experiment of Shin et al. (2004). No-slip boundary
conditions are used for this simulation. Results at t = 7 are shown in Fig. 10, wherein
the upper panel shows a view of the height of the middle density surface and the middle
panel shows ρ(x, z) from the numerical simulation; the lower panel shows the shadow-
graph image from Shin et al. (2004). The numerical simulation clearly captures the salient
features of the experiment, such as the propagation speed of the fronts, turbulent mixing
along the interface, and a steeply sloped interface at x = 0.

For comparison against previously published results we simulate two-dimensional lock-
exchange flow across a large range of r following Bonometti et al. (2008). For these
simulations we use the same settings as Bonometti et al. (2008): a domain of 25 × 1;
∆z = 1/160; ∆x = 1/64; and no-slip boundary conditions. used a different method for
nondimensionalization than we use herein; to allow direct comparison to their results we



24 R. Rotunno, J. B. Klemp, G. H. Bryan and D. J. Muraki

5

x

-5 0

0

1

z

0

1

z

0

1

z

0

1

z

0

1

z

0

1

z

r = 0.99

r = 0.68

r = 0.4

r = 0.2

r = 0.1

r = 0.05

Figure 11. As in Fig. 4 of Bonometti et al. (2008).

use Re = 7071
√

1 + r and we examine the output at t = 9
√

1 + r. Results in Fig. 11
are comparable to those from (Bonometti et al. 2008, their Fig. 4) in terms of overall
structure and front propagation speeds.
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