Spring 2001: Math 990-4, Topics in Applied Mathematics

Models of Nonlinearity: Dynamics, Patterns & Waves

Diffusion and propagation are processes modelled by partial differential
equations (PDEs) which are linear, and hence, also very well understood.
Quantifying the effects of nonlinearity however, is much less straightforward
since the usual tools of linear theory (e.g. Fourier theory, Greens functions) are
not applicable. Despite the dearth of general theories, intuition about nonlin-
ear ODEs and PDEs can be obtained from simple model equations through a
combination of special solution methods, asymptotic & perturbation analyses
and numerical computation.

The theme of the lectures will be two-fold. Mathematical techniques will
be discussed within the context of simple nonlinear models, the scope of which
will also serve as an introductory survey of nonlinear PDE phenomena. The
simplest methods apply to weakly nonlinear PDEs and are appropriate for
studying multiple end-states (bifurcation theory) and instabilities. A variety
of asymptotic methods for nonlinear oscillations lead naturally to descriptions
for the nonlinear modulation of waves. Strongly nonlinear spatial structures,
like solitary waves and fronts, give insight into the self-organizing modes which
often arise in the evolution of patterns. Lastly, Hamiltonian systems offer a
bridge between the theories of ODE chaos and PDE complexity.

Further information & updates: www.math.sfu.ca/~muraki

The tmage on the left is a labyrinthine pattern of concentration obtained from a model
describing a realizable, albeit slightly esoteric, chemical reaction. The tmage on the right is a
snapshot of the surface temperature from a model describing the development of atmospheric
storms. In both of these cases, nonlinearity plays a significant role in determining the

formation of the spatial structure.



