Friday September 20 Lecture Notes

1 Functors

Definition Let C and D be categories. A functor (or covariant) F is a function
that assigns each C' € Obj(C) an object F'(C') € Obj(D) and to each f: A — B
in C, a morphism F(f) : F(A) — F(B) in D, satisfying:

For all A € Obj(C), F(14) =1Fa.
Whenever fg is defined, F(fg) = F(f)F(g).

e.g. If C is a category, then there exists an identity functor 1¢ s.t. 1¢(C) = C
for C' € Obj(C) and for every morphism f of C, 1¢(f) = f.

For any category from universal algebra we have “forgetful” functors.

e.g. Take F': Grp — Cat of monoids (-,1). Then F(G) is a group viewed as a
monoid and F(f) is a group homomorphism f viewed as a monoid homomor-
phism.

e.g. If C is any universal algebra category, then
F :C — Sets
F(C) is the underlying sets of C
F(f) is a morphism

e.g. Let C be a category. Take A € Obj(C). Then if we define a covariant Hom
functor, Hom(A, ) : C — Sets, defined by Hom(A, _)(B) = Hom(A4, B) for all
B € Obj(C) and f : B — C, then Hom(A,_)(f) : Hom(A, B) — Hom(A,C)
with g — fg (we denote Hom(A, ) by f.). Let us check if f, is a functor:

Take B € Obj(C). Then Hom(A4, -)(15) = (1p).« : Hom(A, B) — Hom(A, B)
andforgEHom(A,B), (IB) ( )—1Bg—g So ( B) =1y om(AB)

Take B L ¢ % D. Certainly, Hom(A, B) 4 Ho (A o) 2 Hom( , D).
Now take h € Hom(A,B). Then f.(9«(h)) = fgh = (fg)h = (fg)«h =
Hom(4, )(fg)-

A few observations:



Proposition Functors preserve isomorphisms at the level of morphisms, i.e., if
T:C—7Dand f: A— B is an isomorphism in C, then T(f) is an isomorphism
in D.

Proof Functors preserve compositions and identities. Say g : B — A with
fg=1p, and fg =1p. Then T(fg) = T(f)T(g), but T(fg) = T(1p) = 11(B)-.
A similar argument works for gf = 14, and we are done.

Definition Two categories C and D are isomorphic (as categories) if there are
functors F: C — D and G : D — C with F(G) = 1p and G(F) = 1¢ (where the
composition of functors is just a composition on objects and a composition on
maps).

e.g. Given aring R, let R°P denote R but with multiplication defined backwards:
71 gor To = 79 -g 11 for all r1,r9 € R or r1,79 € R°P (because they have the
same underlying set). Then R-mod is isomorphic as a category to mod-R°P, the
category of right modules over R°P.

2 Covariant Functors

Definition If C and D are categories, then a covariant functor T': C — D
is a functor taking C' € Obj(C) to T(C) € Obj(D), and f : C — D in C to
T(f): T(D) = T(C) in D, satisfying:

T(14) = Ly(a) for all A € Obj(C)

AL B Y% i, then 7(C) 29 7(B) 29 T(4) in D, ie., T(gf) =

T(f)T(9)-

e.g. Let C be a category. Then the covariant Hom functor Hom(_, B) : C — Sets,
with B € Obj(C), is defined by Hom(_, B)(f) : Hom(D, B) — Hom(C, B) with
g — gf. We write Hom(_, B)(f) = f*.

3 Natural Transformations

Definition Let F,G : C — D be functors. Then a natural transformation (or a
morphism of functors) 7 from F to G, 7 : F — G, is a functor that assigns each
C € Obj(C) a morphism of D with 7« : F(C) — G(C) s.t. forall F: C — ',
the following diagram commutes:



e.g. Let F: Grp — Sets be the “forgetful” functor and let S : Grp — Sets
be the “squaring” functor defined by S(G) = G x G (viewed as a set) and
S(f:G—-H)=fxf:GxG— Hx H. So the group multiplication on G is
a functor 7¢ : G x G — G.

Claim 7 is a natural transformation.
Take group homomorphism f : G — G’ such that

= S(G) —= F(G) =

G G G
if if S(f)l iF(f) if
G

X G’ = S(G") ?F(C’) = G’
This diagram says that f(x)f(y) = f(zy), i.e., f is a group homomorphism.

Definition A natural transformation 7 : F — F’ is a natural isomorphism
if each 74 is an isomorphism. In this case we say F' and F’ are naturally
isomorphic and write F' ~ F’. Two categories C and D are equivalent if there
exist F:C —=Dand G:D — Cs.t. F(G) ~1p and G(F) ~ 1.

4 Finitely Generated Modules

Definition Let R be a ring and let M be a left module over R. Let R, =
{ra : r € R} denote a cyclic module generated by a € M. Then M is cyclic if
M = R, for some a € M.

e.g. Viewing R as a module over itself, R = R -1 is cyclic, and the cyclic
submodules of R are exactly the principle ideals.

Proposition A module M is cyclic if and only if M = R/L where L is some
left ideal of R.

Proof Suppose M is cyclic, i.e., M = R,. Take f, : R — M with r — ra
where ker f, = Anng(a) = L. Note that f, is onto because M = R, and so by
the First Isomorphism Theorem, M = R/L. Now assume M = R/L. Take any
coset r + L = r(1 4+ L) (conversely, any r(1 4+ L) = r + L is a coset of L). So
R/L = R(1+ L) = R(a), and we are done.

If R is a PID, i.e., every ideal of R is principal, then every cyclic module has
the form R/Ry for some d € R.

Definition Let S = {a;};cs be a subset of a module M. We say S spans M if
every element of M can be written as as a finite sum ) ,; r;a;. Moreover, M

is finitely generated if it is spanned by a finite set (in this case M = 22:1 Ti0;).



5 Direct Sums and Cartesian Products of Mod-
ules

We know they should be: the categorical coproduct and product, respectively,
but we need to show they exist. Cartesian product works for any universal
algebraic category.

Definition Let {M;}ic; be R-modules and let [],.; M; be the set (Cartesian
product) with + component-wise and r((a;)icr) = (ra;)icr-

This is a module since all the identities/axioms hold component-wise and so hold
in [[,c; M;. If we take this with projections m; : [T M; — M; with (a;)jer — a;.
We need to check this satisfies universal properties of products:

TG A
/ ’

M, ——

Bi

where we define 0 by 0(x) = (B;(x))icr, and this is the unique map which works.
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