
Friday September 20 Lecture Notes

1 Functors

Definition Let C and D be categories. A functor (or covariant) F is a function
that assigns each C ∈ Obj(C) an object F (C) ∈ Obj(D) and to each f : A→ B
in C, a morphism F (f) : F (A)→ F (B) in D, satisfying:

For all A ∈ Obj(C), F (1A) = 1FA.
Whenever fg is defined, F (fg) = F (f)F (g).

e.g. If C is a category, then there exists an identity functor 1C s.t. 1C(C) = C
for C ∈ Obj(C) and for every morphism f of C, 1C(f) = f .

For any category from universal algebra we have “forgetful” functors.

e.g. Take F : Grp → Cat of monoids (·, 1). Then F (G) is a group viewed as a
monoid and F (f) is a group homomorphism f viewed as a monoid homomor-
phism.

e.g. If C is any universal algebra category, then
F : C → Sets
F (C) is the underlying sets of C
F (f) is a morphism

e.g. Let C be a category. Take A ∈ Obj(C). Then if we define a covariant Hom
functor, Hom(A, ) : C → Sets, defined by Hom(A, )(B) = Hom(A,B) for all
B ∈ Obj(C) and f : B → C, then Hom(A, )(f) : Hom(A,B) → Hom(A,C)
with g 7→ fg (we denote Hom(A, ) by f∗). Let us check if f∗ is a functor:

Take B ∈ Obj(C). Then Hom(A, )(1B) = (1B)∗ : Hom(A,B)→ Hom(A,B)
and for g ∈ Hom(A,B), (1B)∗(g) = 1Bg = g. So (1B)∗ = 1Hom(A,B).

Take B
f−→ C

g−→ D. Certainly, Hom(A,B)
f∗−→ Hom(A,C)

g∗−→ Hom(A,D).
Now take h ∈ Hom(A,B). Then f∗(g∗(h)) = fgh = (fg)h = (fg)∗h =
Hom(A, )(fg).

A few observations:
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Proposition Functors preserve isomorphisms at the level of morphisms, i.e., if
T : C → D and f : A→ B is an isomorphism in C, then T (f) is an isomorphism
in D.
Proof Functors preserve compositions and identities. Say g : B → A with
fg = 1B , and fg = 1B . Then T (fg) = T (f)T (g), but T (fg) = T (1B) = 1T (B).
A similar argument works for gf = 1A, and we are done.

Definition Two categories C and D are isomorphic (as categories) if there are
functors F : C → D and G : D → C with F (G) = 1D and G(F ) = 1C (where the
composition of functors is just a composition on objects and a composition on
maps).

e.g. Given a ring R, let Rop denote R but with multiplication defined backwards:
r1 ·Rop r2 = r2 ·R r1 for all r1, r2 ∈ R or r1, r2 ∈ Rop (because they have the
same underlying set). Then R-mod is isomorphic as a category to mod-Rop, the
category of right modules over Rop.

2 Covariant Functors

Definition If C and D are categories, then a covariant functor T : C → D
is a functor taking C ∈ Obj(C) to T (C) ∈ Obj(D), and f : C → D in C to
T (f) : T (D)→ T (C) in D, satisfying:

T (1A) = 1T (A) for all A ∈ Obj(C)

If A
f−→ B

g−→ C in C, then T (C)
T (g)−−−→ T (B)

T (g)−−−→ T (A) in D, i.e., T (gf) =
T (f)T (g).

e.g. Let C be a category. Then the covariant Hom functor Hom( , B) : C → Sets,
with B ∈ Obj(C), is defined by Hom( , B)(f) : Hom(D,B) → Hom(C,B) with
g 7→ gf . We write Hom( , B)(f) = f∗.

3 Natural Transformations

Definition Let F,G : C → D be functors. Then a natural transformation (or a
morphism of functors) τ from F to G, τ : F → G, is a functor that assigns each
C ∈ Obj(C) a morphism of D with τC : F (C) → G(C) s.t. for all F : C → C ′,
the following diagram commutes:

F (C)
τC //

F (f)

��

G(C)

G(f)

��
F (C ′)

τC′
// G(C ′)
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e.g. Let F : Grp → Sets be the “forgetful” functor and let S : Grp → Sets
be the “squaring” functor defined by S(G) = G × G (viewed as a set) and
S(f : G→ H) = f × f : G×G→ H ×H. So the group multiplication on G is
a functor τG : G×G→ G.

Claim τ is a natural transformation.
Take group homomorphism f : G→ G′ such that

G

f

��

× G

f

��

= S(G)
τG //

S(f)

��

F (G)

F (f)

��

= G

f

��
G × G′ = S(G′)

τG′
// F (C ′) = G′

This diagram says that f(x)f(y) = f(xy), i.e., f is a group homomorphism.

Definition A natural transformation τ : F → F ′ is a natural isomorphism
if each τA is an isomorphism. In this case we say F and F ′ are naturally
isomorphic and write F ' F ′. Two categories C and D are equivalent if there
exist F : C → D and G : D → C s.t. F (G) ' 1D and G(F ) ' 1C .

4 Finitely Generated Modules

Definition Let R be a ring and let M be a left module over R. Let Ra =
{ra : r ∈ R} denote a cyclic module generated by a ∈ M . Then M is cyclic if
M = Ra for some a ∈M .

e.g. Viewing R as a module over itself, R = R · 1 is cyclic, and the cyclic
submodules of R are exactly the principle ideals.

Proposition A module M is cyclic if and only if M ∼= R/L where L is some
left ideal of R.
Proof Suppose M is cyclic, i.e., M = Ra. Take fa : R → M with r 7→ ra
where ker fa = AnnR(a) = L. Note that fa is onto because M = Ra and so by
the First Isomorphism Theorem, M ∼= R/L. Now assume M ∼= R/L. Take any
coset r + L = r(1 + L) (conversely, any r(1 + L) = r + L is a coset of L). So
R/L = R(1 + L) = R(a), and we are done.

If R is a PID, i.e., every ideal of R is principal, then every cyclic module has
the form R/Rd for some d ∈ R.

Definition Let S = {ai}i∈I be a subset of a module M . We say S spans M if
every element of M can be written as as a finite sum

∑
i∈I riai. Moreover, M

is finitely generated if it is spanned by a finite set (in this case M =
∑t
i=1 riai).
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5 Direct Sums and Cartesian Products of Mod-
ules

We know they should be: the categorical coproduct and product, respectively,
but we need to show they exist. Cartesian product works for any universal
algebraic category.

Definition Let {Mi}i∈I be R-modules and let
∏
i∈IMi be the set (Cartesian

product) with + component-wise and r((ai)i∈I) = (rai)i∈I .

This is a module since all the identities/axioms hold component-wise and so hold
in

∏
i∈IMi. If we take this with projections πi :

∏
Mj →Mi with (aj)j∈I 7→ ai.

We need to check this satisfies universal properties of products:

∏
Mj

πi

||
Mi

βi

// X

θ

OO

where we define θ by θ(x) = (βi(x))i∈I , and this is the unique map which works.

Version: 1.2
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