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1 Labelling Atoms
A great many objects in combinatorics like to be labelled — indeed in many cases counting labelled
objects is significantly easier than counting their unlabelled siblings — graphs and trees particularly.
So what do we mean by labelled? Since the objects we consider are constructed from atomic pieces,
simply attatch a label (wlog a natural number) to each atomic piece.
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The first unlabelled graph corresponds to 4 different labelled graphs, while the second corresponds to
3.

1.1 Well-labelling
Labelling is a very intuitive notion, but we have a formal defintion anyhow:

Definition. A labelled class of combinatorial objects is a combinatorial class such that every atomic
component (atom) is labelled by a distinct integer, and the set of labels associated to an object of size n
is the set {1, 2, . . . , n}. In this case we say that the objects are well-labelled. If the set of labels is not
{1, 2, . . . , n}, but still distinct, then we say theobject is weakly labelled.

Going back to the above graph example — there are 2(4
2) = 64 labelled graphs of 4 vertices (every

edge is there or not), but only 11 unlabelled graphs.

1.2 The Exponential Generating Function (egf)
We do not use ogfs to enumerate labelled classes (though one can), instead we use exponential gener-
ating functions.

Definition. The exponential generating function (egf) of a sequence (An) is the formal power series

A(z) =
∑
n≥0

An
zn

n!
=
∑
α∈A

z|α|

|α|!

Again we need the neutral class that contains ε which has size zero and no label. Similarly the
atomic class contains a single well-labelled object of size 1. So we have Z = { 1©}. The egfs are

E(z) = 1 Z(z) = z,

which coincides with their ogf, incidentally.

1.3 Examples
We have already seen permutations. We now think of them as a labelled line of n vertices. Since Pn = n!
the egf is

P (z) =
∑
n≥0

n!
zn

n!
=

1

1− z

which is nice and simple.
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Example. The class U of urns consists of completely disconnected labelled graph. Since there are no
edges, there can only be a single labelling and thus Un = 1. Hence

U(z) =
∑
n≥0

zn

n!
= ez.

Example. Circular graphs, C, are oriented cycles (so 1→ 2→ 3→ 1 6≡ 1→ 3→ 2→ 1).

1 2

34

1 1

1 1 12

34

3

3

2

2

2

2

3

3

4

4

4

4

One can simply decompose such cycles by cutting them on either side of the 1© and unrolling them.
This gives a permutation of 2, . . . , n and there are (n− 1)! such objects. This is a bijective construction
and thus Cn = (n− 1)!.

C(z) =
∑
n≥1

(n− 1)!

n!
zn =

∑
n≥1

zn

n
= log

1

1− z
.

Remark that labelled cycles are much easier than unlabelled ones.

1.4 Aside: comparing to unlabelled families
More generally one can find examples of enumerations of labelled objects A and their unlabelled coun-
terparts Â such that

1 ≤ An

Ân
≤ n!

To show both sides of this — consider the class of Urns. Here Un = Ûn = 1. And similarly, consider
permutations: Pn = n!, but one can consider them as labellings of a linear graph on n-vertices, so
P̂n = 1. Note that one can also consider permutations to be sets of cycles, then the unlabelled version
of the object is a partition.

2 Admissible constructions
So the combinatorial sum still works just fine, but clearly we are going to have difficulties with cartesian
product — the labels don’t work quite right. In particular, if we take β ∈ B and γ ∈ C and glue them
together to get (β, γ) the label 1© appears twice, so the object is not well-labelled. Clearly we need to
relabel things carefully to make this work.

Proposition (Binomial convolution formula). Let A(z), B(z), C(z) be egfs of sequences An, Bn, Cn such
that A(z) = B(z) · C(z) then

An =

n∑
k=0

(
n

k

)
BkCn−k
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Proof. Expand:

A(z) = B(z) · C(z) =
∑
n

Bn
zn

n!
·
∑
n

Cn
zn

n!

=
∑
n

(
n∑
k=0

Bk
k!

Cn−k
(n− k)!

)
zn

=
∑
n

n!

(
n∑
k=0

Bk
k!

Cn−k
(n− k)!

)
zn

n!

=
∑
n

n∑
k=0

n!

k!(n− k)!︸ ︷︷ ︸
(n
k)

BkCn−k
zn

n!

=
∑
n

n∑
k=0

(
n

k

)
BkCn−k

zn

n!
.

2.1 Labelled products
Next we describe how to generate labelled products. In the unlabelled case, a pair (β, γ) with β ∈ B and
γ ∈ C gave rise to a single object of size |β| + |γ|. In the labelled case we will generate a set of objects.
We describe how we get this set. Essentially, we keep the structure of the pair (β, γ) and we generate
new labels that preserve the order relation among labels. We can do this formally using the following
two operations:

• reduction: For a weakly labelled structure size n, this reduces its labels to the standard interval
[1, . . . , n] while keeping the relative order fixed. Eg 〈4, 6, 2, 9〉 becomes 〈2, 3, 1, 4〉. Denote this
operation by ρ(α).

• expansion: roughly — the inverse of reduction. Let e : N → Z be any strictly increasing function.
Then the expansion of a well-labelled object α by e is denoted e(α) and results in a weakly-labelled
object in which the label j is replaced by e(j). So 〈2, 3, 1, 4〉may expand to 〈7, 10, 2, 88〉 or 〈3, 9, 1, 15〉
etc etc.

Now, given any two objects β ∈ B and γ ∈ C their labelled product (or product) is β ? γ. This is a set of
well-labelled pairs (β′, γ′) that reduce back to β, γ.

β ? γ = {(β′, γ′) s.t. it is well-labelled and ρ(β′) = β, ρ(γ′) = γ}

So how big is this set? If |β| = n1 and |γ| = n2 then

card(β ? γ) =

(
n1 + n2

n1, n2

)
=

(
n

n1

)
where n = n1 + n2. You can see this by considering all the “new” labels and allocating n1 of them to the
part of the object coming from β and the rest go to the part coming from γ. Then assign each block of
labels so as to preserve the original orderings.

Definition (Labelled product). The labelled product B ?C is obtained by forming all ordered pairs from
B × C and computing all possible order-consistent relabellings. That is

B ? C = ∪β∈B,γ∈C(β ? γ)

Now we can look at the admissible constructions.

MARNI MISHNA, SPRING 2011 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 4/15



Week Date Sections 
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial 
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial 
parameters
FS A.III
(self-study)

Combinatorial 
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI 
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures 
and Limit Laws
FS: Part C
(rotating 
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial 

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

 

f acul ty of  sc ience   MATH 895-4 Fall 2010
depar tment of  mathemat ics  Course  ScheduleADDITIONAL NOTES Labelled combinatorial classes

2.2 Labelled product
When A = B ? C the corresponding counting sequences satisfy

An =
∑

n1+n2=n

(
n

n1, n2

)
Bn1Cn2

The product Bn1Cn2 takes care of all possible pairings of objects and the binomial takes care of the
possible relabellings. This is just the binomial convolution of the two sequences and thus

A = B ? C ⇒ A(z) = B(z) · C(z)

2.3 Sequences
The kth (labelled) power of B is just the k-fold labelled product of B with itself. It is denoted SEQk(B).
The sequence class is

SEQ(B) = E + B + B ? B + · · · = ∪k≥0SEQk(B)

These translate to the following operations on the egf

A = SEQk(B) ⇒ A(z) = B(z)k

A = SEQ(B) ⇒ A(z) =
1

1−B(z)
B0 = ∅

2.4 Sets
The class of sets of k-components of B is denoted SETk(B). Formally it is defined as a k-sequence
counted modulo permutation of the components. That is SETk(B) = SEQk(B)/R where R is an equiv-
alence relation that identifies two sequences if one is simply a permutation of the components of the
other. The labelled set construction is then defined by

SET(B) = ∪k≥0SETk(B)

If we take a labelled k-set, we can order its components in k! different ways to get k! labelled k-
sequences. Each component must be distinct since the k-set must be well-ordered. In reverse we
can consider the smallest label in each component of a k-sequnce (they must all be different) and then
reduce these labels to get a permutation of k. Hence we must have

A = SETk(B) ⇒ A(z) =
1

k!
B(z)k

A = SET(B) ⇒ A(z) = exp(B(z))

Note that this is so much easier than the multiset construction for the unlabelled case since components
must be distinct thanks to their labels.

2.5 Cycles
The class of k-cycles of B is denoted CYCk(B). It is defined as a k-sequence counted modulo cyclic
shifts of it components: CYCk(B) = SEQk(B)/S where S is an equivalence relation that identifies two
sequences if the components of one is a cyclic shift of the components of the other. Since any k-sequence
is well-labelled, its components are necesarrily distinct and thus there is a k-to-one mapping between
k-sequences and k-cycles. Thus

A = CYCk(B) ⇒ A(z) =
1

k
B(z)k

A = CYC(B) ⇒ A(z) = log
1

1−B(z)

Again — this is much easier because the components are distinct thanks to their labelling.

MARNI MISHNA, SPRING 2011 MATH 343: APPLIED DISCRETE MATHEMATICS PAGE 5/15



Week Date Sections 
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial 
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial 
parameters
FS A.III
(self-study)

Combinatorial 
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI 
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures 
and Limit Laws
FS: Part C
(rotating 
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial 

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

 

f acul ty of  sc ience   MATH 895-4 Fall 2010
depar tment of  mathemat ics  Course  ScheduleADDITIONAL NOTES Labelled combinatorial classes

2.6 Admissibility Theorem
Thus we have now proved

Theorem. The constructions of combinatorial sum, labelled product, sequence, set and cycle all admis-
sible. The operators are

sum A = B + C A(z) = B(z) + C(z)

labelled product A = B ? C A(z) = B(z)C(z)

sequence A = SEQ(B) A(z) =
1

1−B(z)

A = SEQk(B) A(z) = B(z)k

set A = SET(B) A(z) = exp(B(z))

A = SETk(B) A(z) =
1

k!
B(z)k

cycle A = CYC(B) A(z) = log
1

1−B(z)

A = CYCk(B) A(z) =
1

k
B(z)k

where for sequence, set and cycle it is assumed that B0 = ∅.

Note how the cycle and set operations are nearly inverses of each other.

3 Surjections
Consider the class of surjections:

R = SEQ(SET≥1(Z)).

http://www.nourishingdays.com/2009/02/make-yogurt-in-your-crock-pot/ A mapping from A to B is a
surjection if every element of B is mapped to be at least one element of A. Now let R(r)

n denote the set
of surjections from [1, n] onto [1, r]. Further let R(r) = ∪nR(r)

n .
Consider the following surjection, φ from [1, 9] to [1, 4]

1→ 3 2→ 2 3→ 4 4→ 2 5→ 1

6→ 1 7→ 2 8→ 3 9→ 4

Now consider the preimage of each point

φ−1(1) = {5, 6}
φ−1(2) = {2, 4, 7}
φ−1(3) = {1, 8}
φ−1(4) = {3, 9}

This is clearly an ordered sequence of non-empty sets. More generally one can decompose a surjection
to [1, r] as an r-sequence of sets. Thus

R(r) = SEQr(V) V = SET≥1(Z)

V (z) = exp(z)− 1 R(r)(z) = (ez − 1)r
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Note that here V ∼= U − {ε}— non-empty urns
We can expand this to get at R(r)

n

R(r)
n = n![zn]

r∑
j=0

(−1)j
(
r

j

)
e(r−j)z

=

r∑
j=0

(−1)j
(
r

j

)
(r − j)n

which is related to stirling numbers
{
n
r

}
, which we will learn about next.

4 Set Partitions
4.1 Definition
Let us look at set-partitions. Consider the interval [1, n]. We can partition this into r distinct subsets
(called blocks). For example [1, 2, 3, 4] can be partitioned into

• 1 set = [1, 2, 3, 4]

• 2 sets = [1, 2, 3|4] [1, 2, 4|3] [1, 3, 4|2] [1|2, 3, 4] [1, 2|3, 4] [1, 3|2, 4] [1, 4|2, 3]

• 3 sets = [1, 2|3|4] [1, 3|2|4] [1, 4|2|3] [1|2, 3|4] [1|2, 4|3] [1|2|3, 4]

• 4 sets = [1|2|3|4]

So let S(r)
n be the number of ways of partitioning an n-set into r-blocks, then we have

S
(1)
4 = 1 S

(2)
4 = 7 S

(3)
4 = 6 S

(4)
4 = 1

The numbers S(r)
n are called the Stirling partition numbers (or Stirling numbers of the second kind)

and are frequently denoted
{
n
r

}
.

4.2 Set partitions as a labelled class
Now let S(r) denote the class of set partitions in r-blocks. Unlike the surjections we just studied, these
blocks are not ordered. Thus we have a set of non-empty sets

S(r) = SETr(V) V = SET≥1(Z)

S(r)(z) =
1

r!
(ez − 1)r

so we clearly have the relation

S(r)
n =

1

r!
R(r)
n =

1

r!

r∑
j=0

(−1)j
(
r

j

)
(r − j)n

Which is quite obvious, since we can take an r-partition and order the r-blocks in r! different ways to
get surjections into [1, r].
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It is the work of a moment to extend these to get the total number of surjections from [1, n] and
setpartitions of [1, n]

R = ∪rR(r) S = ∪rS(r)

R = SEQ(SET≥1(Z)) S = SET(SET≥1(Z))

R(z) =
1

2− ez
= 1 + z + 3

z2

2!
+ 13

z3

3!
+ . . .

S(z) = ee
z−1 = 1 + z + 2

z2

2!
+ 5

z3

3!
+ . . .

The numbers Rn are called surjection numbers while the Sn are called Bell numbers.
One can then quite easily compute the egfs of set partitions with any / odd / even number of blocks

of any / odd / even sizes, by making suitable restrictions of the set / sequence operators in the construc-
tions. In fact, quite generally we have

Lemma. The class R(A,B) of surjections in which the cardinalities of the premiages lie in A ⊆ N and
the cardinality of the range lies in B ⊆ N is given by

R(A,B)(z) = β(α(z))

α(z) =
∑
a∈A

za

a!
β(z) =

∑
b∈B

zb

The class S(A,B) of set partitions with block sizes in A ⊆ N and number of blocks in in B ⊆ N is given
by

S(A,B)(z) = β(α(z))

α(z) =
∑
a∈A

za

a!
β(z) =

∑
b∈B

zb

b
!

4.3 Set partitions as an unlabelled class
Now, we can also consider set partitions using an unlabelled class. This shows that we need to keep
an open mind when deciding these properties. We encode set partitions as a family of words! Let S(r)

n

denote the set partitions of an n-set into r-blocks, so that
{
n
r

}
= card(S(r)

n ).
We can encode any such set partition as a word on B = {b1, . . . , br}. In particular take each block

and sort its elements smallest to largest. Then order the blocks according to the smallest element in
each block. Label everything in the first block by b1, the second block by b2 etc etc. Eg

{1, 2, . . . , 9} = {6, 4}+ {5, 1, 2}+ {3, 8, 7}
= {1, 2, 5}︸ ︷︷ ︸

b1

+ {3, 7, 8}︸ ︷︷ ︸
b2

+ {4, 6}︸ ︷︷ ︸
b3

Then simply read off the label of each number in order

≡ [b1, b1, b2, b3, b1, b3, b2, b2]

Now this is not just any word in the letters bi there are some extra conditions

• all r letters must occur

• the first occurrance of b1 is before that of b2 which is before the first occurrance of b3 etc etc.

So this means that our word looks like
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• a sequence of at least 1 b1, then

• a b2 then a sequence of {b1, b2}, then

• a b3 then a sequence of {b1, b2, b3}, then etc etc

This gives

b1SEQ(b1)b2SEQ(b1 + b2)b3SEQ(b1 + b2 + b3) . . . brSEQ(b1 + · · ·+ br)

Hence the ogf is

S(r)(z) =
zr

(1− z)(1− 2z) . . . (1− rz)
Which we can re-write using partial fraction decomposition, or other methods as:

S(z) =
1

r!

r∑
j=1

(
r

j

)
(−1)r−j

1− jz

and so {
n

r

}
=

1

r!

r∑
j=1

(−1)r−j
(
r

j

)
jn,

as before.

4.4 Wrapping up surjections and set partitions
Proposition. The class R(A,B) of surjections in which the cardinalities of the premiages lie in A ⊆ N
and the cardinality of the range lies in B ⊆ N is given by

R(A,B)(z) = β(α(z))

α(z) =
∑
a∈A

za

a!
β(z) =

∑
b∈B

zb

Proposition. The class S(A,B) of set partitions with block sizes in A ⊆ N and number of blocks in in
B ⊆ N is given by

S(A,B)(z) = β(α(z))

α(z) =
∑
a∈A

za

a!
β(z) =

∑
b∈B

zb

b
!

5 Permutations
We just looked at sequences and sets of sets. We could do the same for cycles. Sequences of cycles are
called alignments, but do not appear that frequently. Let us instead consider sets of cycles, also known
as permutations:

P = SET(CYC(Z))

As suggested by this formula, every cycle can be naturally decomposed into a set of cycles. Consider
the permutation

σ = (10, 12, 2, 7, 1, 8, 6, 9, 4, 5, 3, 11)

Let us track where 1 moves under the action of this permutation

1→ 10→ 5→ 1

2→ 12→ 11→ 3→ 2

4→ 7→ 6→ 8→ 9→ 4

So the above decomposes into 3 cycles of lengths 3,4,5; its cycle number is 3. Schematically this gives
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2

3

4

5
6

7

8

9

10
11

1 12

Using this decomposition as a set of cycles we get

P ∼= SET(CYC(Z)) ∼= SEQ(Z)

P (z) = exp

(
log

1

1− z

)
=

1

1− z

The fact that exp and log are inverses is reflected in cycle-decomposition of permutations.
Now we can go further by playing with restrictions (as we did above) to get

Proposition. The class P(A,B) of permutations with cycle lengths in A ⊆ N and cycle number in B ⊆ N
is given by

P (A,B)(z) = β(α(z))

α(z) =
∑
a∈A

za

a
β(z) =

∑
b∈B

zb

b!

5.1 Sub-classes of permutations
5.1.1 Involutions

The permutation σ is an involution if σ ◦ σ = identity. This means that all cycles are length 1 or
2, but the number of cycles is unconstrained. In the language of the above theorem, A = {1, 2} and
B = {0, 1, 2, . . . }. Hence

I = SET(CYC1,2(Z))

I(z) = exp
(
z + z2/2

)
=
∑
k≥0

zk

k!
(1 + z/2)k =

∑
k≥0

k∑
j=0

(
k

j

)
zj+k

2jk!

=
∑
n≥0

n/2∑
j=0

(
n− j
j

)
1

2j(n− j)!
zn

In =

n/2∑
j=0

n!

2j(n− 2j)!j!

One can of course extend this to consider permutations in which all cycles are of length ≤ r.

5.1.2 Derangements

In the opposite direction, a derangement is a permutation in which no number stays put — hence
all cycles must be 2 or longer. In the language of the above theorem, A = {2, 3, 4, 5, . . . } and B =
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{0, 1, 2, . . . }.

D = SET(CYC>1(Z))

D(z) = exp

(
log

1

1− z
− z
)

=
e−z

1− z
=
∑
n≥0

(−1)n
zn

n!
×
∑
n≥0

zn

Dn = n!

(
1− 1

1!
+

2

2!
− · · ·+ (−1)n

n!

)
HenceDn/n! = probability that a permutation leaves nothing in place, is the truncation of the expansion
of e−1. Since this converges very quickly, the probability of a permutation being a derangment is
asymptotically 1/e ≈ 0.37.

So — if you require all cycles to be length > r or longer one gets

D(r) = SET(CYC>r(Z))

D(r)(z) = exp

log
1

1− z
−
∑
k≤r

zk

k

 =
e−

z
1−

z2

2! −···−
zr

r!

1− z

5.1.3 Other variants

This approach will work well to consider other classes of permutations such as permutations with all
even cycles, all odd cycles, cycles of even length, all of odd length etc. It is also not hard to get all
permutations so that σd = identity for a given d. Give these a shot.

5.2 The number of cycles in a permutation

Let P (r) be the class of permutations that decompose into r cycles. The number P (r)
n ≡

[
n
r

]
are the

Stirling cycle numbers (or Stirling numbers of the first kind), and their egf is

P (r) = SETr(CYC(Z))

P (r)(z) =
1

r!

(
log

1

1− z

)r
So — the probability that a permutation has exactly r cycles is

[
n
r

]
1
n! .

What do these numbers look like? Let pn,k be this probability, and consider n = 100.

k 1 2 3 4 5 6 7 8 9 10
pn,k .01 .05 .12 .19 .21 .17 .11 .06 .03 .01

How do we interpret this? A random permutation of 100 has on average a few more than 5 cycles.
It rarely has more than 10. What does this imply about the average length of a cycle?

5.3 Application: 100 Prisoners
This example is a reformulation of an applied problem on probing and hashing. The wording is modified
from the wikipedia page on Random permutation statistics.

5.3.1 The game

A prison warden wants to make room in his prison and is considering liberating one hundred prisoners,
thereby freeing one hundred cells. He assembles one hundred prisoners and asks them to play the
following game:
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1. he lines up one hundred urns in a row, each containing the name of one prisoner, where every
prisoner’s name occurs exactly once;

2. every prisoner is allowed to look inside fifty urns. If he or she does not find his or her name in
one of the fifty urns, all prisoners will immediately be executed, otherwise the game continues.

The prisoners have a few moments to decide on a strategy, knowing that once the game has begun, they
will not be able to communicate with each other, mark the urns in any way or move the urns or the
names inside them. Choosing urns at random, their chances of survival are almost zero, but there is a
strategy giving them a 30% chance of survival, assuming that the names are assigned to urns randomly
what is it?

First of all, the survival probability using random choices is
(

(99
49)

(100
50 )

)100

= 1
2100 so this is definitely

not a practical strategy.

5.3.2 The strategy

The 30% survival strategy is to consider the contents of the urns to be a permutation of the prisoners,
and traverse cycles. To keep the notation simple, assign a number to each prisoner, for example by
sorting their names alphabetically. The urns may thereafter be considered to contain numbers rather
than names. Now clearly the contents of the urns define a permutation. The first prisoner opens the
first urn. If he finds his name, he has finished and survives. Otherwise he opens the urn with the
number he found in the first urn. The process repeats: the prisoner opens an urn and survives if he
finds his name, otherwise he opens the urn with the number just retrieved, up to a limit of fifty urns.
The second prisoner starts with urn number two, the third with urn number three, and so on. This
strategy is precisely equivalent to a traversal of the cycles of the permutation represented by the urns.
Every prisoner starts with the urn bearing his number and keeps on traversing his cycle up to a limit
of fifty urns. The number of the urn that contains his number is the pre-image of that number under
the permutation. Hence the prisoners survive if all cycles of the permutation contain at most fifty
elements. We have to show that this probability is at least 30%.

Let us see how this works on a smaller example. Consider the permutation from the beginning of
these notes:

BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 10 BOX 11 BOX 12
10 12 2 7 1 8 6 9 4 5 3 11

2

3

4

5
6

7

8

9

10
11

1 12

This simulates the situation where the warden has put a 10 in box 1, a 12 in box 2, a 2 in box 3 and in
general σ(i) in box i. If the prisoners are following the strategy, they will each have 6 boxes to look in
to, and since the maximum cycle size is 5, they will win.

How will it go down? Prisoner one will open box 1. It will say 10. He then opens box 10, and it will
say 5. He opens box 5, it says 1, and he breathes a sigh of relief. Prisoner two’s turn. He opens box 2: it
says 12. He continues along the cycle and the fourth box he opens will have a 2 inside. Later, prisoner
4 is up. He follows this and he starts to sweat because it takes him 5 turns, but this is still less than 6,
so he is okay. We know what this permutation looks like, and that every cycle is of length less than 6,
so, as we already noted, if this were the scheme, the prisoners would win.

Note that this assumes that the warden chooses the permutation randomly; if the warden antici-
pates this strategy, he can simply choose a permutation with a cycle of length 51. To overcome this, the
prisoners may agree in advance on a random permutation of their names.
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5.3.3 The analysis

First, let us consider the general problem with 2n prisoners choosing n urns. Let us calculate the egf
that a random permutation (of any size) has a cycle of length n+ 1, and then deduce the probability for
the case of permutations of length n, and these are the cases in which case this strategy will fail. Fix
n and consider the class of all permutations which have a cycle of length at least n+ 1. We take a sum
over all permutations σ of the term z|σ| if it has no such cycle and z|σ|u if it does

g(n)(z, u) =
∑
σ∈P

z|σ|u1 (ifσ has a cycle of lengthn);0 otherwise

|σ|!
= 1 + z +

2z2

2!
+ · · ·+ n!

zn

n!
+ (n!u+ nn!)

zn+1

(n+ 1)!
+ . . .

We first expand the decomposition P = SET(CYC(Z)) = SET(CYC≤n(Z)+CYC>n(Z)) which we then
expand as follows:

g(n)(z, u) = exp

z +
z2

2
+
z3

3
+ · · ·+ zn

n︸ ︷︷ ︸
CYC≤n(Z)

+u
zn+1

n+ 1
+ u

zn+2

n+ 2
+ . . .︸ ︷︷ ︸

CYC>n(Z)


=

1

1− z
exp

(
(u− 1)

(
zn+1

n+ 1
+
zn+2

n+ 2
+ . . .

))
.

The desired probability is

[z2n]
(

[u]g(n)(z, u)
)

= [z2n][u]
1

1− z

(
1 + (u− 1)

(
zn+1

n+ 1
+
zn+2

n+ 2
+ . . .

))
,

since exp(•) = 1 + • + •2 + . . . , and so once you square the argument to the exp, you will only create
terms which are a power of z greater than 2n. This is equal to

[z2n]
(

[u]g(n)(z, u)
)

= [z2n]
1

1− z

(
zn+1

n+ 1
+
zn+2

n+ 2
+ . . .

)
= [z2n]

∑
`

( ∑̀
k=n+1

1

k

)
z` =

2n∑
k=n+1

1

k
.

These are related to Harmonic numbers and have good estimates. Using one of these good estimates
we compute that

[z2n]
(

[u]g(n)(z, u)
)
< log 2 =⇒ 1− [z2n]

(
[u]g(n)(z, u)

)
> 1− log 2 = 0.3068528 . . .

That is, at least 30 %.

5.4 Computing Stirling cycle numbers
We can follow a similar analysis to get formulas for Stirling cycle numbers

[
n
r

]
which we recall are the

number of permutations of n that decompose into r cycles. Start with the bivariate g.f.

P (z, u) =

∞∑
r=0

P (r)(z)ur

=

∞∑
r=0

(
u log

1

1− z

)r
1

r!

= exp

(
u log

1

1− z

)
= (1− z)−u

=
∑
n≥0

(−1)n
(
−u
n

)
zn
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so the coeff of zn is an expansion in u

n∑
r=0

[
n

r

]
ur = u(u+ 1)(u+ 2) . . . (u+ n− 1)

Differentiating this and setting u = 1 gives

1

n!

∑
r

[
n

r

]
= 1 + 1/2 + 1/3 + . . . 1/n

This is the expected number of cycles in a permutation of length n and is approximately log n.

6 Trees maps and graphs
For trees, the labelled case is not so different to the unlabelled case. We can consider planar and
non-planar rooted trees.

Example. Let A be the class of rooted labelled planar trees whose vertex outdegrees must lie in the
set Ω. Then we have

A = ZSEQΩ(A)

and so using similar reasoning as the unlabelled case

A(z) = zφ(A(z)) φ(u) =
∑
ω∈Ω

uω

and indeed this is identical to the ogf for the unlabelled version. Hence An = n!Ân — this is easy
to prove by reading the vertices of a labelled tree in a canonical order (eg breadth first) to obtain a
permutation and an unlabelled tree of the same shape. Using this idea or lagrange inversion we get
that all labelled rooted planar trees are

An = n!
1

n

(
2n− 2

n− 1

)
= 2n−1 · 1 · 3 · · · (2n− 3)

So — to the non-planar case

Example. Let T be the class of all non-planar rooted labelled trees. By deleting the root vertex one
obtains a set of labelled trees. Thus

T = Z ? SET(T )

T (z) = zeT (z)

Now φ(u) = eu and Lagrange inversion gives

Tn = n![zn]T (z)

= n!

(
1

n
[un−1] (eu)

n

)
= (n− 1)!

nn

n!
= nn−1

Which is a famous result due to Cayley. These are usually called Cayley trees. A k-forest of Cayley
trees gives a very similar result

F (k)
n = n![zn]

T (z)k

k!
=

(
n− 1

k − 1

)
nn−k
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Similar games with restricted vertex degree lead to

T (Ω) = Z ? SETΩ(T (Ω))

T (Ω)(z) = zφ̄(T (Ω)(z)) φ̄(u) =
∑
ω∈Ω

uω

|ω|!
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