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1 Minimal Change Ordering for subsets

1.1 Subsets of an n-set

Fix n, and consider the class of subsets of an n-set. We want to generate all elements of this class with
a minimum change. For example, between consecutive elements in a listing, we perhaps there is a
difference of a single element.

We have already explored binary strings, and we have also already explored the connection between
generating binary strings and generating a subset. A Gray code for binary strings implicitly describes
a minimal change exhaustive generation scheme for the set of subsets of an n-set.

Well, that was easy! Now let us make it harder.

1.2 Generating k-subsets

Let us consider a restriction: all possible (}) k-subsets of an n-set. We can formuate this in terms of
binary strings: the difference between two binary strings must be at least two, and ideally we would
like to describe a scheme in which the difference is exactly 2 bits.

First, we describe a natural minimal change order which is analogous to RBC R(n). Let us use some
information that we have at our disposal:

@Z(Z):l <Z>:<n;1)+(2:1),1<k<n.

This identity actually suggests a minimal change order for k-subsets, defined in a recursive way. RBC
can be viewed as an interpretation of the identity

on — 2n—1 + 2n—1’

and we let this guide us. The number of empty subsets of an n-set is one, the empty set and this is
represented

Likewise,

Now, assume we have a minimal change sequence Ry (n — 1) for all k. Then
Ri(n) = 0-{Ri(n — 1)}, 1+ {R-1(n — 1)%}

where © means to reverse the order of the sequence.

If we interpret the binary strings occuring in Ri(n) as k-subsets with the first bit representing the
appearance or nonappearance of n, the second bit n — 1 and so on, then we can rephrase this definition
as follows

Ri(n) = [Ri(n — 1), {n} U Rx_1(n — 1)"]
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For example,
R1(2) = [0R;(1),1 Ro(1)®] = [01,10].

A more complicated example. We represent it as a matrix:

=== OO
OO = == O
O = OO =
O O = O =

1.3 Proofs

We want to prove that Ry (n) defines a cyclic minimal change ordering of all k-subsets of [n]. This order
is called the Revolving door order. First we need a proposition to help us understand the beginning and
the end of the order

Proposition. For k > 0, the first row of Ry(n)is [0---01---1] and the last row of Ry(n) is [10---01---1].

Proof. By induction on n. The base case is n = 1, hence k = 1 which was can observe directly is true.
Assume the result holds for n = m > 1, and for any 0 < k& < m. Now consider n = m + 1.
If k = n then the result can again be observed directly. Assume 1 < k < n — 1. Then the first row of
Ry (n) is the first row of Ry (n — 1) with an extra 0 at the beginning which by induction is as it should be.
The last row of Ry (n) is the first row of R;,_;(n—1) with an extra 1 at the beginning, which by induction
is as it should be. O

Theorem. The rows of Ry (n) represent a cyclic minimal change ordering of all k-subsets of [n).

Proof. We prove this by induction on n. Again n = 1 gives k£ = 1 and so can be observed directly.
Assume the result holds for n = m > 1, and for any 0 < k¥ < m. Now consider n = m + 1.
If £k = n or k = 0 then the result can again be observed directly. Assume 1 < k <n — 1.
Consider the distance between adjacent rows of Ry(n). The adjacent differences among the first
";1) rows are the same as the adjacent differences between the rows of R;(n — 1) and so by induction
are all 2. Likewise the adjacent differences among the last n — 1k — 1 rows are the same as the adjacent
differences between the rows of R;_i(n — 1) and so by induction are all 2. It remains to check the

difference between the (”gl)th row and its successor, and between the first and last rows.

The (", ")th row of Ry (n) is the (", ')th row of Rj,(n — 1) with an extra 0 at the beginning. The next
row of Ry,(n) is the (}~])th row of R;,_;(n—1) with an extra 1 at the beginning. By the proposition these
two rows of Ry (n) are the following two rows

0 1 0
1 1 0
which are distance 2 apart.
The first row of Ry (n) is the first row of Ry (n — 1) with an extra 0 at the beginning. The last row of
Ry, (n) is the first row of R;_1(n — 1) with an extra 1 at the beginning. By the previous proposition these
rows are

o o
O =
— =
— =
—_

00 - 01 1 - 1
10 - 00 1 - 1
which are distance 2 apart. This completes the proof. O

This generation scheme has a major drawback— To compute Ry (n) you need to compute Rj_1(n —
1), Ri(n—1) and thus also Ry_3(n—2), Rx_2(n—1), Rk—1(n—2), Rx(n—1) ... which will either represent
a lot of repeated calculation, or a lot of storage.

Next time we’ll look at a successor function for this ordering, so that we never need to generate it
by the definition.
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