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Abstract

Hopf algebras capture how combinatorial objects can be decomposed into their subparts

in different ways. Generating trees and generating graphs provide one structured way to

understand many combinatorial classes.

Furthermore, Hochschild 1-cocycle maps of renormalization Hopf algebras play an important

role in quantum field theories but are not well known in combinatorics. In the generalised

atmospheric method for sampling self-avoiding polygons, there is a weight function which

deals with overcounting and hints at a connection with the 1-cocycle maps. Both of these

combinatorial objects can be represented by generating graphs.

As a first step towards understanding this connection, we provide two ways to construct

Hopf algebras on generating trees through a normalizing map ϕ̃. One is concatenation

and deshuffle type and the other is shuffle and deconcatenation type. We also construct

an incidence Hopf algebra on certain generating graphs and construct a Hopf algebra on

self-avoiding polygons.
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“A mathematician is a machine for turning coffee into theorems”

— Alfré Rényi

“A comathematician is a device for turning cotheorems into ffee”

— Unknown
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Chapter 1

Introduction and Hopf Algebra

Preliminaries

1.1 Introduction

Hopf algebras emerged in combinatorics because the product and the coproduct can capture

the actions of composing and decomposing combinatorial objects respectively. Another

reason is that combinatorial objects (permutations, trees, graphs, posets, tableaux and so

on) have natural gradings which makes it easier to introduce Hopf algebras on them and

many interesting invariants can be expressed as Hopf morphisms ([10]).

Feynman graphs, an important class in quantum field theory, have a Hopf algebra struc-

ture [5, 6]. In these renormalization Hopf algebras of combinatorial classes of Feynman

graphs (see Section 5.1), there is a family of maps Bγ
+ which represent insertion into the

primitive graph γ. If this is done naively, there is over counting, and so there are mul-

tiplicative factors which deal with the redundancy. As a result, the sum of Bγ
+ over an

appropriate set of γ gives a Hochschild 1-cocycle map ([12]). In the GARM method for

sampling self-avoiding polygons (see Section 5.2), there is a weight function W that assigns

to each sampling sequence a weight. The mean weight of sequences ending at objects with

size n gives the total number of objects with size n ([7]). In both cases, a multiplicative

factor is used to deal with overcounting as opposed to the more usual additive process like

inclusion-exclusion. We think these multiplicative factors may relate to Hochschild 1-cocycle

maps. Our original goal for this project was to make this connection precise. Towards that

1
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we wanted a common Hopf-algebraic language for both cases. Notice both classes of objects

are recursively generated but with redundancy. So generating graphs were a good first place

to look. As a simpler case of generating graphs, generating trees are also representations of

combinatorial classes that explain local recursive structure. So we started by constructing

Hopf algebras on generating trees. We didn’t achieve our original goal, but we obtained

interesting Hopf algebra structures from generating trees and certain generating graphs.

We view this as the first step towards our original goal.

1.2 Thesis Organization

In the rest of Chapter 1, we first present the definitions and some propositions for bialgebras

and Hopf algebras. Corollary 1.25 is particularly relevant for us because it states that the

antipode always exists for a connected and graded bialgebra. Then we show some common

examples of combinatorial Hopf algebras which will help in understanding later chapters.

In Chapter 2, we make use of the linearity of the paths from the generating trees of combi-

natorial classes to simulate word-behavior and construct two Hopf algebras on those classes.

We first describe a family of normalizing maps ϕ̃• in Section 2.1. The map ϕ̃ tells us how to

map paths in the tree up to the root. Since only paths starting at the root in a generating

tree correspond to objects in the combinatorial class, ϕ̃ is very important for converting

other parts of the tree back into objects. Then we construct a concatenation-deshuffle type

Hopf algebra (Theorem 2.20) and a shuffle-deconcatenation Hopf algebra (Theorem 2.37) on

the vector space W spanned by the vertices of generating trees. A diagram of this chapter

is in Figure 1.1. Throughout the construction, we will use permutations as examples. To

give the readers a preview, here we present examples of the concatenation product of the

permutations (12) and (21), and the deshuffle coproduct of permutation (231).

Example 1.1. Take permutations u = (12) and v = (21), then

ψc(12, 21) = (1243)

as shown in Figure 1.2. This is the result of grafting the path from the root r to (21) to the

vertex (12) following analogous steps. Take w = (231), then

ϕds(231) = r ⊗ (231) + (1)⊗ (12) + (1)⊗ (21) + (1)⊗ (21)

+(21)⊗ (1) + (12)⊗ (1) + (21)⊗ (1) + (231)⊗ r
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Generating trees

Concatenation-deshuffle Shuffle-deconcatenation

ψc:concatenation product

ϕds: deshuffle coproduct ψs: shuffle product

ϕdc: deconcatenation coproduct
type Hopf algebra: type Hopf algebra:

Figure 1.1: A sketch of Chapter 2

as shown in Figure 1.3. This is the sum of breaking up the paths from r to (231) into two

parts. The symmetry in the figure is the sum of the first four summands with left terms

and right terms flipped.

r

1

12

123

1243

ψc( , ) =

r

1

12

r

1

21

ψc( 12 , 21 ) = (1243)

Figure 1.2: Path representation of concatenating permutations (12) and (21)

Finally, we show an application to the generating tree of set partitions in Section 2.4

and an application to the generating tree of open partition diagrams in Section 2.5.

In Chapter 3, we define the set of maximum sublattices of a finite lattice P in Defini-

tion 3.8 and analyze the structure of a particular type of generating graph G with properties
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⊗

r

21

1

231

r + ⊗

r

21

1
r

1

r

1 ⊗

r

12

1 +
r

1 ⊗

r

21

1 + + Sym...

r ⊗ (231)ϕds(231) = + (1)⊗ (12) + (1)⊗ (21) + (1)⊗ (21)

(231)⊗ r + (12)⊗ (1) + (21)⊗ (1) + (21)⊗ (1)+

ϕds( ) =

r

21

1

231

Figure 1.3: Path representation of deshuffling permutation (231)

given in Property 3.10. Then in Property 3.16 we describe properties of a map φ which guar-

antee we can construct the coproduct ∆. Finally we get to the main result in Theorem 3.22,

namely that the polynomials of objects in G with the coproduct ∆, trivial unit and counit

results in an incidence Hopf algebra. Throughout the construction, we will use 3-point

Feynman graphs with only vertex insertions in the scalar field theory φ3 as examples. In

this case, the Hopf algebra coincides with the usual renormalization Hopf algebra for these

graphs. Example 1.2 gives a taste of what the coproduct ∆ looks like.

Example 1.2. Apply ∆ to the graph to get

∆( ) = 1⊗ + ⊗ + ⊗ + ⊗

+ ⊗ + ⊗ + ⊗ 1.

In Chapter 4, we look at the algebra U of polynomials of self-avoiding polygons. We first

present a generating graph of self-avoiding polygons introduced in [7]. Then we construct a

width-coproduct ∆w and a height-coproduct ∆h. We prove with ∆w and the trivial counit

U is a Hopf algebra graded by the widths (Theorem 4.9) and with ∆h and the trivial counit

U is a Hopf algebra graded by the heights (Theorem 4.11). Example 1.3 gives an example

of ∆w and ∆h.

Example 1.3. Let P be the self avoiding polygon . Then

∆w(P ) = 1⊗ + ⊗ + ⊗ + ⊗ 1;

∆h(P ) = 1⊗ + ⊗ + ⊗ 1.
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Chapter 5 will conclude this thesis with some questions related to our constructions and

our original goal.

1.3 Bialgebras and Hopf Algebras

Hopf algebras, named after Heinz Hopf, arose in algebraic topology relating to the homology

and cohomology of connected Lie groups in the 1940s ([1]). Since the late 1960s, Hopf

algebras have been studied from an algebraic point of view starting with the research on

the representative rings of Lie groups by Hochschild and Mostow ([2],[3]). By the end

of the 1980s, the connection with quantum mechanics (in the form of quantum groups)

promoted the research in this area ([4]). Hopf algebras have been studied in their own right

as well as for their applications in physics and many fields of mathematics. One important

application is in combinatorics, because many combinatorial objects carry natural Hopf

algebraic structures and some structures also encode useful combinatorial information.

In this section, we present the definitions of bialgebras and Hopf algebras along with some

classic propositions. We follow the text [10] for this presentation. We use the vector space

of words as an example when we go through. We assume readers have basic background of

linear algebra, groups, rings and tensor products ([8, Chapter XVI]). We assume all algebras

in this thesis have a multiplicative identity.

1.3.1 Bialgebras

LetK be a field. We will useK as the base field for all vector spaces throughout this chapter

unless otherwise stated.

Let Ω be a finite alphabet, then any word a1a2 · · · an can be viewed as the tensor product

a1⊗ a2⊗ · · · ⊗ an where ai ∈ Ω for i = 1, 2, . . . , n. Let 1 be the empty word of length 0 and

let Wn be the vector space spanned by words of length n. Then Wn can be viewed as Ω⊗n.

Thus, W =
∞⊕
n=0

Ω⊗n is the vector space spanned by all words.

Definition 1.4. A vector space A over K is an algebra if it is also a ring (with the identity

1) with a compatible multiplication, that is, λ(ab) = (λa)b = a(λb), for all λ ∈ K and

a, b ∈ A.

In fact, this is equivalent to viewing algebra A (also denoted by (A, ·, u)) as a K-vector

space together with two linear maps. One map is the unit u : K→ A and the other one is
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the product · : A⊗A→ A such that the following diagrams commute:

A⊗A

·
&&

A⊗A⊗A·⊗idoo id⊗· // A⊗A

·
xx

A

K⊗A
u⊗id

��

A

id
��

∼=oo
∼= // A⊗K

id⊗u
��

A⊗A ·
// A A⊗A·
oo

Notice the left diagram describes the associativity of the product and the right diagram

describes the compatibility between the product and the scalar multiplication.

Example 1.5. Let W be the vector space of words over alphabet Ω. Let u be the linear

map that maps any k ∈ K to k1 ∈ W and let the product · be concatenation. That is to

say, for any words a1 ⊗ a2 ⊗ · · · ⊗ an and b1 ⊗ b2 ⊗ · · · ⊗ bm,

(a1 ⊗ a2 ⊗ · · · ⊗ an) · (b1 ⊗ b2 ⊗ · · · ⊗ bm) = a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ b1 ⊗ b2 ⊗ · · · ⊗ bm.

It is easy to check that the above two diagrams commute, and thus (W, ·, u) is an algebra.

The commutative diagram formulation suggests considering the dual objects of algebras

by reversing the arrows. The resulting objects are called coalgebras.

Definition 1.6. Let K be a field. A coalgebra (C,∆, ε) over K is a vector space C along

with two linear maps the coproduct ∆ : C → C ⊗C and the counit ε : C → K such that

the following diagrams commute:

C ⊗ C id⊗∆ // C ⊗ C ⊗ C C ⊗ C∆⊗idoo

C
∆

gg

∆

77 K⊗ C ∼= // C C ⊗K∼=oo

C ⊗ C
ε⊗id

OO

C

id

OO

∆
//

∆
oo C ⊗ C

id⊗ε

OO

If the product describes how to put two elements together into one element, then the

coproduct describes how to take an element apart into two elements, possibly in more than

one way. The commutativity of the left diagram is also referred to as the coassociativity

of the coproduct. Now we are going to give a coalgebra structure on words.

Example 1.7. Let W be the vector space of words. Let ε be the linear map that maps k1

to k for any k ∈ K and maps
∞⊕
n=1

Ω⊗n to 0. Let ∆ be the deshuffle operation on any single

word and extend linearly to W . That is for any single word ω = a1 ⊗ a2 ⊗ · · · ⊗ an,

∆(ω) =
∑

{i1,i2,...,ik} subset of
{1,2,...,n} with
i1<i2<···<ik

(ai1 ⊗ ai2 ⊗ · · · ⊗ aik)⊗ (aj1 ⊗ aj2 ⊗ · · · ⊗ ajn−k
),
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where {j1, . . . , jn−k} = {1, 2, . . . , n} \ {i1, i2, . . . , ik} with j1 < · · · < jn−k. For instance,

∆(1) = 1⊗ 1,

and

∆(acb) = 1⊗ acb+ a⊗ cb+ c⊗ ab+ b⊗ ac+ ac⊗ b+ ab⊗ c+ cb⊗ a+ acb⊗ 1.

By chasing elements, we could see that both diagrams in Definition 1.6 commute and thus

(W,∆, ε) is a coalgebra.

A linear map between two algebras which preserves the algebraic structure is defined to

be an algebra homomorphism.

Definition 1.8. Let (A, ·A, uA), (B, ·B, uB) be K-algebras. A linear map φ : A→ B is an

algebra homomorphism if the following diagrams commute:

A⊗A
φ⊗φ
��

·A // A

φ
��

B ⊗B ·B
// B

A
φ // B

K

uA

``

uB

>>

Similarly, by reversing the arrows we can define a linear map between two coalgebras

that preserves the algebraic structure as a coalgebra morphism.

Definition 1.9. Let (C,∆C , εC), (D,∆D, εD) be K-coalgebras. A linear map ψ : C → D

is a coalgebra morphism if the following diagrams commute:

C ⊗ C
φ⊗φ
��

C
∆Coo

φ
��

D ⊗D D
∆D

oo

C
φ //

εC   

D

εD~~
K

Given two algebras A and B, there is a natural algebra structure on the vector space

A⊗B as follows.

Proposition 1.10. Let (A, ·A, uA), (B, ·B, uB) be K-algebras. Then A ⊗ B is naturally a

K-algebra with the unit uA⊗B = uA ⊗ uB and the product ·A⊗B = (·A ⊗ ·B) ◦ (id ⊗ τ ⊗ id)
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where τ is the transposition τ(a⊗ b) = b⊗ a. This is equivalent to saying that the following

diagram commutes:

A⊗B ⊗A⊗B

·A⊗B ((

id⊗τ⊗id // A⊗A⊗B ⊗B

·A⊗·Bvv
A⊗B

Note that the product ·A⊗B acts coordinatewise, so it is associative by the associativity

of both ·A and ·B. The commutativity of the second diagram in Definition 1.4 is easy to

check by chasing elements.

The commuting diagram says that the product of elements a ⊗ b and a
′ ⊗ b′ in A ⊗ B

is the coordinate-wise tensor product aa
′ ⊗ bb′ . Similarly, given two coalgebras C and D,

there is a natural coalgebra structure on the vector space C ⊗D.

Proposition 1.11. Let (C,∆C , εC), (D,∆D, εD) be K-coalgebras. Then C⊗D is naturally

a K-coalgebra with the counit εC⊗D = εC ⊗ εD and the coproduct ∆C⊗D = (id ⊗ τ ⊗ id) ◦
(∆C ⊗∆D), i.e., the following diagram commutes:

C ⊗D ⊗ C ⊗D C ⊗ C ⊗D ⊗Did⊗τ⊗idoo

C ⊗D
∆C⊗D

hh

∆C⊗∆D

66

Similarly, note that the coproduct ∆C⊗D acts coordinatewise, so it is coassociative by the

coassociativity of both ∆C and ∆D. The commutativity of the second diagram in Definition

1.6 is easy to check by chasing elements.

With the definitions and propositions above, we are now ready to define bialgebras. A

bialgbra is both an algebra and a coalgebra with compatible operations as follows.

Definition 1.12. A K-vector space A is a bialgebra if (A, ·, u) is an algebra and (A,∆, ε)

is a coalgebra such that one of the following equivalent conditions holds:

(1) ∆ and ε are algebra homomorphisms;

(2) · and u are coalgebra morphisms;
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(3) The following four diagrams commute:

A⊗A
∆⊗∆

ww ·

  

A⊗A⊗A⊗A

id⊗τ⊗id

��

A

∆

~~

A⊗A⊗A⊗A

·⊗· ''
A⊗A

A
∆ // A⊗A

K

u

OO

∼=
// K⊗K

u⊗u

OO

A⊗A

ε⊗ε

��

· // A

ε

��
K⊗K ∼=

// K

A
ε // K

K

u

XX

id

FF

The K-bialgebra A is also denoted by (A, ·, u,∆, ε).

Conditions (1) and (3) are equivalent because the two diagrams in the first row show

that ∆ is an algebra homomorphism and the other two diagrams show that ε is an algebra

homomorphism. Similarly condition (2) is equivalent to (3) because the two diagrams in

the first column also show that · is a coalgebra morphism and the other two diagrams show

that u is a coalgebra morphism.

Example 1.13. Let (W, ·, u) be the algebra in Example 1.5 and (W,∆, ε) be the coalgebra

in Example 1.7. Then (W, ·, u,∆, ε) is a bialgebra called the concatenation-deshuffle

bialgebra of words .

Proof. We check that all four diagrams in Definition 1.12 commute. Let ·t = (· ⊗ ·) ◦ (id⊗
τ ⊗ id) be the natural product on W ⊗W as shown in Proposition 1.10. First we claim that

for any word ω = a1a2 · · · an and any single letter b,

∆(ωb) = ∆(ω) ·t ∆(b).
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By the definition of ∆ in Example 1.7 and let an+1 = b, we have

∆(ωb) =
∑

{i1,i2,...,ik} subset of
{1,2,...,n+1} with
i1<i2<···<ik

(ai1 ⊗ ai2 ⊗ · · · ⊗ aik)⊗ (aj1 ⊗ aj2 ⊗ · · · ⊗ ajn+1−k
),

where {j1, . . . , jn+1−k} = {1, 2, . . . , n + 1} \ {i1, i2, . . . , ik} with j1 < · · · < jn+1−k. Notice

we can separate the sum into two sums according to either ik = n + 1 or jn+1−k = n + 1,

thus

∆(ωb) =
∑

{i1,i2,...,ik−1} subset of
{1,2,...,n} with
i1<i2<···<ik−1

(ai1 ⊗ ai2 ⊗ · · · ⊗ aik−1
⊗ b)⊗ (aj1 ⊗ aj2 ⊗ · · · ⊗ ajn−k+1

)

+
∑

{i1,i2,...,ik} subset of
{1,2,...,n} with
i1<i2<···<ik

(ai1 ⊗ ai2 ⊗ · · · ⊗ aik)⊗ (aj1 ⊗ aj2 ⊗ · · · ⊗ ajn−k
⊗ b).

On the other hand, we have ∆(b) = b⊗ 1+ 1⊗ b and

∆(ω) =
∑

{i1,i2,...,ik} subset of
{1,2,...,n} with
i1<i2<···<ik

(ai1 ⊗ ai2 ⊗ · · · ⊗ aik)⊗ (aj1 ⊗ aj2 ⊗ · · · ⊗ ajn−k
).

Then we have

∆(ω) ·t ∆(b) =
(
(· ⊗ ·) ◦ (id⊗ τ ⊗ id)

)(
∆(ω)⊗∆(b)

)
=

∑
{i1,i2,...,ik} subset of
{1,2,...,n} with
i1<i2<···<ik

(ai1 ⊗ ai2 ⊗ · · · ⊗ aik−1
⊗ b)⊗ (aj1 ⊗ aj2 ⊗ · · · ⊗ ajn−k

)

+
∑

{i1,i2,...,ik} subset of
{1,2,...,n} with
i1<i2<···<ik

(ai1 ⊗ ai2 ⊗ · · · ⊗ aik)⊗ (aj1 ⊗ aj2 ⊗ · · · ⊗ ajn−k
⊗ b).

Thus the claim holds. For any words α = a1a2 · · · an and β = b1b2 · · · bm, following the right

hand side of the first diagram we get

(∆ ◦ ·)(α⊗ β) = ∆(a1a2 · · · anb1b2 · · · bm)

= ∆(a1a2 · · · anb1b2 · · · bm−1) ·t ∆(bm)

= · · ·
= ∆(a1) ·t ∆(a2) ·t · · · ·t ∆(an) ·t ∆(b1) ·t ∆(b2) ·t · · · ·t ∆(bm).
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Following the left hand side of the first diagram, we have(
(· ⊗ ·) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗∆)

)
(α⊗ β)

= (·t)
(
∆(α)⊗∆(β)

)
= (·t)

((
∆(a1) ·t ∆(a2) ·t · · · ·t ∆(an)

)
⊗
(
∆(b1) ·t ∆(b2) ·t · · · ·t ∆(bm)

))
= ∆(a1) ·t ∆(a2) ·t · · · ·t ∆(an) ·t ∆(b1) ·t ∆(b2) ·t · · · ·t ∆(bm).

Along with the linearity, the first diagram commutes for W ⊗W . The last three diagrams

are easy to check in a similar manner. Thus we obtain a bialgebra structure on words.

1.3.2 Hopf Algebras

A Hopf algebra is a bialgebra together with an antipode map S which is the convolution

inverse of the identity map.

For K-vector spaces A,B let Hom(A,B) denote the space of all linear maps from A to

B.

Proposition 1.14. Let (C,∆, ε) be a K-coalgebra and (A, ·, u) be a K-algebra. Define a

convolution product ? on Hom(C,A) as follows,

C

f?g

::
∆ // C ⊗ C f⊗g // A⊗A · // A .

Then Hom(C,A) is a K-algebra with the identity u ◦ ε.

Proof. It is clear ? is a linear map from the above diagram since · and ∆ are linear maps.

Now check ? is associative. Take f, g, h ∈ Hom(C,A), then

(f ? g) ? h = ·
(
(f ? g)⊗ h

)
∆

= ·
((
· (f ⊗ g)∆

)
⊗ h
)

∆

= ·(· ⊗ id)(f ⊗ g ⊗ h)(∆⊗ id)∆,

and

f ? (g ? h) = ·
(
f ⊗ (g ? h)

)
∆

= ·
(
f ⊗

(
· (g ⊗ h)∆

))
∆

= ·(id⊗ ·)(f ⊗ g ⊗ h)(id⊗∆)∆.
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Since · is associative and ∆ is coassociative, we have

(f ? g) ? h = f ? (g ? h).

Check u ◦ ε is the identity as follows,

(f ? uε) = ·(f ⊗ uε)∆
= ·(f ⊗ u)(id⊗ ε)∆
= ·(f ⊗ u)(id⊗ 1)

= ·(f ⊗ 1A)

= f,

and

(uε ? f) = ·(uε⊗ f)∆

= ·(u⊗ f)(ε⊗ id)∆

= ·(u⊗ f)(1⊗ id)

= ·(1A ⊗ f)

= f.

Finally check ? and scalar multiplication are compatible as follows,

k(f ? g) = k
(
· (f ⊗ g)∆

)
= ·(kf ⊗ g)∆ = (kf) ? g

= ·(f ⊗ kg)∆ = f ? (kg).

Corollary 1.15. If A is a bialgebra, then Hom(A,A) has a convolution algebra structure.

Example 1.16. Let (W, ·, u,∆, ε) be the bialgebra of words as shown in Example 1.13.

Then Hom(W,W ) is a convolution algebra. Take f, g ∈ Hom(W,W ) and any word ω =
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a1a2 · · · an, then

(f ? g)(ω) = ·(f ⊗ g)∆(ω)

= ·
( ∑
{i1,i2,...,ik} subset of
{1,2,...,n} with
i1<i2<···<ik

f(ai1 ⊗ ai2 ⊗ · · · ⊗ aik)⊗ g(aj1 ⊗ aj2 ⊗ · · · ⊗ ajn−k
)

)

=
∑

{i1,i2,...,ik} subset of
{1,2,...,n} with
i1<i2<···<ik

f(ai1ai2 · · · aik)g(aj1aj2 · · · ajn−k
),

where {j1, . . . , jn−k} = {1, 2, . . . , n} \ {i1, i2, . . . , ik} with j1 < · · · < jn−k.

Definition 1.17. A Hopf algebra is a bialgebra (A, ·, u,∆, ε) along with a map S ∈
Hom(A,A). S is a two-sided inverse of idA in the convolution algebra, i.e., the following

diagram commutes:

A⊗A S⊗idA // A⊗A
·

##
A

∆
;;

∆ ##

ε // K
u // A

A⊗A
idA⊗S

// A⊗A
·

;;

S is called the antipode.

Example 1.18. Let (W, ·, u,∆, ε) be the bialgebra of words as shown in Example 1.13. For

any word ω = a1a2 · · · an, let S(ω) = (−1)nanan−1 · · · a1. Then extend S linearly to W .

Claim S is the antipode. We only need to check the diagram in Definition 1.17 commutes

for ω. For n = 0, we have S(1) = 1 which is easy to see satisfies the commuting diagram.

For n > 0, taking ω through the middle path we get 0 since ε(ω) = 0. Taking ω through

the top path, we have(
· (S ⊗ idA)∆

)
(ω) = (S ? id)(ω)

=
∑

{i1,i2,...,ik} subset of
{1,2,...,n} with
i1<i2<···<ik

S(ai1ai2 · · · aik)(aj1aj2 · · · ajn−k
)

=
∑

{i1,i2,...,ik} subset of
{1,2,...,n} with
i1<i2<···<ik

(−1)k(aikaik−1
· · · ai1aj1aj2 · · · ajn−k

),
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where {j1, . . . , jn−k} = {1, 2, . . . , n} \ {i1, i2, . . . , ik} with j1 < · · · < jn−k. Notice the sum

can be separated into two sums according to the parity of k and we can pair them up as

follows. For an odd k and a set {i1, . . . , ik}, if i1 < j1 we pair S(ai1 · · · aik)aj1aj2 · · · ajn−k

with S(ai2 · · · aik)ai1aj1 · · · ajn−k
otherwise we pair it with S(aj1ai1 · · · aik)aj2 · · · ajn−k

. This

is a bijection between {{i1, . . . , ik} : k odd} and {{i1, . . . , ik} : k even}; thus the sum goes

to 0. Similarly, taking ω through the bottom path also results in 0. So S is the antipode

and W is a Hopf algebra.

1.3.3 Gradedness and Connectedness

Definition 1.19. A vector space V is a graded K-vector space if it has a direct sum

decomposition

V =
∞⊕
n=0

Vn.

Call the elements in Vn homogenous of degree n.

If V and W are graded K-vector spaces then V ⊗W is also a graded K-vector space as

V ⊗W =
∞⊕
n=0

(V ⊗W )n,

where

(V ⊗W )n =

n⊕
i=0

Vi ⊗Wn−i.

The vector space W of words is a graded vector space since W =
∞⊕
n=0

Ω⊗n. A homogenous

element of degree n is just a linear combination of words with length n.

Definition 1.20. A linear map f : V →W between two graded vector spaces is graded if

f(Vn) ⊂Wn for any n ∈ N≥0.

Notice the five maps ·, u,∆, ε, S defined on words are all graded maps.

Definition 1.21. An algebra, coalgebra, bialgebra or Hopf algebra is graded if the un-

derlying vector space is graded and the maps (·, u), (∆, ε), (·, u,∆, ε) or (·, u,∆, ε, S) are

graded.

The Hopf algebra (W, ·, u,∆, ε, S) shown in Example 1.18 is a graded Hopf algebra.
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Definition 1.22. A graded K-vector space is connected if V0
∼= K.

For words, it is clear that W0
∼= K since the elements in W0 are in the form k1 with

k ∈ K. So W is connected.

In graded and connected bialgebras a lot of things come for free.

Proposition 1.23. Let (A, ·, u,∆, ε) be a graded and connected K-bialgebra.

(1) u : K→ A0 is an isomorphism.

(2) ε |A0 : A0 → K is the reverse isomorphism.

(3) Ker ε =
∞⊕
n=1

An.

(4) ∀x ∈ Ker ε, ∆(x) = 1⊗ x+ x⊗ 1+ ∆̃(x) where ∆̃(x) ∈ Ker ε⊗Ker ε.

Proof. (1) Because u is a nonzero graded map, u(K) ⊂ A0 and by the connectedness A0
∼= K,

we have 1 = dimKu(K) = dimKA0. This implies u(K) = A0. Since u is a linear map, for

any k ∈ K, u(k) = ku(1). Because u is a nonzero map, u(1) 6= 0 thus u is injective. So u is

an isomorphism.

(2) From (1) we know the following diagram commutes; thus ε |A0 is the reverse isomor-

phism.

A
ε // K

K

u

``

id

>> ⇒ A0

ε|A0 // K

K

u

``

id

>> .

(3) ε is a graded map and K = K0, so

ε(
∞⊕
n=1

An) = 0.

Then the result follows from (2).

(4) Notice 1 ∈ A0 since the product is a graded map so A0 = K1. Consider the following

diagram,

K⊗A ∼= // A A⊗K∼=oo

A⊗A
ε⊗id

OO

A

id

OO

∆
//

∆
oo A⊗A

id⊗ε

OO .
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If we take x ∈ Ker ε by the left path, we’ll have

∆(x) = k11⊗
1

k1
x+ y,

where y ∈ (Ker ε)⊗A and k1 ∈ K. Then taking the right path, we get

∆(x) =
1

k2
x⊗ k21+ z,

where z ∈ A⊗ (Ker ε) and k2 ∈ K. Combining them together, we have

∆(x) = 1⊗ x+ x⊗ 1+ ∆̃(x),

with ∆̃(x) ∈ Ker ε⊗Ker ε.

From the statement (4) in Proposition 1.23, we know for a graded and connected K-

bialgebra A that

∆̃ = ∆− id⊗ 1− 1⊗ id

is well defined on Ker ε =
∞⊕
n=1

An. We expand the definition of ∆̃ to A by ∆̃(1) = −1⊗ 1

since ∆(1) = 1⊗ 1. Call ∆̃ the reduced coproduct and call the elements in the set

Ker ∆̃ = {p ∈ A : ∆(p) = 1⊗ p+ p⊗ 1}

primitives. Note 1 is not a primitive.

Proposition 1.24. The reduced coproduct ∆̃ is coassociative, i.e.,

(id⊗ ∆̃)∆̃ = (∆̃⊗ id)∆̃.

Proof. By computation, we have

(id⊗ ∆̃)∆̃ = (id⊗ ∆̃)(∆− id⊗ 1− 1⊗ id)

= (id⊗ ∆̃)∆ + id⊗ 1⊗ 1− (1⊗ ∆̃)

= (id⊗∆)∆ + id⊗ 1⊗ 1− (id⊗ id⊗ 1)∆− (id⊗ 1⊗ id)∆− (1⊗ ∆̃)

= (id⊗∆)∆− (∆⊗ 1)− (id⊗ 1⊗ id)∆− (1⊗∆)

+id⊗ 1⊗ 1+ 1⊗ 1⊗ id+ 1⊗ id⊗ 1,
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and

(∆̃⊗ id)∆̃ = (∆̃⊗ id)(∆− id⊗ 1− 1⊗ id)

= (∆̃⊗ id)∆− (∆̃⊗ 1) + 1⊗ 1⊗ id
= (∆⊗ id)∆− (1⊗ id⊗ id)∆− (id⊗ 1⊗ id)∆− (∆̃⊗ 1) + 1⊗ 1⊗ id
= (∆⊗ id)∆− (1⊗∆)− (id⊗ 1⊗ id)∆− (∆⊗ 1)

+1⊗ id⊗ 1+ id⊗ 1⊗ 1+ 1⊗ 1⊗ id.

Thus (id⊗ ∆̃)∆̃ = (∆̃⊗ id)∆̃.

Corollary 1.25. If (A, ·, u,∆, ε) is a graded and connected K-bialgebra, then A has a unique

antipode S, and so A is a graded Hopf algebra.

Proof. Since S(1) = 1 follows from chasing 1 through the three paths in Definition 1.17

and

A =
∞⊕
n=0

An,

we can define S recursively. Suppose we’ve already defined S on all elements of Aj for

0 ≤ j < n. Now take x ∈ An. We know ∆(x) = 1⊗ x+ x⊗ 1+ ∆̃(x). Write

∆̃(x) =
∑
i

xi,1 ⊗ xi,2,

a finite sum. Since ∆ is a graded map and by (4) from Proposition 1.23, we know xi,2 ∈
n−1⊕
l=1

Al. From the lower path of the definition of S we have

·(id⊗ S)∆ = u ◦ ε.

Applying this to x we can get a recursive formula

S = −id− ·(id⊗ S)∆̃.

Now in order to prove that it is a two-sided inverse of id, we have to show that

S = −id− ·(S ⊗ id)∆̃

also holds. Since the elements in A1 are all primitives by the fact that ∆ is a graded map,

it holds true on A1. Suppose it holds for all elements in Ak for 1 ≤ k < n. Now take an
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element x in An. We want to show that ·(S ⊗ id)∆̃ = ·(id⊗ S)∆̃. The two parts in ∆̃ both

have degree less than n, so

·(S ⊗ id)∆̃ = ·
((
− id− ·(id⊗ S)∆̃

)
⊗ id

)
∆̃

= − · (id⊗ id)∆̃− ·(· ⊗ id)(id⊗ S ⊗ id)(∆̃⊗ id)∆̃

= − · (id⊗ id)∆̃− ·(id⊗ ·)(id⊗ S ⊗ id)(id⊗ ∆̃)∆̃

= ·
(
id⊗

(
− id− ·(S ⊗ id)∆̃

))
∆̃

= ·(id⊗ S)∆̃.

The third equality is by the associativity of the product and the coassociativity of the

reduced coproduct. The last equality holds because of the induction hypothesis of S =

−id− ·(S ⊗ id)∆̃ on elements with smaller degrees. We may also notice S is a graded map

from the induction process, so A is a graded Hopf algebra.

In the rest of this thesis, we focus on combinatorial Hopf algebras which are graded

and connected Hopf algebras [10]. So we present the definitions of combinatorial classes,

the trivial unit and trivial counit below.

Definition 1.26. A combinatorial class C is a countable set with a size function | · | :

C → Z≥0 with the property that Cn = {c ∈ C : |c| = n} is finite for all n. Let cn denote the

cardinality of Cn.

Let V (C) be the vector space spanned by the objects in a combinatorial class C. There

is a natural grading in terms of the size. The connectedness here means there is only one

element with size 0, i.e., c0 = 1 and C0 = {1}, which is a very natural condition. In this case,

if there is a graded bialgebra structure on V (C) (graded by the size), then by Corollary 1.25,

the antipode S comes for free and it is a graded Hopf algebra. Usually for combinatorial

Hopf algebras, the unit u will be the trivial unit with u(k) = k1 and the counit will be

the trivial counit with ε(k1) = k and ε = 0 otherwise, where k ∈ K.

In the following, we present one more useful proposition which will be used in later

chapters. It shows that for an algebra homomorphism, the coassociativity of elements in a

base guarantees the coassociativity of all elements.

Proposition 1.27. Let (A, ·, u) be a graded and connected K-algebra with u, the trivial unit.

Assume A is generated by elements in B as an algebra. Let ∆ : A → A ⊗ A be an algebra
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homomorphism. If for any a ∈ B, (id⊗∆)∆(a) = (∆⊗id)∆(a) then (id⊗∆)∆ = (∆⊗id)∆

holds on A.

Proof. Because A is generated by B, this is equivalent to proving

(id⊗∆) ◦ (∆) ◦ (·) = (∆⊗ id) ◦ (∆) ◦ (·).

Since ∆ is an algebra homomorphism,

∆(·) = (· ⊗ ·)(id⊗ τ ⊗ id)(∆⊗∆).

Then

(id⊗∆)
(
∆(·)

)
= (id⊗∆)(· ⊗ ·)(id⊗ τ ⊗ id)(∆⊗∆)

=
(
· ⊗
(
∆(·)

))
(id⊗ τ ⊗ id)(∆⊗∆)

=

(
· ⊗
(

(· ⊗ ·)(id⊗ τ ⊗ id)(∆⊗∆)
))

(id⊗ τ ⊗ id)(∆⊗∆)

=

(
· ⊗
(

(· ⊗ ·)(id⊗ τ ⊗ id)
))

(id⊗ id⊗∆⊗∆)(id⊗ τ ⊗ id)(∆⊗∆).

Notice

(id⊗ id⊗∆⊗∆)(id⊗ τ ⊗ id)

= (id⊗ τ ⊗ id⊗ id⊗ id)(id⊗ id⊗ τ ⊗ id⊗ id)(id⊗∆⊗ id⊗∆),

and (
· ⊗
(

(· ⊗ ·)(id⊗ τ ⊗ id)
))

= (· ⊗ · ⊗ ·)(id⊗ id⊗ id⊗ τ ⊗ id).

So we know (id⊗∆)
(
∆(·)

)
is just

(· ⊗ · ⊗ ·) ◦ (id⊗ id⊗ id⊗ τ ⊗ id) ◦ (id⊗ τ ⊗ id⊗ id⊗ id)

◦(id⊗ id⊗ τ ⊗ id⊗ id) ◦
((

(id⊗∆)∆
)
⊗
(
(id⊗∆)∆

))
.

Similarly, we know (∆⊗ id)
(
∆(·)

)
is

(· ⊗ · ⊗ ·) ◦ (id⊗ τ ⊗ id⊗ id⊗ id) ◦ (id⊗ id⊗ id⊗ τ ⊗ id)

◦(id⊗ id⊗ τ ⊗ id⊗ id)
((

(∆⊗ id)∆
)
⊗
(
(∆⊗ id)∆

))
.

Since (id⊗ τ ⊗ id⊗ id⊗ id) and (id⊗ id⊗ id⊗ τ ⊗ id) are commutative and along with the

condition (id⊗∆)∆ = (∆⊗ id)∆ on B, applied inductively we get (id⊗∆)∆ = (∆⊗ id)∆

on A.
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1.3.4 Examples of Combinatorial Hopf Algebras

In Section 1.3.2, we presented a concatenation-deshuffle Hopf algebra on the vector space

W of words in Example 1.18. Now, we are going to present another Hopf algebra structure

which is called the shuffle-deconcatenation Hopf algebra on the vector space W . After that

we will present two Hopf algebras related to renormalization in quantum field theory.

Example 1.28. Let Ω be a finite alphabet, let V be the vector space over K spanned by

words constructed by letters in Ω, as discussed in the beginning of Section 1.3.1. Let 1

denote the empty word. Then V =
∞⊕
n=0

Ω⊗n is a graded vector space graded by the length

of words. Define the shuffle product � recursively; for any words α = a1a2 · · · an and

β = b1b2 · · · bm define

α� β = ((a1 · · · an−1)� β)an + (α� (b1 · · · bm−1))bm,

with the base cases ω� 1 = 1� ω = ω for any ω ∈ V . Then extend linearly to V ⊗ V . For

instance,

ab� cd = (a� cd)b+ (ab� c)d

= (1� cd)ab+ (a� c)db+ (a� c)bd+ (ab� 1)cd

= cdab+ acdb+ cadb+ acbd+ cabd+ abcd.

Define the coproduct ∆ to be deconcatenation, that is, for any word ω = u1u2 . . . un define

∆(ω) =
n∑
i=0

u1 . . . ui ⊗ ui+1 . . . un.

The coassociativity is easy to check. Let u, ε be the trivial unit and the trivial counit

respectively. Notice V is connected and graded as these four maps are all graded maps. By

Corollary 1.25, in order to show (V,�, u,∆, ε) is a Hopf algebra we only need to show V

is a bialgebra. So we need check the four diagrams in (3) of Definition 1.12 commute. The

last three diagrams obviously commute and the first diagram can be proved to commute by

induction. Here we omit the proof.

Example 1.29. (Renormalization Hopf algebra of rooted trees) This Hopf algebra was

introduced by Connes and Kreimer in [6]. They used it to keep track of the combinatorial

information needed to renormalize integrals in quantum field theory.
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A rooted tree is a tree with a special node called the root. Here we draw the root at the

top. A forest of rooted trees is a multiset of rooted trees. Let HR be the vector space over

K spanned by all the forests. Let 1 be the empty tree. Then

HR =
⊕
n=0

Hn,

where Hn consists of forests with n vertices. Since H0 = K1, HR is a graded and connected

vector space. Define the product to be the disjoint union. For example:

•
•
· •
• • •

= •
•
•
• • •

= •
• • •

•
•

With the disjoint union product, we can also view HR as the polynomial algebra of rooted

trees. In other words,

HR = K[T1, T2, · · · ],

where {T1, T2, . . .} is the set of all rooted trees.

Given a rooted tree T , an admissible cut c of T is a set possibly empty, of vertices of T

such that no vertex in the set is a descendant of another. Define Pc(T ) to be the forest of

subtrees rooted at elements of c and Rc(T ) be T removing Pc(T ). The coproduct on T is

defined as

∆(T ) =
∑

c admissible cut

Pc(T )⊗Rc(T ),

and extended as an algebra homomorphism to forests.

As an example,

∆( •
• •
•

) = 1⊗ •
• •
•

+ • ⊗ •
• •

+ • ⊗ •
•
•

+ • • ⊗•
•

+ •
•
⊗ •
•

+ •
•
• ⊗ •+ •

• •
•

⊗ 1.

Let u and ε be the trivial unit and the trivial counit. Readers may check that ∆ is a

coproduct and the four diagrams in Definition 1.12 (3) commute. It is easy to see these

four maps are all graded maps. So HR is now a graded and connected bialgebra. Thus by

Corollary 1.25, it is a Hopf algebra.

Furthermore, for a forest F , let B+(F ) be a linear map that maps F to the new tree of

adding a root with children being the roots of every tree in F . As an example,

B+(•
•
•) = •

• •
•

.
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A linear map L is a Hochschild 1-cocycle map if it satisfies

∆ ◦ L = L⊗ 1+ (id⊗ L) ◦∆. (1.1)

In this case, B+ has been proved to be a Hochschild 1-cocycle map in [6, Theorem 2].

To finish this chapter, we recall the renormalization Hopf algebra in the scalar field

theory φ3. A family of divergent Feynman graphs in this theory will be taken as examples

through the construction in Chapter 3.

Example 1.30. (Feynman graphs in the scalar field theory φ3 with the dimension of space-

time D = 6). A Feynman graph is built from half edges and vertices. Each half edge is

adjacent to exactly one vertex and at most one other half edge. Those half edges which are

only adjacent to vertices are called external edges while the pairs of adjacent half edges are

called the internal edges. In φ3, the only vertex type is with weight 0 ,the only half

edge type is , and the only edge type is with weight 2. An example of a Feynman

graph is shown in Figure 1.4.

A Feynman graph γ has the 1PI property if γ is a two edge connected graph, in other

words, a graph that stays connected after removing any single internal edge. 1PI graphs are

important since Feynman integrals are easily reducible to the 1PI case. Notice the graph Γ

in Figure 1.4 is a 1PI graph.

Figure 1.4: A Feynman graph Γ in φ3

The loop number of a Feynman graph γ is the number of independent cycles and

denoted by l(γ). The loop number of the Feynman graph Γ in Figure 1.4 is 4. The loop

number of a disjoint union of graphs is the sum of the loop numbers of each graph.

Another feature of a Feynman graph γ is the superficial degree of divergence defined

as

s(γ) = Dl −
∑

e internal
edge of γ

w(e)−
∑

v vertex
of γ

w(v),
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where w is the weight function. So s(Γ) = 6 · 4 − 2 · 12 − 0 · 9 = 0 for Γ in Figure 1.4. A

Feynman graph γ is called divergent if s(γ) is nonnegative. In φ3, the divergent graphs

are the ones with at most 3 external edges. Furthermore, we can discard those with 0 or 1

external edges since they can’t appear as proper subgraphs of a 1PI graph. Physicists are

interested in divergent 1PI graphs.

Let 1 be the empty graph. Let HF be the vector space over K spanned by all the

disjoint unions of divergent 1PI Feynman graphs. We can see HF is a graded vector space

graded by the loop number. Thus HF =
∞⊕
n=0

(HF )n, where (HF )n consists of graphs with

loop number n. Let the product be the disjoint union and let u be the trivial unit. Then

HF is a polynomial algebra of 1PI divergent Feynman graphs.

Let ε be the trivial counit. The coproduct ∆ is defined on divergent 1PI Feynman graph

γ as

∆(γ) =
∑
γ
′⊆γ

product of divergent
1PI subgraphs

γ
′ ⊗ γ/γ′ ,

where γ/γ
′

is the result of taking γ and contracting γ
′

which is also in HF ([15, Proposition

2.21]). Extend ∆ to HF as an algebra homomorphism. Here we omit the proof of the

coassociativity. It is easy to check the four diagrams in Definition 1.12 and thus HF is

a bialgebra. Notice the four maps are graded maps and HF is obvious connected, so by

Corollary 1.25, HF is a Hopf algebra.

There are a lot of other combinatorial classes, such as permutations and set partitions,

which can be equipped with a Hopf algebra structure and some Hopf algebras can capture

relevant combinatorial information. For more combinatorial Hopf algebras, readers are

referred to the notes by Grinberg and Reiner [10].



Chapter 2

Hopf Algebras on Generating Trees

In this chapter, we construct two Hopf algebras on generating trees. As our initial goal is

not enumerative, we are less interested in label generating trees [16, 17, 18], but rather the

nodes are the objects themselves [23, 20]. This generating tree keeps the information of the

objects themselves and gives a sort of linear structure to all these elements coming from the

unique path Pr,u. Thus it is natural to look for structures analogous to those on words. In

particular, shuffle and concatenation are two natural operations on words that yield Hopf

algebras. However, arbitrary paths in generating trees are not immediately interpretable as

objects from the class. Only paths from the root correspond to objects. So to make word

operations make sense on objects generated by the generating trees, we need rules to map

segments around in the tree. We will construct two different Hopf algebras on the vector

space of a generating tree. In Section 2.2, we will give the properties of the maps ϕds, ψc

and construct a “concatenation-deshuffle” type Hopf algebra on the vector space W of the

generating tree T (Theorem 2.20). In Section 2.3, we will describe the properties of the maps

ϕdc, ψs and construct a “shuffle-deconcatenation” type Hopf algebra on W (Theorem 2.37).

We will use the combinatorial class of permutations as an example when we go through. Fi-

nally, in Section 2.4, we apply these two methods to the generating tree of set partitions; and

in Section 2.5, we apply these two methods to the generating tree of open partition diagrams.

24
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2.1 Normalizing Maps

We begin by fixing some notation for convenience. Let Ni,j = {i, i + 1, . . . , j} and Nk =

{1, 2, . . . , k} for i, j, k ∈ N≥0 and i ≤ j.

Definition 2.1. Let C be a combinatorial class with only one element of size zero denoted

by r, and let f be a map from Cn to the set of subsets of
⋃
m>n
Cm such that:

(0) for any v ∈ Cn and any m > n, f(v) ∩ Cm is a finite set;

(1) for any a 6= b in C, f(a) ∩ f(b) = ∅;

(2) for any v ∈ C, ∃ n ∈ N≥0 such that v ∈ fn(r).

A generating tree of C is a tree T = T (V,E) with the set of vertices V = C and edges

(u, v) ∈ E if and only if v ∈ f(u). Call r the root of T . Say v can be generated from u if

v ∈ fn(u) for some n ≥ 0, and call u an ancestor of v denoted u ≥ v.

The map f describes the generating rules.

Example 2.2. Let C be the combinatorial class of all permutations. It has only one size 0

element namely the empty permutation r = 1. Let f((i1, i2, . . . , in)) = {(i1, i2, . . . , in, n +

1), (i1, i2, . . . , n + 1, in), . . . , (n + 1, i1, i2, . . . , in)} for any permutation (i1, i2, . . . , in) ∈ C.
Then we have the generating tree T = T (V,E) shown in Figure 2.1.

r

1

12 21

123 132 312 213 231 321

Figure 2.1: A generating tree of permutations
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This definition allows us to keep track of how an element v can be generated from the

root r. Let Pr,v denote the unique path from r to v. Likewise, we let Pu,v be the unique

path from u to v if u is an ancestor of v. For convenience, sometimes we also regard Pu,v

as v0v1 · · · vk explicitly, where k = |v| − |u|, v0 = u, vk = v, and the other vi are the

intermediate steps.

Definition 2.3. Let T = T (V,E) be a generating tree of a combinatorial class C with the

root r. Let W be the linear space over a field K spanned by all the vertices v ∈ V . Then

W =
∞⊕
n=0

Wn where Wn is spanned by all the elements with size n.

Note W is also
∞⊕
n=0

Span Cn, but viewing it in the generating tree, we have the additional

information of Pr,v associated to each element v. Also notice W0 = Kr which is isomorphic

to K. Thus W is a graded and connected K-vector space.

We now introduce a family of maps ϕ̃V which will allow us to define ϕdc and ϕds later.

Each ϕ̃u acts by shifting a path up in the tree to begin at vertex u.

Definition 2.4. For any v0 ∈ V , let Av0 be the subset of V × V with (u, v) ∈ Av0 if

v0 ≥ u ≥ v. Let ϕ̃v0 : Av0 → V be a family of linear maps indexed by v0 ∈ V satisfying the

following properties.

(0) For any v0 ≥ u0 ≥ uk, ϕ̃v0(u0, uk) = vk implies vk ≤ v0, and k = |Pu0,uk | = |Pv0,vk |.
We say ui and vi correspond to each other for all 0 ≤ i ≤ k, and also say Put,us and

Pvt,vs correspond to each other for all 0 ≤ t < s ≤ k.

(1) For any u ≥ v, ϕ̃u(u, v) = v.

(2) For any u ≥ v ≥ x ≥ y, ϕ̃u(v, ϕ̃v(x, y)) = ϕ̃u(x, y).

(3) For any ui1 ≥ ui2 ≥ ui3 ≥ ui4 in Pu0,uk , the corresponding vi1 ≥ vi2 ≥ vi3 ≥ vi4 in

Pv0,vk and any vi0 ≥ vi1 in Pr,vk ,

ϕ̃vi0 (ui1 , ϕ̃ui2 (ui3 , ui4)) = ϕ̃vi0 (vi1 , ϕ̃vi2 (vi3 , vi4)).

Condition (1) means that attaching any path Pu,v to the initial vertex u will result in

the same terminal vertex v and hence ϕ̃u preserves the path Pu,v. Condition (2) means that

attaching the corresponding path Pv,ϕ̃v(x,y) of Px,y to any vertex u will lead to the same result

as directly attaching Px,y to u. Condition (3) shows that attaching corresponding sub-paths
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twice gives the same result. Here we give a possible family of maps ϕ̃V of permutations as

an example.

Example 2.5. With the same notation as in Example 2.2, for any permutations v0 ≥
u0 ≥ uk ∈ V , assume |v0| = n, |u0| = m and uk = (l1, l2, . . . , lm+k) where n ≤ m.

This is equivalent to saying there exist 1 ≤ t1 < t2 < · · · < tm ≤ m + k such that

(lt1 , lt2 , . . . , ltm) = u0. Let {s1, s2, . . . , sk} = Nm+k \ {t1, t2, . . . , tm} where s1 < s2 <

· · · < sk. Similarly, there exist tp1 < tp2 < · · · < tpn such that (ltp1 , ltp2 , . . . , ltpn ) =

v0. Since {tp1 , tp2 , . . . , tpn} ⊆ {t1, t2, . . . , tm}, {tp1 , tp2 , . . . , tpn} ∩ {s1, s2, . . . , sk} = ∅. Let

{q1, q2, . . . , qn+k} = {tp1 , . . . , tpn , s1, . . . , sk} where q1 < q2 < · · · < qn+k. Let

l
′
qi =

lqi −m+ n, if qi = sj for some j

lqi , otherwise.

Then we define

ϕ̃v0(u0, uk) = (l
′
q1 , l

′
q2 , . . . , l

′
qn+k

).

As an example shown in Figure 2.2, let v0 = 132, u0 = 51432 and u2 = 7514362. Then

tp1 = 3, tp2 = 5, tp3 = 7 and s1 = 1, s2 = 6. Thus q1 = 1, q2 = 3, q3 = 5, q4 = 6, q5 = 7

and ϕ̃132(51432, 7514362) = 51342.

r

1

12

v0 = 132

1432

u0 = 51432

514362

u2 = 7514362

r

1

12

v0 = 132

1432

u0 = 51432

514362

u2 = 7514362

1342

ϕ̃v0(u0, u2) = 51342

ϕ̃v0(u0, u2)

Figure 2.2: Mapping the path between the permutations (51432) and (7514362) to the
permutation (132)

This example shows the usual intuition for ϕ̃: paths are mapped up in the tree following

analogous steps from the original path but beginning at a different vertex. Now we check
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that the properties in Definition 2.4 are satisfied. Condition (0) is obvious. Condition (1) is

satisfied since if v0 = u0 then {tp1 , tp2 , . . . , tpn} = {t1, t2, . . . , tm}. Thus {q1, q2, . . . , qn+k} =

Nm+k which implies ϕ̃v0(u0, uk) = uk. Condition (2) is satisfied because Pv,ϕ̃v(x,y) and

Px,y have the same information of inserting the associated numbers. The same argument

works for condition (4) that after two steps the corresponding pieces still contain the same

information of inserting the associated numbers into the resulting permutation.

In the following, we will show some properties that ϕ̃V have.

Lemma 2.6. With the same notation as in Definition 2.4, assume ϕ̃v0(u0, uk) = vk. Then

for any vi0 ≥ vi3 ≥ vi4 in Pv0,vk we have ϕ̃vi0 (ui3 , ui4) = ϕ̃vi0 (vi3 , vi4). Furthermore, if we

take vi0 = vi3, then ϕ̃vi3 (ui3 , ui4) = vi4.

Proof. Take ui1 = ui2 = ui3 , then the corresponding vertices in Pv0,vk are vi1 = vi2 = vi3 .

Then for any vi0 ≥ vi1 = vi3 , applying condition (3) gives us

ϕ̃vi0 (ui3 , ϕ̃ui3 (ui3 , ui4)) = ϕ̃vi0 (vi3 , ϕ̃vi3 (vi3 , vi4)).

Applying Condition (2), we have

ϕ̃vi0 (ui3 , ui4) = ϕ̃vi0 (vi3 , vi4).

If vi0 = vi3 , use Condition (1) to get,

ϕ̃vi3 (ui3 , ui4) = vi4 .

This lemma shows that attaching one sub-path of Pu0,uk to vi0 will result in the same

terminal vertex as attaching the corresponding sub-path of Pv0,vk to vi0 . Furthermore, when

we attach the sub-path Pui3 ,ui4 of Pu0,uk to the corresponding initial vertex vi3 , it will result

in the same corresponding terminal vertex. This shows the consistency and explains why

we call them corresponding vertices.

Before proving the technical results we need, we first prove a similar but simpler result

to illustrate the techniques we will use. The following proposition shows that attaching

sub-paths of two disconnected paths together to a vertex will be the same as first attaching

these two paths together then mapping the corresponding sub-paths to the vertex.
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r

ui

uj

uk

ul

r

ui

uj

uk

ul

v0

w

r

ui

uj

uk

ul

v0

w

vm

vn

v0

ϕ̃uj (uk, ul) ϕ̃v0(ui, ϕ̃uj (uk, ul))

Figure 2.3: The process of attaching Pui,uj and Puk,ul to v0

Proposition 2.7. With the same notation as shown in Figure 2.3, assume w = ϕ̃uj (uk, ul)

and ϕ̃v0(ui, w) = vm. Suppose vn corresponds to uj. Take any vertices vs ≥ vt ≥ vn ≥
vp ≥ vq in Pv0,vm; we have the corresponding vertices us ≥ ut ≥ uj ≥ wp ≥ wq in Pui,w.

Furthermore, we can find up ≥ uq in Puk,ul corresponding to wp, wq. Then for any vi0 ≥ vs
we have ϕ̃vi0 (vs, ϕ̃vt(vp, vq)) = ϕ̃vi0 (us, ϕ̃ut(up, uq)).

Proof. Apply condition (3) to ϕ̃v0(ui, w) = vm, we have

ϕ̃vi0 (vs, ϕ̃vt(vp, vq)) = ϕ̃vi0 (us, ϕ̃ut(wp, wq)).

Then apply Lemma 2.6 to ϕ̃uj (uk, ul) = w, we get

ϕ̃ut(wp, wq) = ϕ̃ut(up, uq).

By substituting,

ϕ̃vi0 (vs, ϕ̃vt(vp, vq)) = ϕ̃vi0 (us, ϕ̃ut(up, uq)).

The following lemma shows the invariance of attaching several sub-paths of Pu0,uk to

a vertex and attaching the corresponding sub-paths of Pv0,vk to the same vertex if given

ϕ̃v0(u0, uk) = vk.

Lemma 2.8. With the same notation as in Definition 2.4, assume ϕ̃v0(u0, uk) = vk for

vertices v0 ≥ u0 ≥ uk, then for any l ∈ N≥2, any ui1 ≥ ui2 ≥ · · · ≥ ui2l−1
≥ ui2l in
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u0

ui1

ui2

ui2l−1

ui2l

uk

v0

u0

ui1

ui2

ui2l−1

ui2l

uk

vk

vi2l−1

vi2l

vi2

vi1

ϕ̃v0(u0, uk)

Figure 2.4: Sub-paths in Pu0,uk and the corresponding sub-paths in Pv0,vk

Pu0,uk together with the corresponding vi1 ≥ vi2 ≥ · · · ≥ vi2l−1
≥ vi2l in Pv0,vk (as shown in

Figure 2.4) and any vi0 ≥ vi1 in Pr,vk , we have

ϕ̃vi0 (ui1 , ϕ̃ui2 (. . . , ϕ̃ui2l−2
(ui2l−1

, ui2l))) = ϕ̃vi0 (vi1 , ϕ̃vi2 (. . . , ϕ̃vi2l−2
(vi2l−1

, vi2l))).

Proof. We prove this by induction on l. The base case when l = 2 is true by condition

(3). Suppose for l < n this holds true. Now consider l = n. Applying condition (3) for

u0 ≥ ui2l−2
≥ ui2l−1

≥ ui2l together with the corresponding vertices v0 ≥ vi2l−2
≥ vi2l−1

≥ vi2l
and v0 ≥ v0, we get

ϕ̃v0(u0, ϕui2l−2
(ui2l−1

, ui2l)) = ϕ̃v0(v0, ϕvi2l−2
(vi2l−1

, vi2l)).

Let u
′

= ϕui2l−2
(ui2l−1

, ui2l) and v
′

= ϕvi2l−2
(vi2l−1

, vi2l). Applying condition (2), we have

ϕ̃v0(u0, u
′
) = ϕ̃v0(v0, v

′
) = v

′
.

Consider ui1 ≥ ui2 ≥ · · · ≥ ui2l−3
≥ u

′
in Pu0,u′ and the corresponding vertices vi1 ≥ vi2 ≥

· · · ≥ vi2l−3
≥ v′ in Pv0,v′ . By induction, for any vi0 ≥ vi1 we have

ϕ̃vi0 (ui1 , ϕ̃ui2 (. . . , ϕ̃ui2l−4
(ui2l−3

, u
′
)) = ϕ̃vi0 (vi1 , ϕ̃vi2 (. . . , ϕ̃vi2l−4

(vi2l−3
, v
′
)).

Substitute u
′

and v
′

back we get the result

ϕ̃vi0 (ui1 , ϕ̃ui2 (. . . , ϕ̃ui2l−2
(ui2l−1

, ui2l))) = ϕ̃vi0 (vi1 , ϕ̃vi2 (. . . , ϕ̃vi2l−2
(vi2l−1

, vi2l))).
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Definition 2.9. Let A be a subset of edges of Pu0,uk . We can write

A = {Pui1 ,ui2 , Pui3 ,ui4 , . . . , Pui2l−1
,ui2l
},

with Pui2j−1
,ui2j

, j = 1, 2 . . . , l the connected components of A. Let κ(A) = l be the number

of A’s connected components. Define

ϕ(A) = ϕ̃r(ui1 , ϕ̃ui2 (ui3 , . . . ϕ̃ui2l−2
(ui2l−1

, ui2l))),

starting at the bottom.

Notice this ϕ map is well defined on the subset A even if it is not written in the form

of connected components. That is to say, for example, if A = {(u0, u1), (u1, u2)}, the only

connected component of A is Pu0,u2 . Then by condition (1),

ϕ(A) = ϕ̃r(u0, u2) = ϕ̃r(u0, ϕ̃u1(u1, u2)).

Note that for any v ∈ V , ϕ(Pr,v) = ϕ̃r(r, v) = v by condition (1).

Now, we use the ϕ̃V defined in Example 2.5 to get the ϕ on permutations.

Example 2.10. Take any permutation uk = (m1,m2, . . . ,mk) of size k and any A =

{Pui1 ,ui2 , Pui3 ,ui4 , . . . , Pui2l−1
,ui2l
} subset of edges of Pr,uk . Note that for any s ∈ Nl,

Pui2s−1
,ui2s

has the information of how i2s−1 + 1 up to i2s are inserted into the permutation

uk. By the definition of ϕ̃ in Example 2.5, we know ϕ(A) is the permutation which keeps the

order of i2s−1 + 1 up to i2s applied to the elements of Np with p =
l∑

s=1
(i2s − i2s−1). For in-

stance, let Pr,u7 = 7514362, then u1 = 1, u2 = 12, u3 = 132, u4 = 1432, u5 = 51432, u6 =

514362, u7 = 7514362. Take A = {Pu2,u4 , Pu5,u7} then ϕ(A) = ϕ̃r(u2, ϕ̃u4(u5, u7)) =

ϕ̃r(12, 614352) = 4213 as shown in Figure 2.5.

With the techniques in Proposition 2.7 and Lemma 2.8, we can prove an important

property of the grafting back-to-root map ϕ. This map will contribute to the deshuffle

coproduct in Section 2.2. Also this map will be used to bridge the shuffle product and the

deconcatenation coproduct in Section 2.3.

Proposition 2.11. Let A be a subset of edges of Pu0,uk as shown in Definition 2.9. Let

S0 = 0 and Sm =
m∑
n=1

(i2n − i2n−1) for m = 1, 2 . . . , l. Let vSl
= ϕ(A), as illustrated in

Figure 2.6. Let B
′

= {Pv
j
′
1
,v

j
′
2

, . . . , Pv
j
′
2p−1

,v
j
′
2p

} be a subset of edges of Pr,vSl
where for each
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r

u1 = 1

u2 = 12

u3 = 132

u4 = 1432

u5 = 51432

u6 = 514362

u7 = 7514362

r

u1 = 1

u2 = 12

u3 = 132

u4 = 1432

u5 = 51432

u6 = 514362

u7 = 7514362

14352

614352

r

u1 = 1

u2 = 12

u3 = 132

u4 = 1432

u5 = 51432

u6 = 514362

u7 = 7514362

14352

614352

21

213

4213

ϕ̃u4
(u5, u7) ϕ̃r(u2, ϕ̃u4

(u5, u7))

Figure 2.5: Example of ϕ mapping two paths Pu2,u4 and Pu5,u7 to the root r

u0

uk

ui1

ui2

ui3

ui2l−1

ui2l

ui2l−2

r

vSl

vS1

vSl−1

Figure 2.6: ϕ(A) = vSl
in Proposition 2.11

m ∈ Np, there exists an n ∈ Nl such that Sn−1 ≤ j
′
2m−1 < j

′
2m ≤ Sn. For m ∈ Np,

let Puj2m−1
,uj2m

⊆ A correspond to Pv
j
′
2m−1

,v
j
′
2m

. Let B = {Puj1 ,uj2 , . . . , Puj2p−1
,uj2p
} then

ϕ(B) = ϕ(B
′
).

Proof. We prove this by induction on κ(A). The base case κ(A) = 1 is done by Lem-

ma 2.8. Suppose for κ(A) < l the statement is true. Now consider κ(A) = l, suppose

the subset {Puj2t−1
,uj2t

, . . . , Puj2p−1
,uj2p
} ⊆ B consists of those sub-paths in Pui2l−1

,ui2l
. Let

u
′

= ϕ̃ui2l−2
(ui2l−1

, ui2l). For s = t, t + 1, . . . , p, let P
u
′
j2s−1

,u
′
j2s

in Pui2l−2
,u′ be the corre-

sponding sub-path to Puj2s−1
,uj2s

as shown in Figure 2.7.
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ui2l−3

ui2l−2

ui2l−1

ui2l

ui2l−3

ui2l−2

ui2l−1

ui2l

u
′

uj2t−1

uj2t

uj2p−1

uj2p

u
′
j2t−1

u
′
j2t

u
′
j2p−1

u
′
j2p

ϕ̃ui2l−2
(ui2l−1

, ui2l)

Figure 2.7: ϕ̃ui2l−2
(ui2l−1

, ui2l) = u
′

and its corresponding sub-paths

Then apply Lemma 2.8; for any vertex w ≥ u′j2t−1
, we have

ϕ̃w(uj2t−1 , ϕ̃uj2t (. . . , ϕ̃uj2p−2
(uj2p−1 , uj2p))) = ϕ̃w(u

′
j2t−1

, ϕ̃
u
′
j2t

(. . . , ϕ̃
u
′
j2p−2

(u
′
j2p−1

, u
′
j2p))).

Now we have

vSl
= ϕ({Pui1 ,ui2 , Pui3 ,ui4 , . . . , Pui2l−3

,u′}),

where κ({Pui1 ,ui2 , Pui3 ,ui4 , . . . , Pui2l−3
,u′}) = l − 1. Notice Pv

j
′
2s−1

,v
j
′
2s

and P
u
′
j2s−1

,u
′
j2s

are

corresponding sub-paths, for s = t, . . . , p. By the induction hypothesis and with w = uj2t−2 ,

we have

ϕ̃r(vj′1
, ϕ̃v

j
′
2

(. . . , ϕ̃v
j
′
2p−2

(v
j
′
2p−1

, v
j
′
2p

)))

= ϕ̃r(uj1 , ϕ̃uj2 (. . . , ϕ̃uj2t−2
(u
′
j2t−1

, ϕ̃
u
′
j2t

(. . . , ϕ̃
u
′
j2p−2

(u
′
j2p−1

, u
′
j2p)))))

= ϕ̃r(uj1 , ϕ̃uj2 (. . . , ϕ̃uj2p−2
(uj2p−1 , uj2p))),

which gives us ϕ(B) = ϕ(B
′
).

2.2 Concatenation-Deshuffle Type

In this section, we first define the deshuffle coproduct ϕds and introduce the concatena-

tion type product ψc which satisfies the properties in Definition 2.16. Then we prove

(W,ψc, uc, ϕds, ε) is a Hopf algebra.



CHAPTER 2. HOPF ALGEBRAS ON GENERATING TREES 34

2.2.1 Deshuffle Coproducts

Definition 2.12. For any v ∈ V define:

ϕds(v) =
∑

A subset
of edges
of Pr,v

ϕ(A)⊗ ϕ(Pr,v \A),

where Pr,v \A is the subset of edges resulting from the edge set of Pr,v with the edges of A

removed. Linearly extend ϕds to W .

Notice ϕds is a graded map on W since ϕ preserves the size.

Example 2.13. Suppose Pr,v = rv1v2 · · · vk and A = {Pr,v1 , Pvk−1,vk}, then Pr,v \ A =

{Pv1,vk−1
}. Take k = 2. Then the possible subsets of edges of Pr,v are ∅, {Pr,v1}, {Pv1,v},

{Pr,v}. Then ϕds(v) = r ⊗ v + v1 ⊗ ϕ(Pv1,v) + ϕ(Pv1,v)⊗ v1 + v ⊗ r.

The following proposition shows that ϕds is a coproduct.

Proposition 2.14. The map ϕds defined above is coassociative.

Proof. For any v ∈ V ,

(ϕds ⊗ id)ϕds(v) =
∑

A subset
of edges
of Pr,v

ϕds(ϕ(A))⊗ ϕ(Pr,v \A)

=
∑

A subset
of edges
of Pr,v

∑
B
′
subset

of edges
of Pr,ϕ(A)

ϕ(B
′
)⊗ ϕ(Pr,ϕ(A) \B

′
)⊗ ϕ(Pr,v \A)

=
∑

A subset
of edges
of Pr,v

∑
B⊆A

(corresponding

to B
′
)

ϕ(B)⊗ ϕ(A \B)⊗ ϕ(Pr,v \A).
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The last equality is by Proposition 2.11. On the other hand,

(id⊗ ϕds)ϕds(v) =
∑

B subset
of edges
of Pr,v

ϕ(B)⊗ ϕds(ϕ(Pr,v \B))

=
∑

B subset
of edges
of Pr,v

ϕ(B)⊗ (
∑

C⊆Pr,v\B

ϕ(C)⊗ ϕ((Pr,v \B) \ C))

LetA=B∪C
=

∑
B subset
of edges
of Pr,v

ϕ(B)⊗ (
∑

C⊆Pr,v\B

ϕ(A \B)⊗ ϕ(Pr,v \A))

=
∑

A subset
of edges
of Pr,v

∑
B⊆A

ϕ(B)⊗ ϕ(A \B)⊗ ϕ(Pr,v \A).

Thus, we get (ϕds ⊗ id)ϕds = (id⊗ ϕds)ϕds.

With the ϕ in Example 2.10 we can get the deshuffle coproduct ϕds for permutations.

Example 2.15. Take u3 = 231 with u1 = 1, u2 = 21. There are 8 possible subsets of edges

∅ = {Pr,r}, {Pr,u1}, {Pu1,u2}, {Pu2,u3}, {Pr,u2}, {Pu1,u3}, {Pr,u1 , Pu2,u3}, {Pr,u3}. Then

ϕds(231) = r⊗ (231) + (1)⊗ (12) + (1)⊗ (21) + (1)⊗ (21) + (21)⊗ (1) + (12)⊗ (1) + (21)⊗
(1) + (231)⊗ r.

2.2.2 Concatenation Products

The usual concatenation of words ω1 and ω2 is ω1ω2 as shown in Example 1.5. Following

this concept, we give the definition of the concatenation type product ψc.

Definition 2.16. Let ψc : W ×W → W be a graded bilinear map satisfying the following

properties.

(0) (Size preserving): for any u, v ∈ V , ψc(u, v) is a vertex in V with size |u|+ |v| and for

each edge e of u or v, we have a unique corresponding edge e
′

in ψc(u, v).

(1) (Identity): for any u ∈ V , ψc(u, r) = u.

(2) (Associativity): for any u, v, w ∈ V , ψc(ψc(u, v), w) = ψc(u, ψc(v, w)).
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(3) Take u, v ∈ V and let x = ψc(u, v). Let E2 be the corresponding edges of Pr,u in Pr,x

and E1 the corresponding edges of Pr,v in Pr,x. Then ϕ(E2) = u and ϕ(E1) = v.

(4) Take u, v ∈ V and let x = ψc(u, v). For any A subset of edges of Pr,v, B subset of

edges of Pr,u and A
′
, B

′
the corresponding edges in Pr,x, we have ψc(ϕ(B

′
), ϕ(A

′
)) =

ϕ(A
′ ∪B′).

Condition (3) shows that how the paths Pr,u and Pr,v concatenate and condition (4) is

a technical condition to ensure the compatibility of the map φ and the map ψc. We call

this concatenation; but actually we don’t require x ≤ u, since we only need the information

about which edges of x are coming from u, and for all u, v this so-called concatenation

process is compatible. Here we give one possible ψc for permutations.

Example 2.17. With the same notations shown in Example 2.5, take any u = (i1, i2, . . . , im)

and v = (j1, j2, . . . , jn) two permutations of size m,n respectively. Define ψc(u, v) =

(i1, i2, . . . , im, j1 + m, j2 + m, . . . , jn + m). This map is a concatenation of u and v. And

notice the first m edges of the vertex ψc(u, v) correspond to the edges of u and the last n

edges correspond to the edges of v. For instance, ψc(21, 132) = (21354). It is easy to check

ψc satisfies the above four conditions.

Proposition 2.18. Define u · v = ψc(u, v). Then (W,ψc, uc) is an algebra with the identity

r, where uc is the trivial product from K to W with uc(k) = kr.

Proof. Suppose w = ψc(r, v). For edges of Pr,v, the corresponding edges are Pr,w. So by

condition (3), ϕ(Pr,w) = v and since ϕ(Pr,w) = w, we know w = v. Combine this with

condition (1) to get that r is the identity. From condition (2), we know ψc is associative.

Since ψc is bilinear, we know ϕc and uc are compatible. Thus, (W,ϕc, uc) is an algebra.

It is easy to see that ψc and uc are both graded maps on W . Let ε : W → K be the trivial

counit, that is, ε(kr) = k for k ∈ K, and ε is 0 on
⊕∞

n=1Wn. To prove (W,ψc, uc, ϕds, ε) is a

bialgebra, we only need to check ϕds is an algebra homomorphism, since the commutativity

of the other three diagrams in Definition 1.12.(3) is easy to check.

Proposition 2.19. The coproduct ϕds is an algebra homomorphism.

Proof. Notice we only have to prove this on V × V since ϕds is linear and ψc is bilinear.
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Take u, v ∈ V , let w = ψc(u, v) then we have

ϕds(u) =
∑

B subset
of edges
of Pr,u

ϕ(B)⊗ ϕ(Pr,u \B);

ϕds(v) =
∑

A subset
of edges
of Pr,v

ϕ(A)⊗ ϕ(Pr,v \A);

ϕds(u) · ϕds(v) =
∑

B subset
of edges
of Pr,u

∑
A subset
of edges
of Pr,v

(ϕ(B) · ϕ(A))⊗ (ϕ(Pr,u \B) · ϕ(Pr,v \A)).

Let E1 and E2 be the subsets of Pr,u·v corresponding to Pr,v and Pr,u respectively. Then

ϕds(u · v) =
∑

A
′∪B′ subset
of edges
of Pr,w

with A
′⊆E1

B
′⊆E2

ϕ(A
′ ∪B′)⊗ ϕ(Pr,w \ (A

′ ∪B′)),

where A
′

is the subset of edges corresponding to A in Pr,v and B
′

is the subset of edges

of corresponding to B in Pr,u. By Definition 2.16.(3), we know ϕ(E2) = u and ϕ(E1) =

v. By Property 2.11 we get ϕ(B) = ϕ(B
′
) and ϕ(A) = ϕ(A

′
). Using condition (4) in

Definition 2.16, we have

ϕ(B) · ϕ(A) = ϕ(B
′
) · ϕ(A

′
) = ϕ(A

′ ∪B′).

The same argument works for the right hand side of the tensor since Pr,u \ B and Pr,v \ A
are the complement edges subsets of A in Pr,v and B in Pr,u. So

ϕ(Pr,u \B) · ϕ(Pr,v \A) = ϕ((Pr,u \B)
′
) · ϕ((Pr,v \A)

′
) = ϕ(Pr,w \ (A

′ ∪B′)).

In both cases the sum runs over all possible subset of edges of Pr,u and all possible subset

of edges of Pr,v. Thus we have

ϕds(u · v) = ϕds(u) · ϕds(v).

Theorem 2.20. (W,ψc, uc, ϕds, ε) is a Hopf algebra.
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Proof. Combine Propositions 2.14, 2.18 and 2.19 we get that (W,ψc, uc, ϕds, ε) is a bialgebra.

Notice the four maps are all graded maps andW is a connected and graded vector space; thus

W is a connected and graded bialgebra. Apply Corollary 1.25. Then the result follows.

Example 2.21. Applying Theorem 2.20 to Examples 2.2, 2.5, 2.17, 2.10 and 2.15, we get

a concatenation deshuffle type Hopf algebra on permutations.

2.3 Shuffle-Deconcatenation Type

In this section, we first give two operations on sets of natural numbers. Then we use these

two operations along with ϕ to construct the shuffle type product ψs and the deconcatenation

type coproduct ϕdc. Then we prove (W,ψs, us, ϕdc, ε) is a Hopf algebra.

2.3.1 Reindexing Maps

Definition 2.22. Let m ∈ N>0, A ⊆ Nm and B ⊆ N>0 with |B| ≥ m. Define A 〈B〉 to

be the subset of B that contains the athi smallest element in B for each ai ∈ A. Likewise,

if A ⊆ B define A_B to be the set of indices of the elements in A relative to B, with B

ordered from smallest to largest.

For convenience, for A ⊆ N and k ∈ N, we say A ≤ k if ∀a ∈ A, a ≤ k.

Example 2.23. Let A = {1, 4, 7} ⊆ N7 and B = {2, 4, 5, 6, 9, 10, 16, 29, 32, 40}. Then

A 〈B〉 = {2, 6, 16}. Let C = A 〈B〉, then C_B = {1, 4, 7}.

By chasing elements, we have the following obvious properties of the operations 〈·〉 and

·_·.

Proposition 2.24. For any m ∈ N>0, A ⊆ Nm and B ⊆ N>0 with |B| ≥ m,

(A 〈B〉)_B = A.

For any C ⊆ D ⊆ N>0,

(C_D) 〈D〉 = C.

Returning to the generating tree T , for vertices u, v ∈ V with sizes s, t respectively

there are s + t edges in total in Pr,u and Pr,v. Given a set of s + t edges, there are
(
s+t
s

)
ways to choose which s edges are coming from Pr,u. Take A

(1)
s,t ⊂ Ns+t as one choice, denote

A
(2)
s,t = Ns+t\A(1)

s,t . For convenience, we omit the subscripts when it is clear from the context.
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Definition 2.25. For any u ∈ V of size s, and any B = {i1, i2, . . . , ik} ⊆ Ns, define

B(u) = {Pui1−1,ui1
, Pui2−1,ui2

, . . . , Puik−1,uik
} to be the subset of edges of Pr,u indexed by ij

with ij ∈ B.

Example 2.26. Let u = ru1u2u3u4u5u6 ∈ V , and take B = {2, 3, 6}, then

B(u) = {Pu1,u2 , Pu2,u3 , Pu5,u6} = {Pu1,u3 , Pu5,u6}

shown as the shaded area in Figure 2.8.

r

u1

u2

u3

u4

u5

u6 = u

Figure 2.8: Example of {2, 3, 6}(u) to illustrate the bar notation

Now we’re going to describe a family of maps which lead to the shuffle type product ψs.

Definition 2.27. For u, v two vertices of sizes s, t, and A
(1)
s,t ⊆ Ns+t, define ψ

A
(1)
s,t

(u, v) to

be a vertex in V of size s+ t such that the following conditions hold.

Let w = ψ
A

(1)
s,t

(u, v), then:

(1) ϕ(A
(1)
s,t (w)) = u and ϕ(A

(2)
s,t (w)) = v;

(2) For the third vertex y of size l and B
(1)
s+t,l ⊆ Ns+t+l,

ψ
B

(1)
s+t,l

(
ψ
A

(1)
s,t

(u, v), y
)

= ψA(1)〈B(1)〉
(
u, ψ

(A(2)〈B(1)〉)_
(
N\(A(1)〈B(1)〉)

)(v, y)
)
,

where N = Ns+t+l;

(3) For any i ≤ j ∈ Ns and p ≤ q ∈ Nt,

ψNi,j〈A(1)〉_(Ni,j〈A(1)〉∪Np,q〈A(2)〉)
(
ϕ(Pui,uj ), ϕ(Pvp,vq)

)
= ϕ

(
Ni,j

〈
A(1)

〉
∪Np,q

〈
A(2)

〉
(w)
)
.
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Notice in the RHS of the equation in condition (2), A(2)
〈
B(1)

〉
and N \ (A(1)

〈
B(1)

〉
)

denote the indices of edges of v and the indices of edges of v, y in combining u, v, y respec-

tively.

Example 2.28. Let u, v, y be three vertices with sizes 2, 3, 4 respectively. Take A(1) = {2, 4}
and B(1) = {1, 4, 6, 7, 8}. Then A(1)

〈
B(1)

〉
= {4, 7} and A(2)

〈
B(1)

〉
= {1, 6, 8}. So condition

(2) means

ψ{1,4,6,7,8}(ψ{2,4}(u, v), y) = ψ{4,7}(u, ψ{1,5,6}(v, y)),

which is saying after combining u, v, y, the edges indexed by {4, 7} correspond to the edges

of u, the edges indexed by {1, 6, 8} correspond to the edges of v and the edges indexed by

{2, 3, 5, 9} correspond to the edges of y. Notice {1, 6, 8}_{1, 2, 3, 5, 6, 8, 9} = {1, 5, 6}.

Conditions (1) and (2) in Definition 2.27 will be used to give an associative product.

Condition (3) will be used to ensure the compatibility with the coproduct ϕdc defined later.

Here we give an example of a possible family of maps on the permutations.

Example 2.29. For permutations u = (i1, i2, . . . , is), v = (j1, j2, . . . , jt) and A
(1)
s,t =

{a1, a2, . . . , as} ⊆ Ns+t with a1 < a2 < · · · < as. We have A
(2)
s,t = {b1, b2, . . . , bt} with

b1 < b2 < · · · < bt. Define

ψA(1)(u, v) = (ai1 , . . . , ais , bj1 , . . . , bjt).

For instance, u = (21), v = (132) and A
(1)
2,3 = {2, 5} then ψ{2,5}(21, 132) = 52143.

Condition (1) is satisfied since reducing (ai1 , . . . , ais) gives (i1, . . . , is) and reducing (bj1 , . . . , bjt)

gives (j1, . . . , jt). Condition (3) is satisfied because first truncating a sub-path of u and a

sub-path of v then putting them together in the same order will give the same result as

first putting them together then reducing the corresponding sub-paths. For instance, let

u = (21), v = (132) and A
(1)
2,3 = {2, 5} be as above; take i = j = 1 and p = 2, q = 3.

Then Ni,j

〈
A(1)

〉
= {2} and Np,q

〈
A(2)

〉
= {3, 4} which imply Ni,j

〈
A(1)

〉
_(Ni,j

〈
A(1)

〉
∪

Np,q

〈
A(2)

〉
) = {1}. Thus ψ{1}(1, 21) = 132. On the other side, ϕ({2, 3, 4}(52143)) = 132.

Now check that condition (2) is also satisfied. Take y = (k1, k2, . . . , kl) and B
(1)
s+t,l =

{c1, c2, . . . , cs+t} with c1 < c2 < · · · < cs+t. We have B(2) = {d1, d2, . . . , dl} with d1 <

d2 < · · · < dl. Let N = Ns+t+l, then

ψB(1)(ψA(1)(u, v), y) = ψB(1)(ai1 , . . . , ais , bj1 , . . . , bjt , y)

= (cai1 , . . . , cais , cbj1 , . . . , cbjt , dk1 , . . . , dkl).
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Notice A(1)
〈
B(1)

〉
= {ca1 , ca2 , . . . , cas} and A(2)

〈
B(1)

〉
= {cb1 , cb2 , . . . , cbt}. Then

(A(2)
〈
B(1)

〉
)_
(
N \ (A(1)

〈
B(1)

〉
)
)

= {cb1 , cb2 , . . . , cbt}_{cb1 , cb2 , . . . , cbt , d1, d2, . . . , dl}
Denoted by

= {e1, e2, . . . , et}.

Similarly, let {f1, f2, . . . , fl} = {d1, d2, . . . , dl}_{cb1 , cb2 , . . . , cbt , d1, d2, . . . , dl}. This says

that the ethp smallest element in {cb1 , cb2 , . . . , cbt , d1, d2, . . . , dl} is cbp and similarly, f thq s-

mallest element in {cb1 , cb2 , . . . , cbt , d1, d2, . . . , dl} is dq Thus we have,

ψ
(A(2)〈B(1)〉)_

(
N\(A(1)〈B(1)〉)

)(v, y) = (ej1 , . . . , ejt , fk1 , . . . , fkl),

and the RHS of condition (2) is

RHS = (cai1 , . . . , cais , ∗ej1 , . . . , ∗ejt , ∗fk1 , . . . , ∗fkl )
= (cai1 , . . . , cais , cbj1 , . . . , cbjt , dk1 , . . . , dkl),

where ∗ is the set {cb1 , cb2 , . . . , cbt , d1, d2, . . . , dl}.

2.3.2 Shuffle Products

Now we can define a shuffle type product ψs on W .

Definition 2.30. For any u, v ∈ V of sizes s, t respectively, define the product ψs to be

u · v = ψs(u, v) =
∑

A
(1)
s,t subset

of Ns+t

ψ
A

(1)
s,t

(u, v),

and extend bilinearly to W ×W .

Example 2.31. Let u = 12, v = 21, then with the maps in Example 2.29, we have

ψs(12, 21) = 1243 + 1342 + 1432 + 2341 + 2431 + 3421 as shown in Figure 2.9 where the

shaded edges correspond to the edges of (12).

From this example, we can see that ψs is a shuffle-like operation which shuffles the edges

of u, v.

Proposition 2.32. (W,ψs, uc) is a graded algebra, where uc is defined in Proposition 2.18.
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+ + + + +

Figure 2.9: Path representation of shuffling permutations (12) and (21)

Proof. First we check that the product ψs is associative. Let u, v, w be three vertices of

sizes s, t, l respectively.

(u · v) · w =
( ∑
A

(1)
s,t subset

of Ns+t

ψ
A

(1)
s,t

(u, v)
)
· w

=
∑

B
(1)
s+t,l subset

of Ns+t+l

∑
A

(1)
s,t subset

of Ns+t

ψB(1)

(
ψA(1)(u, v), w

)
,

and

u · (v · w) = u ·
( ∑
C

(1)
t,l subset

of Nt+l

ψC(1)(v, w)
)

=
∑

D
(1)
s,t+l subset

of Ns+t+l

∑
C

(1)
t,l subset

of Nt+l

ψD(1)

(
u, ψC(1)(v, w)

)
.

Let AB = {(A(1), B(1)) ∈ Ns+t×Ns+t+l : |A(1)| = s, |B(1)| = s+t} and CD = {(C(1), D(1)) ∈
Nt+l ×Ns+t+l : |C(1)| = t, |D(1)| = s}. Then there is a bijection between AB and CD given

by

f : (A(1), B(1)) 7→
(

(A(2)
〈
B(1)

〉
)_
(
N \ (A(1)

〈
B(1)

〉
)
)
, A(1)

〈
B(1)

〉)
,

g : (C(1), D(1)) 7→
(
D(1)_(D(1) ∪ C(1)

〈
D(2)

〉
), D(1) ∪ C(1)

〈
D(2)

〉)
,

where N = Ns+t+l. Check

gf(A(1), B(1)) = g
(

(A(2)
〈
B(1)

〉
)_
(
N \ (A(1)

〈
B(1)

〉
)
)
, A(1)

〈
B(1)

〉)
.
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Notice here A(1)
〈
B(1)

〉
= D(1) and (A(2)

〈
B(1)

〉
)_
(
N \ (A(1)

〈
B(1)

〉
)
)

= C(1) which implies

D(2) = N \ (A(1)
〈
B(1)

〉
) and C(1) = (A(2)

〈
B(1)

〉
)_D(2). Then

gf(A(1), B(1)) =
(
D(1)_(D(1) ∪ C(1)

〈
D(2)

〉
), D(1) ∪ C(1)

〈
D(2)

〉)
=

(
D(1)_

(
D(1) ∪ (A(2)

〈
B(1)

〉
)
)
, D(1) ∪ (A(2)

〈
B(1)

〉
)
)

= (D(1)_B(1), B(1))

= (A(1), B(1)),

and similarly,

fg(C(1), D(1)) = f
(
D(1)_(D(1) ∪ C(1)

〈
D(2)

〉
), D(1) ∪ C(1)

〈
D(2)

〉)
.

Notice here D(1)_(D(1) ∪ C(1)
〈
D(2)

〉
) = A(1) and D(1) ∪ C(1)

〈
D(2)

〉
= B(1) which implies

A(1)
〈
B(1)

〉
= D(1) and A(2)

〈
B(1)

〉
= C(1)

〈
D(2)

〉
. Then

fg(C(1), D(1)) =
(

(A(2)
〈
B(1)

〉
)_
(
N \ (A(1)

〈
B(1)

〉
)
)
, A(1)

〈
B(1)

〉)
=

(
(A(2)

〈
B(1)

〉
)_D(2), D(1)

)
=

(
(C(1)

〈
D(2)

〉
)_D(2), D(1)

)
= (C(1), D(1)).

Thus, by condition (2) we have the associativity. Now check that r is the identity. ψs(r, u) =

ψ∅(r, u) and by condition (1), ψ∅(r, u) = ϕ(Pr,ψ∅(r,u)) = u. Similarly, ψs(u, r) = ψNs(u, r) =

u. Since ψs is bilinear, ψs and uc are compatible. Furthermore, they are both graded maps,

so (W,ψs, uc) is a graded algebra.

2.3.3 Deconcatenation Coproducts

Next we use the ϕ map defined in Definition 2.9 to define the coproduct ϕdc as follows.

Definition 2.33. For any vertex u ∈ V of size s, define

ϕdc(u) =

s∑
j=0

ϕ(Puj ,u)⊗ uj ,

and extend linearly to W .

Proposition 2.34. The ϕdc defined above is coassociative.
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Proof.

(ϕdc ⊗ id)ϕdc(u) =
s∑
j=0

ϕdc(ϕ(Puj ,u))⊗ uj

Let wj = ϕ(Puj ,u)
=

s∑
j=0

s−j∑
k=0

ϕ(P
wj

k,w
j )⊗ wjk ⊗ uj

=
s∑
j=0

s−j∑
k=0

ϕ(Puk+j ,u)⊗ ϕ(Puj ,uk+j
)⊗ uj .

The last equality holds by Proposition 2.11 since P
wj

k,w
j corresponds to Puj ,uk+j

.

(id⊗ ϕdc)ϕdc(u) =

s∑
k=0

ϕ(Puk,u)⊗ ϕdc(uk)

=
s∑

k=0

k∑
j=0

ϕ(Puk,u)⊗ ϕ(Puj ,uk)⊗ uj

=

s∑
j=0

s∑
k=j

ϕ(Puk,u)⊗ ϕ(Puj ,uk)⊗ uj .

Thus ϕdc is coassociative.

Now we give the ϕdc on the permutations.

Example 2.35. Take a permutation u = (a1, a2, . . . , as) of size s. The ϕdc(u) is the sum

over j ∈ N0,s of the result of reducing the last (s− j) largest numbers of u to Ns−j tensor

the j smallest numbers of u. For instance, take u = (52413),

ϕdc(u) =
5∑
j=0

ϕ(Puj ,u)⊗ uj

= ϕ(r, u)⊗ r + ϕ(1, u)⊗ (1) + ϕ(21, u)⊗ (21)

+ϕ(213, u)⊗ (213) + ϕ(2413, u)⊗ (2413) + r ⊗ u
= u⊗ r + (4132)⊗ (1) + (321)⊗ (21) + (21)⊗ (213) + (1)⊗ (2413) + r ⊗ u.

In order to prove that (W,ψs, uc, ϕdc, ε) is a bialgebra, we only have to prove that

ϕdc is an algebra homomorphism since the commutativity of the other three diagrams in

Definition 1.12 is easy to check.

Proposition 2.36. The coproduct ϕdc is an algebra homomorphism.
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Proof. Let u, v be two vertices of sizes s, t respectively. Then

u · v =
∑

A(1)⊆Ns+t

ψA(1)(u, v),

ϕdc(u · v) =
∑

A(1)⊆Ns+t

s+t∑
k=0

ϕ(P
wA(1)

k ,wA(1) )⊗ wA
(1)

k ,

where wA
(1)

denotes ψA(1)(u, v). On the other hand,

ϕdc(u) =

s∑
j=0

ϕ(Puj ,u)⊗ uj ,

ϕdc(v) =
t∑
i=0

ϕ(Pvi,v)⊗ vi,

and

ϕdc(u) · ϕdc(v) =

s∑
j=0

t∑
i=0

∑
C

(1)
s−j,t−i,D

(1)
j,i

ψC(1)(ϕ(Puj ,u), ϕ(Pvi,v))⊗ ψD(1)(uj , vi).

For any A
(1)
s,t ⊆ Ns+t and any k ∈ N0,s+t, we know that there exists a j such that

N1,j

〈
A(1)

〉
≤ k and Nj+1,s

〈
A(1)

〉
> k. Similarly, for A(2) and i = k− j, N1,i

〈
A(2)

〉
≤ k and

Ni+1,t

〈
A(2)

〉
> k. Let C(1) = Nj+1,s

〈
A(1)

〉
_Nk+1,s+t and D(1) = N1,j

〈
A(1)

〉
. Notice that

ϕ(A(1)(wA
(1)

)) = u,

ϕ(A(2)(wA
(1)

)) = v.

Thus by Proposition 2.11,

ϕ(Pr,uj ) = ϕ
(
N1,j

〈
A(1)

〉
(wA

(1)
)
)
,

ϕ(Pr,vi) = ϕ
(
N1,i

〈
A(2)

〉
(wA

(1)
)
)
,

ϕ(Puj ,u) = ϕ
(

(Ni+1,s

〈
A(1)

〉
Nk+1,s+t)(w

A(1)
)
)
,

ϕ(Pvi,v) = ϕ
(

(Nj+1,t

〈
A(2)

〉
Nk+1,s+t)(w

A(1)
)
)
.

Then apply condition (3) in Definition 2.27 by noticing

Nj+1,s

〈
A(1)

〉
_(Nj+1,s

〈
A(1)

〉
∪Ni+1,t

〈
A(2)

〉
) = C(1),
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and

N1,j

〈
A(1)

〉
_(N1,j

〈
A(1)

〉
∪N1,i

〈
A(2)

〉
) = D(1)

to get

ψC(1)

(
ϕ(Puj ,u), ϕ(Pvi,t)

)
= ψC(1)

(
ϕ
(
(Ni+1,s

〈
A(1)

〉
Nk+1,s+t)(w

A(1)
)
)
,

ϕ
(
(Nj+1,t

〈
A(2)

〉
Nk+1,s+t)(w

A(1)
)
))

= ϕ
(

(Ni+1,s

〈
A(1)

〉
Nk+1,s+t) ∪ (Nj+1,t

〈
A(2)

〉
Nk+1,s+t)(w

A(1)
)
)

= ϕ
(
Nk+1,s+t(w

A(1)
)
)
,

and

ψD(1)(Pr,uj , Pr,vi) = ψD(1)

(
ϕ
(
N1,j

〈
A(1)

〉
(wA

(1)
)
)
, ϕ
(
N1,i

〈
A(2)

〉
(wA

(1)
)
))

= ϕ
(

(N1,j

〈
A(1)

〉
∪N1,i

〈
A(2)

〉
)(wA

(1)
)
)

= ϕ
(
N1,k(w

A(1)
)
)
.

Conversely, for any i, j and C
(1)
i,j , D

(1)
s−j,t−i we can have k = i+j and A

(1)
s,t = D(1)∪ (C(1) +k).

It is easy to check that these two maps are inverses of each other. Thus we have

ϕdc(u · v) = ϕdc(u) · ϕdc(v).

Theorem 2.37. (W,ψs, uc, ϕdc, ε) is a Hopf algebra.

Proof. Note ϕdc and ε are graded maps. Combining Propositions 2.18, 2.34 and 2.36, we

get that (W,ψs, uc, ϕdc, ε) is a connected and graded bialgebra. Then apply Corollary 1.25.

The result follows.

Example 2.38. Apply Theorem 2.37 to Examples 2.29, 2.31 and 2.35, we get a shuffle

deconcatenation type Hopf algebra on permutations.

Notice that (W,ψc, uc, ϕds, ε) and (W,ψs, uc, ϕdc, ε) may not be dual to each other in

general. As an example, ψc(12, 21) = (1243) but (12)⊗ (21) doesn’t show up in ϕdc(1243) =

(1243)⊗ r + (132)⊗ (1) + (21)⊗ (12) + (1)⊗ (123) + r ⊗ (1243).
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A reason that the other two combinations (ψs, ϕds) and (ψc, ϕdc) don’t work is that

ϕds is not a ψs-algebra homomorphism, nor is ϕdc a ψc-algebra homomorphism. In fact

the number of terms on each side of the first diagram in Definition 1.12 isn’t equal. As an

example, ψc(12, 21) = (1243) as above. Then ϕdc(1243) = (1243)⊗ r+ (132)⊗ (1) + (21)⊗
(12)+(1)⊗(123)+r⊗(1243) which has 5 terms. Notice ϕdc(12) = (12)⊗r+(1)⊗(1)+r⊗(12)

and ϕdc(21) = (21)⊗ r + (1)⊗ (1) + r ⊗ (21), so ψc(ϕdc(12), ϕdc(21)) has 9 terms.

2.4 Application to the Generating Tree of Set Partitions

In this section, we apply both methods in the previous sections to the generating tree of set

partitions.

Definition 2.39. Let C be the combinatorial class of set partitions. Let r denote the empty

partition. A generating rule is as follows. Given a partition P = S1S2, . . . Sk of length m,

where Si ∩ Sj = ∅ for any i 6= j and
k⋃
i=1

Si = Nm,

(1) For each i ∈ Nk, put m+ 1 in Si;

(2) Add one more part Sk+1 = {m+ 1} to P.

Let T = T (V,E) be the generating tree of partitions as shown in Figure 2.10. Let W be

the vector space spanned by V over a field K. Notice W =
∞⊕
n=0

Wn is a graded vector space

which is graded by the lengths.

Then we give a possible family of maps ϕ̃• as follows.

Definition 2.40. Let v0 ≥ u0 ≥ uk be three vertices in V of length s, t, t+ k respectively,

then Pu0,uk has the information of how to add the last k numbers in uk. Define ϕ̃v0(u0, uk)

to be the set partition taking uk and deleting the (s+ 1)st up to tth numbers and relabeling

the ith numbers by i− t+ s for i ∈ Nt+1,t+k.

Example 2.41. Take v0 = {1}, u0 = {1, 3}{2} and u3 = {1, 3, 5}{2}{4, 6} then

ϕ̃{1}({1, 3}{2}, {1, 3, 5}{2}{4, 6}) = {1, 3}{2, 4}.

Now we check that these ϕ̃ maps satisfy the three conditions in Definition 2.4. Condition

(1) is satisfied because if v0 = u0, then s = t; thus there is no number being deleted and
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r

{1}

{1, 2} {1}{2}

{1, 2, 3} {1, 2}{3} {1, 3}{2} {1}{2, 3} {1}{2}{3}

Figure 2.10: A generating tree of partitions

the labels stay the same. If w0 ≥ v0 and has size l ≤ s, then ϕ̃w0(u0, uk) is the set partition

deleting the (l + 1)st up to tth numbers and relabeling the (t + 1)st up (t + k)th numbers

by l + 1 up to l + k. On the other side, let Q = ϕ̃v0(u0, uk); ϕ̃w0(v0, ϕ̃v0(u0, uk)) be the

set partition deleting the (l + 1)st up to sth numbers in Q and relabeling the (s + 1)st up

to (s + k)th numbers by l + 1 up to l + k. Notice the (l + 1)st up to sth numbers in Q

are the same numbers in the original set partition. The (s + 1)st up to (s + k)th numbers

in Q are actually the (t + 1)st up to (t + k)th numbers in the original set partition. By

computation, they turn out to be relabeled in the same way. Thus condition (2) holds. A

similar argument works for checking condition (3).

Then following the Definitions 2.12 and 2.33, we have the two coproducts ϕds and ϕdc.

Example 2.42. Take the set partition u = {1, 3}{2}, all the subsets of edges of u are ∅,
{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}. Then

ϕds({1, 3}{2}) = {1, 3}{2} ⊗ r + {2}{1} ⊗ {1}+ {1, 2} ⊗ {1}+ {1}{2} ⊗ {1}
+{1} ⊗ {1}{2}+ {1} ⊗ {1, 2}+ {1} ⊗ {2}{1}+ r ⊗ {1, 3}{2},

and

ϕdc({1, 3}{2}) = {1, 3}{2} ⊗ r + {2}{1} ⊗ {1}+ {1} ⊗ {1}{2}+ r ⊗ {1, 3}{2}.

Now we present a possible way to define the concatenation product ψc.
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Definition 2.43. Let u, v be two vertices in V of size s, t respectively. Define ψc(u, v) to

be the set partition resulting from concatenating u and v with the numbers in v relabeled

as s+ 1 up to s+ t.

Example 2.44.

ψc({1, 3}{2}, {1, 2}{3, 4}) = {1, 3}{2}{4, 5}{6, 7}.

We need to check that all four conditions in Definition 2.16 hold. Obviously, conditions

(1) and (2) hold. For condition (3), E1 = Pu,ψc(u,v) and E2 = Pr,u then ϕ(E1) = u and ϕ(E2)

is the result of deleting the first s numbers of ψc(u, v) and relabelling the last t numbers.

Since the first s numbers don’t interact with the last t numbers then ϕ(E2) = v. The same

reasoning explains condition (4).

The following is a possible way to define the family of maps ψ• in Definition 2.27.

Definition 2.45. Let u, v ∈ V be set partitions of size s, t. Take any A
(1)
s,t = {a1, . . . , as} ⊆

Ns+t. Define ψA(1)(u, v) to be the set partition resulting from putting u, v together with the

numbers in u being labeled a1 up to as and the numbers in v being labeled A
(2)
s,t in order.

Example 2.46. Take u = {1, 3}{2}, v = {1, 2}{3, 4} and A
(1)
3,4 = {2, 5, 7} then

ψA(1)(u, v) = {2, 7}{5}{1, 3}{4, 6}.

Then it is clear that condition (1) holds. For condition (2), assume y is another set

partition of size l, then the LHS of the equation can be explained as first assigning A(1)

labels to u and A(2) to v. Then for any B(1), assign A(1)
〈
B(1)

〉
labels to u, A(2)

〈
B(1)

〉
labels

to v and B(2) labels to y. On the right hand side, we can see that Ns+t+l \A(1)
〈
B(1)

〉
is just

the set B(2)∪A(2)
〈
B(1)

〉
. Then that means first assigning (A(2)

〈
B(1)

〉
)_(B(2)∪A(2)

〈
B(1)

〉
)

labels to v when putting v and y together. Thus by applying Proposition 2.24 we have

the same result on the RHS. As for condition (3), it holds since first deleting then putting

together is the same as first putting together then deleting.

Following Definition 2.30, we get a shuffle type product.

Then by Theorems 2.20 and 2.37, we have two Hopf algebras (W,ψc, uc, ϕds, ε) and

(W,ψs, uc, ϕdc, ε) on the vector space of all set partitions.

In [19, Page 80, 82], we can see that the product · and the coproduct ∆ in the usual

Hopf algebra of set partitions are different from our products and coproducts since their
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product contains the term of merging two components of a set partition while our products

do not. Also, their coproduct does not take apart any component while our coproducts do.

For instance,

∆({1, 3}{2}) = {1, 3}{2} ⊗ r + {1, 2} ⊗ {1}+ {1} ⊗ {1, 2}+ r ⊗ {1, 3}{2},

and

{1, 3}{2} · {1, 2}{3, 4} = {1, 3}{2}{4, 5}{6, 7}+ {1, 3, 4, 5}{2}{6, 7}
+{1, 3}{2, 4, 5}{6, 7}+ {1, 3, 6, 7}{2}{4, 5}
+{1, 3}{2, 6, 7}{4, 5}+ {1, 3, 4, 5}{2, 6, 7}+ {1, 3, 6, 7}{2, 4, 5}.

2.5 Application to the Generating Tree of Open Partition

Diagrams

In this section, we apply the two methods in the previous sections to the generating tree

of open partition diagrams introduced by Burrill, Elizalde, Mishna and Yen in their paper

[14]. We will use the same notation as in the previous sections.

First we present the definition of open partition arc diagrams and their generating rules.

Definition 2.47. A partition arc diagram is a graphic representation with labeled vertices

ordered along a row and some arcs (i, j) with i < j such that each vertex i is adjacent

to at most one larger vertex. Then all of its connected components give a partition. As

an example, {{135},{26},{4}} can be represented as 1 2 3 4 5 6. An open partition arc

diagram is a partition arc diagram which allows two additional arc types: semi-openers

and semi-transitories . These open partition diagrams can be viewed as future proper set

partitions. Call the number of vertices the size of the diagram. The generating rules are as

follows.

Given an open partition arc diagram, one can

(1) Add a fixed point ;

(2) Add a semi-opener ;

(3) Add a semi-transitory (provided there is an available semi-arc);
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(4) Add a closer (provided there is an available semi-arc).

Example 2.48. 1 2 3 4 5 is a valid open partition arc digram and it can generate a proper

partition arc diagram 1 2 3 4 5 6 by adding one closer. So 1 2 3 4 5 can be viewed as a future

proper set partition.

In order to distinguish vertices of open partition arc diagrams and vertices of a generating

tree, we will use endpoints for vertices of arc diagrams.

Definition 2.49. Let C be the combinatorial class of all the open partition diagrams where

the size is the number of endpoints. Let r be the empty diagram. Let T = T (V,E) be the

generating tree of C as shown in Figure 2.11. Let W =
∞⊕
n=0

Wn be the vector space spanned

by the vertices in V over a field K. W is graded by the size.

r

1 1

12 12 12 12 12 12

Figure 2.11: The generating tree T (V,E) of the open partition diagrams

We give a possible family of maps ϕ̃V : V × V → V as follows.

Definition 2.50. Let v0 ≥ u0 ≥ uk be three vertices in V of size s, t, t + k respectively.

Then Pu0,uk has the information of how to add the last k endpoints in uk. Define ϕ̃v0(u0, uk)

to be the diagram taking uk and deleting the (s + 1)st up to tth endpoints together with

their outgoing edges (equivalent to reducing the adjacent closers to fixed endpoints or semi-

transitories to openers) and relabel the ith endpoint by i− t+ s for i ∈ Nt+1,t+k.

Example 2.51. ϕ̃
1

( 1 2 3 , 1 2 3 4 5 ) = 1 2 3 .
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Now we check that these maps satisfy the three conditions in Definition 2.4. If v0 = u0,

then s = t; thus there is no endpoint being deleted and the labels stay the same. So

condition (1) is satisfied. If w0 ≥ v0 and has size l ≤ s, then ϕ̃w0(u0, uk) is the diagram

deleting the (l + 1)st up to tth endpoints together with their outgoing edges and relabeling

the (t+1)st up (t+k)th endpoints by l+1 up to l+k. On the other side, let Q = ϕ̃v0(u0, uk);

ϕ̃w0(v0, ϕ̃v0(u0, uk)) be the diagram deleting the (l+ 1)st up to sth endpoints in Q together

with their outgoing edges and relabel the (s+ 1)st up to (s+ k)th endpoints by l + 1 up to

l + k. Notice the (l + 1)st up to sth endpoints in Q are the same endpoints in the original

diagram. The (s+1)st up to (s+k)th endpoints in Q are actually the (t+1)st up to (t+k)th

endpoints in the original diagram. By computation, they turn out to be relabeled in the

same way. Thus condition (2) holds. A similar argument works for checking condition (3).

With these ϕ̃ maps and following Definitions 2.12 and 2.33, we have the two coproducts

ϕds and ϕdc. In fact, ϕds is the sum over all subsets A of endpoints of the diagram. Given A,

the left hand side of the tensor is the diagram resulting from deleting the endpoints in A and

reducing the rest of the labels. The right hand side of the tensor is the diagram resulting

from deleting the endpoints in the complement A and reducing the rest of the labels. ϕdc is

the sum over i ∈ N0,size. Given i, the left hand side of the tensor is the diagram resulting

from deleting the 1st up to ith endpoints and reducing the rest of the labels. The right hand

side of the tensor is the diagram resulting from deleting (i + 1)st up to the last endpoints

and reducing the rest of the labels.

Example 2.52. Let u be the open partition arc diagram 1 2 3 , then all the subsets of edges

of u are ∅, {1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}. Then

ϕds(1 2 3 ) = 1 2 3 ⊗ r + 1 2 ⊗ 1 + 1 2 ⊗ 1 + 1 2 ⊗ 1

+1 ⊗ 1 2 + 1 ⊗ 1 2 + 1 ⊗ 1 2 + r ⊗ 1 2 3 ,

and

ϕdc(1 2 3 ) = 1 2 3 ⊗ r + 1 2 ⊗ 1 + 1 ⊗ 1 2 + r ⊗ 1 2 3 .

Here is a possible way to define ψc.

Definition 2.53. Let u, v be two vertices in V of size s, t respectively. Define ψc(u, v) to

be the diagram resulting from concatenating u and v with the endpoints in v relabeled as

s+ 1 up to s+ t.
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Example 2.54.

ψc(1 2 3 , 1 2) = 1 2 3 4 5.

We need to check that all four conditions in Definition 2.16 hold. Obviously, conditions

(1) and (2) hold. For condition (3), E1 = Pu,ψc(u,v) and E2 = Pr,u then ϕ(E1) = u and ϕ(E2)

is the result of deleting the first s endpoints of ψc(u, v) and relabelling the last t endpoints.

Since the first s endpoints don’t interact with the last t endpoints then ϕ(E2) = v. The

same reasoning explains condition (4).

Here is a possible way to define the family of maps ψ• in Definition 2.27.

Definition 2.55. Let u, v ∈ V be diagrams of size s, t. Take any A
(1)
s,t = {a1, . . . , as} ⊆ Ns+t.

Define ψA(1)(u, v) to be the diagram resulting from putting u, v together with the endpoints

in u being labeled a1 up to as and the endpoints in v being labeled A
(2)
s,t in order.

Definition 2.56. Take u = 1 2 3 , v = 1 2 and A
(1)
3,2 = {2, 4, 5} then

ψA(1)(u, v) = 1 2 3 4 5 .

Then it is clear that condition (1) holds. For condition (2), assume y is another diagram

of size l, then LHS of the equation can be explained as first assigning A(1) labels to u and

A(2) to v. Then for any B(1), assign A(1)
〈
B(1)

〉
labels to u, A(2)

〈
B(1)

〉
labels to v and B(2)

labels to y. On the right hand side, we can see that Ns+t+l \ A(1)
〈
B(1)

〉
is just the set

B(2) ∪A(2)
〈
B(1)

〉
. Then that means first assigning (A(2)

〈
B(1)

〉
)_(B(2) ∪A(2)

〈
B(1)

〉
) labels

to v when putting v and y together. Thus by applying Proposition 2.24 we have the same

result on the RHS. As for condition (3), it holds since first deleting then putting together

is the same as first putting together then deleting.

Following Definition 2.30, we get a shuffle type product.

Then by Theorems 2.20 and 2.37, we have two Hopf algebras (W,ψc, uc, ϕds, ε) and

(W,ψs, uc, ϕdc, ε) on the vector space of all open partition diagrams. There could be oth-

er Hopf algebras on W coming from other choices of ϕ̃ and ψ. In paper [14], Burrill,

Elizalde, Mishna and Yen care about k-nonnesting partitions. The space Uk spanned by all

k-nonnesting open partitions arc diagrams (see [14, Definition 2]) are comodules in these

two Hopf algebras since these two coproducts won’t increase the number of nestings. We

hope we can use the method shown in paper [11] to classify all W comodules in these two

Hopf algebras we constructed.



Chapter 3

Incidence Hopf Algebras On

Certain Generating Graphs

While some combinatorial classes possess recursive descriptions in terms of generating trees,

more generally, the recursive descriptions can only be represented by generating graphs. This

occurs if all well-behaved choices of generating rules which are strong enough to generate all

elements also cause some elements to be generated in more than one way. In this chapter,

we will give a definition of generating graphs of certain combinatorial classes and describe a

family of generating graphs. Then we prove some properties of this family and construct a

Hopf algebra on it (Theorem 3.22). We will use the combinatorial class of 3-point Feynman

graphs in the scalar field theory φ3 with only vertex subdivergences as our central example.

Definition 3.1. Let C be a combinatorial class with only one element of size zero denoted

by r, and let f be a map from Cn to the set of subsets of
⋃
m>n
Cm such that:

(1) for any v ∈ Cn and any m > n, f(v) ∩ Cm is a finite set;

(2) for any v ∈ C, ∃ n ∈ N≥0 such that v ∈ fn(r).

A generating graph is a graph G = G(V,E) with the set of vertices V = C and an edge

(u, v) ∈ E if and only if v ∈ f(u). Call r the root of G(V,E). Say v can be generated from

u if v ∈ fn(u) for some n ≥ 0 and call u an ancestor of v denoted by u ≥ v.

Compared with Definition 2.1, condition (1) in Definition 2.1 is no longer satisfied. As

54
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an example, look at the subgraph
r

of the generating graph shown in Figure 3.1.

Example 3.2. Let T be the physical theory φ3 with the dimension of space-time D = 6

as mentioned in Example 1.30. Here we only consider those divergent 1PI graphs with 3

external edges and in which every divergent 1PI subgraph also has 3 external edges. Let

C be the combinatorial class of those Feynman graphs with the number of independent

loops as the size. Let r be the empty graph in C. Let insertion of primitive graphs be

the generating rule. There are 6 ways to do such an insertion, some of which may give

isomorphic results, one for each bijection of the external edges of the inserted graph to the

three half edges adjacent to the insertion vertex. Then the generating graph G(V,E) is as

shown in Figure 3.1

r

Figure 3.1: A generating graph of C



CHAPTER 3. HOPF ALGEBRAS ON GENERATING GRAPHS 56

a

a
′

P

b

b
′

Q

(a, b)

(a
′
, b) (a, b

′
)

(a
′
, b

′
)

P ×Q

Figure 3.2: Lattices: P, Q and P ×Q

In order to describe the family of generating graphs we will work with in this chapter,

we need the definition of a lattice and some operations on it ([22]).

Definition 3.3. 1) A lattice is a partially ordered set in which every two elements have

a supremum (or least upper bound denoted by ∨) and an infimum (or greatest lower

bound denoted by ∧).

2) The Cartesian product of two lattices A, B is the lattice A×B with the ordering

(a, b) ≤ (a
′
, b
′
) if and only if a ≤ a′ and b ≤ b′ .

Example 3.4. Let P be the lattice of {a, a′} with a
′
< a and let Q be the lattice {b, b′}

with b
′
< b. Then P ×Q is as shown in Figure 3.2.

Definition 3.5. Let G = G(V,E) be a generating graph of a combinatorial class C with

root r. For u, an ancestor of v in V , let Gu,v be the unique induced subgraph from u to

v containing all the paths from u to v.

Notice that by working in the generating graph, every vertex v ∈ V contains the extra

information of Gr,v whereas v ∈ C does not. Also every Gu,v has a natural poset structure.

Definition 3.6. Let W = WK(G) be the vector space spanned by all the disjoint unions of

vertices in V over a field K. For any element w ∈W , define the size of w to be the sum of

the sizes of vertices in w. Then W is a graded vector space with W =
∞⊕
n=0

Wn, where Wn is

the subspace spanned by the elements of size n.

Notice that W can also be viewed as the algebra of polynomials over the vertices in V

with the product being disjoint union.
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Example 3.7. Let W be the vector space of the generating graph G(V,E) of Feynman

graphs as defined in Example 3.2.

In the following, we are going to introduce a concept we call maximum independent

sublattices of a finite lattice. This construction retrieves the factors of a Cartesian product.

Definition 3.8. Let P be a finite lattice with maximum element a. Let Pu,v be the induced

sublattice of u ≥ v. Let a1, a2 . . . , ak be all the maximum elements of P \a. Define the set of

maximum independent sublattices of P to be a set of sublattices {Pa,v1 , Pa,v2 , . . . , Pa,vk}
where every vi satisfies

(1) for any ui ∈ Pa,vi \ a, ui ≤ ai and ui 6≤ aj for any j 6= i;

(2) for any w ∈ P with w < vi, w doesn’t satisfy (1).

Call P irreducible if it only has one maximum independent sublattice, namely P itself,

i.e., its set of maximum independent sublattices is {P}.

Example 3.9. Let P be the lattice as shown in Figure 3.9. Then its set of maximum

independent lattices is {Pa,v1 , Pa,a2}. If we delete the vertex w, the resulting lattice will be

lattice isomorphic to Pa,v1 × Pa,a2 .

a

a1 a2

v1 w

a

a1

v1

a

a2

P Pa,v1 Pa,a2

Figure 3.3: Lattice: P , Pa,v1 and Pa,a2

Notice that every sublattice in the set of maximum independent lattices is irreducible

since there is only one maximum element ai in Pa,vi \a. Next we will describe the properties

that the generating graphs we work with in this chapter have.
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Property 3.10. Assume the generating graph G satisfies the following properties:

(1) for any u ≥ v in V , Gu,v is a lattice;

(2) for any v ∈ V , Gr,v is irreducible;

(3) independence: for any u ≥ v in V , Gu,v is lattice isomorphic to the Cartesian

product of its maximum independent lattices Gu,v1 ×Gu,v2 × · · · ×Gu,vk .

Given above assumptions, each Gu,v has a coordinate system. For any vertex x ∈ Gu,v
write its coordinates as (x1, x2, . . . , xk), where xi ∈ Gu,vi . Suppose Gx,y ⊆ Gu,v is irreducible

and suppose that, considered in the Gu,v coordinate system Gx,y has the decomposition

Gx,y ∼= Gx1,y1 × Gx2,y2 × · · · × Gxk,yk . Since Gx,y is irreducible, there exists a unique i0

such that Gx,y ∼= Gxi0 ,yi0 and xj = yj for j 6= i0; otherwise, x would have at least two

adjacent descendants in Gx,y which contradicts the irreducibility. This means that in the

Gu,v coordinate system, Gx,y varies in the ith0 coordinate and stays constant in the rest of

the coordinates.

Example 3.11. G(V,E) of Feynman graphs as shown in Example 3.2 satisfies Proper-

ty 3.10. Condition (1) and (3) are satisfied because for any u ≥ v, v is obtained by inserting

some 3-point 1PI divergent subgraphs at some vertices of u and since inserting into each

vertex of u is distinguishable, each one of these subgraphs is associated to one maximum

sublattice. Condition (2) is satisfied since every 3-point 1PI divergent graph results in the

unique primitive through contracting.

Definition 3.12. Say two irreducible Ga,b and Gc,d have the parallel relation, written

∼ (or say they are parallel) if there exists a Gu,v such that Ga,b, Gc,d ⊆ Gu,v and in Gu,v’s

coordinate system Ga,b ∼= Gai0 ,bi0 and Gci0 ,di0
∼= Gc,d (with notation as above), where

ai0 = ci0 and bi0 = di0 with the same i0.

The idea is that Ga,b and Gc,d each varies in only one coordinate. For Ga,b and Gc,d to

be parallel, these must be the same coordinates. The Ga,b and Gc,d only differ from each

other in their other coordinates.

Example 3.13. Let Ga,b, Gc,d and Gu,v be the subgraphs of G(V,E) as shown in Figure 3.4.

We can see that Gu,v has the maximum independent lattices {Gu,a, Gu,c, Gu,e} and Gu,v ∼=
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Gu,a ×Gu,c ×Gu,e. Then in Gu,v’s coordinate system, u, a, b, c, d have coordinates

u = (u, u, u),

a = (a, u, u),

b = (a, u, e),

c = (u, c, u),

d = (u, c, e).

Thus we can see

Ga,b = G(a,u,u),(a,u,e)
∼= Gu,e,

and

Gc,d = G(u,c,u),(u,c,e)
∼= Gu,e,

which implies Ga,b and Gc,d are parallel in Gu,v.

u

v

a

b

c

d

e

a

b

c

d

Ga,b Gc,d Gu,v

Figure 3.4: Ga,b, Gc,d and Gu,v

Lemma 3.14. Two irreducible Ga,b, Gc,d are parallel if and only if Ga,b, Gc,d are parallel in

Ga∨c,b∧d.
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Proof. The necessity is obvious. We only need to prove the sufficiency. Suppose the two

irreducible Ga,b, Gc,d are parallel. Then there exists Gu,v and i0 such that Ga,b ∼= Gai0 ,bi0 =

Gci0 ,di0
∼= Gc,d, where Gu,v ∼= Gu,v1 × Gu,v2 · · · × Gu,vk and every vertex w ∈ Gu,v has

coordinate (w1, w2, . . . , wk). Let x = a∨c and y = b∧d. Then x, y ∈ Gu,v since a, c ≤ u and

b, d ≥ v. So Gx,y ⊆ Gu,v. In the Gx,y coordinate system, suppose Gx,y ∼= G
x,y
′
1
×G

x,y
′
2
×· · ·×

G
x,y
′
l

and every vertex z ∈ Gx,y has the coordinate (z
′
1, z

′
2, . . . , z

′
l). Considered in the Gu,v

coordinate system, Gx,y ∼= Gx1,y1×Gx2,y2×· · ·×Gxk,yk . For eachGxi,yi with xi 6= yi, it can be

further decomposed into G
xi,y

(i)
1

×G
xi,y

(i)
2

×· · ·×G
xi,y

(i)
ni

where {G
xi,y

(i)
1

, G
xi,y

(i)
2

, . . . , G
xi,y

(i)
ni

}
is the set of maximum independent lattices of Gxi,yi .

Claim: {G
xs,y

(s)
t
}k,ns
s=1,t=1 is in one-to-one correspondence with {G

x,y
′
j
}lj=1.

Proof of claim: For every G
x,y
′
j
, since it is irreducible there exists an s such that in the

Gu,v’s coordinate system, G
x,y
′
j

only varies in sth coordinate and is isomorphic to G
xs,(y

′
j)s

.

Notice the sth coordinate of y is ys and Gxs,ys
∼= G

xi,y
(s)
1

× G
xi,y

(s)
2

× · · · × G
xi,y

(s)
ni

. Thus,

there exists a t such that (y
′
j)s = y

(s)
t . On the other hand, for every G

xs,y
(s)
t

, there exists a

j such that y
′
j has the coordinate (x1, . . . , xs−1, y

(s)
t , xs+1, . . . , xk) in the Gu,v’s coordinate

system because of maximality.

Now consider Gxi0 ,yi0
∼= G

xi0 ,y
(i0)
1

×G
xi0 ,y

(i0)
2

×· · ·×G
xi0 ,y

(i0)
ni0

and notice Gai0 ,bi0 ⊆ Gxi0 ,yi0
is irreducible. Then there exists a t such that Gai0 ,bi0 (= Gci0 ,di0 ) only varies in G

xi0 ,y
(i0)
t

.

Through the one-to-one correspondence above, there exists a j such that in Gx,y’s coordinate

system Ga,b and Gc,d only vary in jth coordinate simultaneously. Hence Ga,b, Gc,d are parallel

in Gx,y.

From the proof we see that if Gx,y ⊆ Gu,v then the coordinate system of Gx,y in some

sense subdivides some coordinates in the coordinate system of Gu,v. Furthermore, if two

irreducible graphs Ga,b and Gc,d are varying in different coordinates of some Gu,v they can’t

be parallel since they will vary in different coordinates of Ga∨c,b∧d.

Proposition 3.15. The parallel relation is an equivalence relation.

Proof. The reflexivity and symmetry are clear. We only need to prove the transitivity.

By Lemma 3.14, we can suppose now Ga,b, Gc,d are parallel in Ga∨c,b∧d and Gc,d, Ge,f are

parallel in Gc∨e,d∧f . Let u = a ∨ c, v = b ∧ d, x = c ∨ e, y = d ∧ f , then Gu,v = Ga∨c,b∧d

and Gx,y = Gc∨e,d∧f . We want to prove that Ga,b, Ge,f are parallel in Ga∨c∨e,b∧d∧f . Let

p = a∨ c∨ e, q = b∧ d∧ f then Gp,q = Ga∨c∨e,b∧d∧f . Say Gu,v ∼= Gu,v1 ×Gu,v2 × · · · ×Gu,vk
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and the coordinate of u is (u, u, ..., u). Since Ga,b ∼ Gc,d, there exists an i such that

Ga,b ∼= Gai,bi = Gci,di
∼= Gc,d. Since u = a ∨ c, so in the ith coordinate ai ∨ ci = u and

because ai = ci then ai = ci = u. Similarly, bi = di = vi. We know that Gai,bi is one of

the maximum independent lattices of Gu,v. By the discussion above we know that Ga,b,

Gc,d and Ge,f are varying in the same coordinate, say the jth, in the coordinate system of

Gp,q. Since a ∨ c ∨ e = p so in the Gp,q coordinate system with the coordinate of p being

(p, p, . . . , p), one of a, c, or e must have jth coordinate p, in which case say it starts varying

from p. Suppose Ga,b starts varying from p which forces the jth coordinate of u to be p as

well. Then we know that there is only one coordinate of Gu,v merging into the jth coordinate

of Gp,q. Hence Ga,b, Gc,d are also parallel in Gp,q and Gc,d also starts varying from p. By a

similar discussion in Gx,y we’ll have that Gc,d, Ge,f are parallel in Gp,q. Thus, Ga,b, Ge,f are

parallel.

With the parallel equivalence relation we can describe a linear map that maps all equiv-

alent sublattices up to an object in C (which is a sublattice starting from the root). For

example the two irreducible sublattices Ga,b and Gc,d shown in Figure 3.4 both describe

inserting the object u at the bottom right vertex of a and c respectively. In this case, we

believe Ga,b and Gc,d will be mapped up to Gr,u.

Property 3.16. Let φ be a linear map defined on all irreducible Gu,v such that φ(Gu,v) =

Gr,w which satisfies the following conditions:

(0) (size preserving): Gr,w is lattice isomorphic to Gu,v;

(1) (identity): for any v ∈ V , φ(Gr,v) = Gr,v;

(2) for each x1, x2 ∈ Gu,v and the corresponding y1, y2 ∈ Gr,w, if Gx1,x2 is irreducible then

φ(Gy1,y2) = φ(Gx1,x2);

(3) if Gu,v ∼ Gx,y then φ(Gu,v) = φ(Gx,y).

Condition (3) shows that mapping an irreducible subgraph twice will give the same

result. Condition (4) shows that φ is well-defined on equivalence classes. By convention,

for any v ∈ V , φ(Gv,v) = r. By the independence assumption in Property 3.10, we can

linearly extend this φ to all Gu,v by defining φ(Gu,v) =
k⋃
i=1

φ(Gu,vi) (the disjoint union of

the φ(Gu,vi)) where Gu,v has maximum independent lattices {Gu,v1 , Gu,v2 , . . . , Gu,vk}. Note

the identity of disjoint unions is r.
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Example 3.17. Take W the as shown in Example 3.7. For any irreducible Gu,v, we know

that v is obtained from u by inserting a 1PI divergent 3-point Feynman graph γ into a

vertex of u and we know that u is the graph resulting from v contracting γ. Let γ inherit

the orderings of its external edges from v. Then we can define φ(Gu,v) = γ.

Lemma 3.18. For any Gu,v, we have Gu,v ∼= Gu,v1×Gu,v2×· · ·×Gu,vk . Take any y ∈ Gu,v
with coordinates (y1, y2, . . . , yk). Then φ(Gu,y) =

k⋃
i=1

φ(Gu,yi) and φ(Gy,v) =
k⋃
i=1

φ(Gyi,vi).

Proof. Since Gu,y ∼= Gu,y1 × Gu,y2 × · · · × Gu,yk and every Gu,yi is irreducible, Gu,y has

the maximum independent lattices {Gu,y1 , Gu,y2 , · · · , Gu,yk}. By the extended definition

φ(Gu,y) =
k⋃
i=1

φ(Gu,yi).

Gy,v ∼= Gy1,v1 × Gy2,v2 × · · · × Gyk,vk and each Gyi,vi with yi 6= vi has its maximum inde-

pendent lattices {G
yi,z

(i)
j

}tij=1. From the proof of Lemma 3.14 we know that the maximum

independent lattices of Gy,v are in one to one correspondence via the parallel relation to

{G
yi,z

(i)
j

}k,tii=1,j=1. By the Property 3.16 (3), φ(Gy,xs) = φ(G
yi,z

(i)
j

). Then by definition

φ(Gy,v) =
k⋃
i=1

φ(Gyi,vi).

Definition 3.19. Let u, ε be the trivial unit and counit. Let · be the disjoint union and

define a linear map ∆ : W → W as ∆(Gr,v) =
∑

u∈Gr,v

φ(Gu,v)⊗Gr,u for all v ∈ V and

extended to W as an algebra homomorphism.

Example 3.20. As an example, let v be

=

r

a

b c

v

.

Then

∆(v) = φ(Gr,v)⊗Gr,r + φ(Ga,v)⊗Gr,a + φ(Gb,v)⊗Gr,b + φ(Gc,v)⊗Gr,c + φ(Gv,v)⊗Gr,v
= v ⊗ r + φ(Ga,b)φ(Ga,c)⊗ a+ a⊗ b+ a⊗ c+ r ⊗ v
= v ⊗ r + a a⊗ a+ a⊗ b+ a⊗ c+ r ⊗ v
= ⊗ r + ⊗ + ⊗ + ⊗ + r ⊗ .
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This agrees with the coproduct ∆ in the renormalization Hopf algebra of φ3.

Proposition 3.21. The vector space (W, ·, u,∆, ε) is a bialgebra.

Proof. It is clear that (W, ·, u) is an algebra. Now we first need to prove (W,∆, ε) is a

coalgebra then we need to prove that the four diagrams in Definition 1.12 commute. In

order to show W is a colagebra, we will only check the coassociativity here since it is easy

to check the second diagram in Definition 1.6 commutes. Since ∆ is defined as an algebra

homomorphism and by Proposition 1.27 we only need to check ∆ is coassociative for every

v ∈ V . For any v ∈ V ,

∆(Gr,v) =
∑
z∈Gr,v

φ(Gz,v)⊗Gr,z.

We know

(id⊗∆)∆(Gr,v) =
∑
z∈Gr,v

∑
u∈Gr,z

φ(Gz,v)⊗ φ(Gu,z)⊗Gr,u

=
∑

u∈Gr,v

∑
z∈Gu,v

φ(Gz,v)⊗ φ(Gu,z)⊗Gr,u,

and

(∆⊗ id)∆(Gr,v) =
∑

u∈Gr,v

∆(φ(Gu,v))⊗Gr,u.

Then we have to show that

∆(φ(Gu,v)) =
∑

z∈Gu,v

φ(Gz,v)⊗ φ(Gu,z).

In the coordinate system of Gu,v we have Gu,v ∼= Gu,v1 × Gu,v2 × · · · × Gu,vl , where

{Gu,v1 , Gu,v2 , · · · , Gu,vl} is the set of maximum independent sublattices of Gu,v. Let Gr,w̃i =

φ(Gu,vi) for i = 1, 2 . . . , l. Then we have φ(Gu,v) =
l⋃

i=1
Gr,w̃i . So

∆(φ(Gu,v)) =
∑

{p̃i∈Gr,w̃i
}li=1

⋃
i

φ(Gp̃i,w̃i)⊗
⋃
i

Gr,p̃i .
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Let pi be the vertex inGu,vi that corresponds to p̃i for i = 1, 2, . . . , l. Take z = (p1, p2, . . . , pl) ∈
Gu,v, then by Lemma 3.18

φ(Gu,z) =

l⋃
i=1

φ(Gu,pi)

=
l⋃

i=1

φ(Gr,p̃i)

=
l⋃

i=1

Gr,p̃i ,

and

φ(Gz,v) =

l⋃
i=1

φ(Gpi,vi)

=

l⋃
i=1

φ(Gp̃i,w̃i).

Conversely, for any z ∈ Gu,v, the coordinate of z is (p1, p2, . . . , pl) and every pi corresponds to

a p̃i ∈ Gr,w̃i . Thus, ∆(φ(Gu,v)) =
∑

z∈Gu,v

φ(Gz,v)⊗ φ(Gu,z). So ∆ is coassociative and hence

(W,∆, ε) is a coalgebra. Next we check the four diagrams in Definition 1.12 commute. The

first diagram commutes since we defined ∆ to be an algebra homomorphism. The second

diagram commutes because that for any k ∈ K,

∆ ◦ u(k) = ∆(kr) = k∆(r) = k(r ⊗ r),

and

(u⊗ u)(k ⊗ 1) = (kr)⊗ r = k(r ⊗ r).

To show the commutativity of the third diagram, we only need to check it commutes for

any k(r ⊗ r) since ε(
∞⊕
n=1

Wn) = 0. Take any k ∈ K,

ε ◦ ·(kr ⊗ r) = ε(kr) = k,

and

ε⊗ ε(kr ⊗ r) = k ⊗ 1 ∼= k.

The commutativity of the last diagram is trivial and thus (W, ·, u,∆, ε) is a bialgebra.
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Theorem 3.22. (W, ·, u,∆, ε) is a Hopf algebra.

Proof. Notice W is a graded vector space and it is graded by the size of the combinatorial

objects in C. Also W0
∼= K since there is only one element of size 0, so W is connected.

The four maps are easy to check graded so W is a graded and connected bialgebra. By

Corollary 1.25, W is a Hopf algebra.

This Hopf algebra is an incidence Hopf algebra [9] with a mapping back map φ which

induces an order compatible relation.

Example 3.23. Combine Examples 3.2, 3.7, 3.11 and 3.17 and apply Theorem 3.22 we

know the vector space W of 3-point 1PI divergent graphs in φ3 with only vertex insertions

is a Hopf algebra. Notice in this case, this Hopf algebra coincides with the renormalization

Hopf algebra, which is itself also an incidence Hopf algebra.

1

Figure 3.5: A generating graph of plane binary trees

Example 3.24. Let n be a positive integer and let G be a generating graph of plane n−ary

trees where each vertex has n ordered subtrees as children, some of which may be empty.

Here we take n = 2 as an example, in this case each child is a left or right child. Figure 3.5

is one generating graph of plane binary trees. Let W be the vector space spanned by all

finite disjoint unions of plane binary trees over a field K. If Gu,v is irreducible, denote by x

the only child of u (in Gu,v) and define ϕ(Gu,v) to be the binary tree v with x contracted.
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For instance,

φ(

u

v

x

) =

1

.

Now we check this φ satisfies the four conditions in Property 3.16. Let w denote the plane

binary tree of v with x contracted. Condition (1) is satisfied because w is irreducible and

has exactly the same information of how to generate the bottom part from u to v. Condition

(2) is satisfied because contracting a node is equivalent to doing nothing. So φ(Gr,v) = Gr,v.

Condition (3) is satisfied for the same reason as (1). In this case, the parallel relation

describes inserting the identical subtree at the same node but in different levels. So the

information is the same; so applying φ will result in the same tree. Thus, condition (4)

is also satisfied. Then following the process described above, we will get a Hopf algebra

(W, ·, u,∆, ε) for plane binary trees. As an example of this coproduct,

∆( ) = ⊗ r + ⊗ + ⊗ + ⊗ + r ⊗ .

r

Figure 3.6: A generating graph of rooted trees

In the Connes-Kreimer’s Hopf algebra of rooted trees in Example 1.29, as an example

∆( ) = ⊗ r + 2 ⊗ + ⊗ + r ⊗ .

Note this coproduct is the same as the coproduct in Example 3.24 when we forget the left

and right.
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On the other hand, if we take a naive way to build a generating graph for all rooted

trees as shown in Figure 3.6, we could see the generating rule doesn’t expose the underlying

Hasse diagram of so we have no way to get the term ⊗ or the coefficient 2 for the

term ⊗ through our construction process.

So we ask: is there a suitable generating graph representation for rooted trees such that

we can use our construction to get the Connes-Kreimer’s Hopf algebra? Or how can we

extend our construction to make it work even for the naive generating graph in Figure 3.6?



Chapter 4

Hopf Algebras On Self-Avoiding

Polygons

In this chapter, we will construct two Hopf algebras on the polynomial algebra U of connect-

ed self-avoiding polygons. First in Section 4.1, we present a generating graph of self-avoiding

polygons introduced by Rechnitzer and Janse van Rensburg in [7]. Then in Section 4.2, we

construct two coproducts ∆w and ∆h based on widths and heights respectively. At last, in

Theorem 4.9, we prove with ∆w and the trivial counit that U is a Hopf algebra graded by

the widths, and in Theorem 4.11, we prove with ∆h and the trivial counit that U is a Hopf

algebra graded by the heights.

4.1 A Generating Graph of Self-Avoiding Polygons

Definition 4.1. A self-avoiding walk is a path on a lattice that never revisits the same

point. A self-avoiding polygon (referred to as a SAP) is a closed self-avoiding walk on

a lattice. Given a SAP P , define the length l(P ) as the perimeter of P , the width w(P )

as the horizontal distance between the left most and the right most edges and the height

h(P ) as the vertical distance between the top most and the bottom most edges.

In Rechnitzer and Janse van Rensburg’s paper [7, page 3], they give a recursive generat-

ing description of self-avoiding polygons as follows. Given a SAP, consider all possible pairs

of vertices such that parallel edges of unit length can be inserted to obtain a longer SAP.

Let C be the combinatorial class of all the SAPs with the length as the size. Let 1 be the

68
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empty SAP which by convention generates the smallest nontrivial SAP . Let G(V,E) be

the generating graph of all elements in C where (P1, P2) ∈ E if there exits a pair of vertices

of P1 where inserting parallel edges will result in P2.

Example 4.2. Take the smallest SAP P = . There are 8 ways to insert parallel edges

into a pair of vertices of P as shown in Figure 4.1.

Figure 4.1: Eight ways of inserting parallel edges into P

In fact, there are only two different outcomes as we ignore the duplicated ones.

Then the generating graph G(V,E) of SAPs is as shown in Figure 4.2.

1

Figure 4.2: Generating graph G(V,E) of self-avoiding polygons

We can see that this generating graph doesn’t satisfy the requirements in Chapter 3

because not every Gu,v satisfies Property 3.10.

As a counterexample, consider the poset shown in Figure 4.3. Gu,v is not a lattice

because v1 and v2 do not have an infimum.
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(u)

(v)

(v1) (v2)

Figure 4.3: A counterexample to Property 3.10

4.2 Width Coproduct ∆w and Height Coproduct ∆h

Let U be the K-vector space spanned by all disjoint unions of SAPs. For a disjoint union s,

let w(s), h(s) be the sums of widths and the sum of heights of the SAPs in s respectively.

There are several ways to grade U . From the above generating graph, a natural way is

to grade U by the sum of the lengths of every SAP in a disjoint union. We can also grade

U by the sum of the widths or the sum of the heights. Denote these two graded vector

space by U = W =
∞⊕
n=0

Wn and U = H =
∞⊕
m=0

Hm respectively. Unfortunately these latter

two grading systems only give diagonal gradings on the generating graph we already have.

Notice we do not grade U by the areas because the area grows in various ways from one level

to the next level while the length is always increased by 2 and at most one of the width or

the height is increased by 1. An example of the area increased by 3 is shown in Figure 4.4.

Inserting parallel

edges

Figure 4.4: Example of the area increased by 3

Definition 4.3. Define the product · on U to be the disjoint union. Define the unit u to

be the trivial unit u : K→ U , k 7→ k1.

Now U is an algebra. Furthermore · and u are graded maps in all three graded vector
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spaces U, W, H; thus U, W, H are all graded algebras. Let the counit ε be the trivial

counit. We can see that ε is also graded in U, W, H. In order to have a graded bialgebra, we

only need to find a compatible graded coproduct for each graded algebra. In the following,

we will construct such coproducts ∆w and ∆h for W, H respectively.

Let P be a self-avoiding polygon. Place P in the first quadrant by aligning its left most

boundary at the y-axis and bottom most boundary at the x-axis. An example is shown in

Figure 4.5.

(0, 0)

Figure 4.5: A SAP placed in the coordinate system

We can define admissible vertical cuts as follows.

Definition 4.4. Let P be a self-avoiding polygon. For 0 < i < w(P ), if there exists 0 ≤ s <
t ≤ h(P ) such that P ∩(i, i+1)×[0, h(P )] = (i, i+1)×{s, t} and {i}×[s, t]\P = {i}×(m,n)

for some s ≤ m < n ≤ t then we say P has an admissible vertical cut at i or say i is an

admissible vertical cut of P .

This definition implies that an admissible vertical cut is actually a place where we can

make a vertical cut to get a single valid SAP on each side of this cut. Though it seems

asymmetric from left to right, it is not because of the following two cases for the definition

of the left side SAP and the right side SAP.

For i an admissible vertical cut of P , let Li be the left SAP resulting from contracting

the right part of P to {i}× [m,n] and Ri be the right SAP resulting from contracting the

left part of P to {i} × [m,n]. This is formulated as follows.

(1) If (s, t) 6= (m,n),

Li = (P ∩ [0, i)× [0, h(P )]) ∪ {i} × [m,n],

Ri = (P ∩ [i, w(P )]× [0, h(P )]) ∪ {i} × [m,n].
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(2) If (s, t) = (m,n),

Li = (P ∩ [0, i]× [0, h(P )]) ∪ {i} × [m,n],

Ri = (P ∩ (i, w(P )]× [0, h(P )]) ∪ {i} × [m,n].

Example 4.5. Here is an example of an admissible vertical cut at i of case (1),

n

m

s

t

i i+ 1

P Li(P ) Ri(P ) ,

and the following is an example of case (2),

n = t

m = s

i i+ 1

Q Li(Q) Ri(Q) .

Now we are ready to define the linear map ∆w on W .

Definition 4.6. Define linear map ∆w on a single SAP by

∆w(P ) = 1⊗ P + P ⊗ 1+
∑

i admissible
vertical cut

Li ⊗Ri,

and extend as algebra morphism to W .

Example 4.7. As an example,

∆w( ) = ⊗ 1+ ⊗ + ⊗ + ⊗ + 1⊗ .
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Notice that ∆w is a graded map on W since it preserves the widths. In order to show that

∆w is a coproduct we only need to prove that the first diagram in Definition 1.6 commutes

since commutativity of the second diagram is easy to check in this case.

Lemma 4.8. The linear map ∆w is coassociative thus is a coproduct.

Proof. Take P a SAP,

(id⊗∆w)∆w(P ) = 1⊗∆w(P ) + P ⊗ 1⊗ 1+
∑

i admissible
vertical cut

of P

Li ⊗∆w(Ri)

= 1⊗ 1⊗ P + 1⊗ P ⊗ 1+
∑

i admissible
vertical cut

of P

1⊗ Li ⊗Ri + P ⊗ 1⊗ 1

+
∑

i admissible
vertical cut

of P

(Li ⊗Ri ⊗ 1+ Li ⊗ 1⊗Ri)

+
∑

i admissible
vertical cut

of P

∑
j admissible
vertical cut

of Ri

Li ⊗ Lj(Ri)⊗Rj(Ri)

(∆w ⊗ id)∆w(P ) = 1⊗ 1⊗ P + ∆w(P )⊗ 1+
∑

i admissible
vertical cut

of P

∆w(Li)⊗Ri

= 1⊗ 1⊗ P + 1⊗ P ⊗ 1+ P ⊗ 1⊗ 1
+

∑
i admissible
vertical cut

of P

Li ⊗Ri ⊗ 1+
∑

i admissible
vertical cut

of P

(Li ⊗ 1⊗Ri + 1⊗ Li ⊗Ri)

+
∑

i admissible
vertical cut

of P

∑
k admissible
vertical cut

of Li

Lk(Li)⊗Rk(Li)⊗Ri

Notice for any Li, any admissible vertical cut 1 ≤ k < i of Li is also an admissible

vertical cut of P with index less than i and vice versa. Similarly, for Ri and any admissible

vertical cut 1 ≤ j < w(P )−i of Ri, i+j is also an admissible vertical cut of P and vice versa.

Thus the two double sums are summing over two admissible vertical cuts 1 ≤ l < i < w(P )

of P . Thus the above two equations are equal.

As for a disjoint union of two or more SAPs, ∆w is also coassociative by Proposition 1.27

since it is an algebra homomorphism.
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Theorem 4.9. The algebra (W, ·, u,∆w, ε) is a connected and graded bialgebra thus is a

Hopf algebra.

Proof. W is clearly graded and connected, and the four linear maps are all graded maps.

The commutativity of the last three diagrams in Definition 1.12 is easy to check and the first

diagram in Definition 1.12 commutes because we defined ∆w as an algebra homomorphism

in Definition 4.6. Thus (W, ·, u,∆w, ε) is a connected and graded bialgebra. Applying

Corollary 1.25, W is a Hopf algebra.

Similarly for the width-coproduct ∆w, we can define admissible horizontal cuts in

H and get a height-coproduct ∆h. The height-coproduct is the sum of the bottom SAP

tensor the top SAP over all admissible horizontal cuts.

Example 4.10. As an example,

∆h( ) = ⊗ 1+ ⊗ + ⊗ + ⊗ + 1⊗ .

Analogous proofs lead to the following theorem.

Theorem 4.11. The algebra (H, ·, u,∆h, ε) is a connected and graded bialgebra thus is a

Hopf algebra.

These two Hopf algebras do capture some properties of the generating process since for

any admissible vertical cut or any admissible horizontal cut of P , P can be generated in

the generating grapph G(V,E) by first building the SAP on one side of the cut and then

proceeding downwards in the generating graph according to the SAP on the other side of

the cut. Also these two Hopf algebras are symmetric with respect to y = x. Combining

these two Hopf algebras we can define double primitives as follows.

Definition 4.12. Define double primitives as the elements in the set

Ker ∆̃w ∩Ker ∆̃H = {u ∈ U : ∆w(u) = 1⊗ u+ u⊗ 1 and ∆H(u) = 1⊗ u+ u⊗ 1}.

Example 4.13. Here is an example of a double primitive with width 6 and height 6,

.
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Notice that we can not further decompose these double primitives through the interme-

diate vertices in the generating graph G(V,E). So there are properties that are not captured

by either of these two Hopf algebras.

So we consider grading U by both the widths and the heights, that is to say U can be

decomposed into
∞⊕
w=0

∞⊕
h=0

Uw,h. We can see (U, ·, u) is still a graded algebra since

·(Uw1,h1 ⊗ Uw2,h2) ⊆ Uw1+w2,h1+h2 .

Then we ask: is there a coproduct ∆ which graded by both widths and heights that will

make (U, ·, u,∆, ε) into a graded bialgebra?

We tried the linear map ∆ = 1 ⊗ id + id ⊗ 1 + ∆̃w + ∆̃h, but it is not a coproduct.

Readers may see (id⊗∆)∆( ) 6= (∆⊗ id)∆( ).



Chapter 5

Conclusion and Questions

In this thesis, we constructed a concatenation-deshuffle Hopf algebra and a shuffle-deconcatenation

Hopf algebra on the vector space spanned by an augmented generating tree. We also con-

structed an incidence Hopf algebra on the polynomial algebra of a generating graphs in a

certain family. Finally, we constructed a width Hopf algebra and a height Hopf algebra on

the polynomial algebra of self-avoiding polygons.

Next we present some questions related to our constructions and then present some

questions related to our original goal.

Notice in Section 2.4, we got that our Hopf algebras of set partition appear to be different

from the Hopf algebra shown in [19]. But we don’t know whether they have a deep connection

yet.

Question 1. Are the two Hopf algebras of set partition shown in Section 2.4 (or their duals)

isomorphic to the Hopf algebra of set partition in [19]?

Question 2. What is the classification of finite comodules of the two Hopf algebras of open

partition diagrams shown in Section 2.5?

Question 3. Is there a way to modify the generating graph of Section 3, perhaps by

labeling multiple edges, to allow a similar process to construct Hopf algebras that works for

the Connes-Kreimer Hopf algebra of rooted trees and for renormalization Hopf algebras of

Feynman graphs with propagator insertions.

Question 4. Is there a coproduct related to both ∆w and ∆h (Section 4.2) such that U

becomes a width and height graded Hopf algebra?
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There are some other questions related to our original goal which was understanding the

connection of the multiplicative factors between the combinatorial objects described in the

following two sections.

5.1 Hopf Algebra on Feynman Graphs

Dirk Kreimer and Alain Connes pioneered the Hopf algebraic approach to studying quantum

field theory ([5, 6]). They revealed the underlying Hopf algebra structure of Feynman graphs

which allows for renormalization. Kreimer showed the relation between a perturbative

expansion in quantum field theory and the corresponding Hochschild cohomology ([12]).

For more about the Hopf algebra of Feynman graphs, readers are referred to the survey [21].

In physics, Feynman graphs are used to describe the interactions of subatomic particles.

Combinatorially, we view Feynman graphs as multigraphs (allowing multiple edges and

loops) built from a specified set of half edges. Here we follow the setup in [15, chapter 2]

which was already showed in Example 1.30. For a combinatorial physical theory T in the

dimension of space-time D, there is a set of vertex types, a set of half edge types and a set

of edge types. Also the vertices and edges are given power counting weights according to

their type. Any internal edge of a Feynman graph in T belongs to one edge type. Physicists

are interested in divergent 1PI graphs. Here, we use quantum electrodynamics (QED) as

an example to illustrate.

Example 5.1. In QED, D = 4, the set of half edge type is { , , } which

stand for a half photon, a back half fermion and a front half fermion respectively. The

permitted edge types are ,a photon, with weight 2 and , an electron, with

weight 1. The only vertex type is with weight 0. One divergent 1PI Feynman graph

is shown in Figure 5.1.

Figure 5.1: Example of divergent 1PI Feynman graph in QED
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Let H be the vector space spanned by all disjoint unions of divergent 1PI graphs over

Q and let 1 be the empty graph. The product is the disjoint union and the coproduct ∆

is first defined on connected graphs and then extended as an algebra homomorphism to H.

Let Γ be a divergent 1PI graph,

∆(Γ) =
∑
γ⊆Γ

product of divergent
1PI subgraphs

γ ⊗ Γ/γ,

where Γ/γ is the graph resulting from Γ contracting γ.

Example 5.2. As an example,

∆( ) = ⊗ 1+ 2 ⊗ + 1⊗ .

H can be graded by the loop number. The product and the coproduct are both graded

maps. In this Hopf algebra H, for a primitive Feynman graph γ, Bγ
+ denotes the map

of insertion into γ. Bγ
+ is similar to B+ (the Hochschild 1-cocycle map in Connes-Kreimer

Hopf algebra of rooted trees as shown in Example 1.29), but not necessarily a 1-cocycle map

in H. There are cases where the divergent subgraphs of a divergent 1PI Feynman graph Γ

are not overlapping; then Γ has a unique rooted tree representation such that each vertex

of the tree corresponds to a divergent subgraph of Γ. Call that tree an insertion tree. For

example,

has the insertion tree

.
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In other cases if the subdivergences of Γ have some overlappings, it may have more than

one insertion trees. For example, consider . Notice the subdivergence

can be inserted into two places, either the left vertex or the right vertex of . So

the graph has two insertion trees. Since γ is primitive, the equation (1.1) will have the

same tensor of graphs with different coefficients on different sides. Another tricker situation

in QCD is that a graph may have overlapping divergent subgraphs with different external

structure which allows the graph contracting into two different primitives. In the paper

[12], Kreimer used a multiplicative coefficient in the definition of Bγ
+ to fix the overlapping.

Define for a connected Feynman graph γ,

Bγ
+(X) =

∑
Γ∈Hlin

bij(γ,X,Γ)

|X|∨
1

maxf(Γ)

1

[γ | X]
Γ,

where bij(γ,X,Γ) is the number of bijections between the external edges of X and the

adjacent edges of the insertion place in γ such that Γ is obtained, |X|∨ is the number

of distinct graphs obtained by permuting the labels of external edges of X, maxf(Γ) is

the number of ways of shrinking subgraphs to obtain a primitive cograph, and [γ | X] is

the number of insertion places for X in γ. Kreimer proved in [12, Theorem 4] that with

these coefficients, if we sum over all Bγ
+ with γ a connected primitive graph which has a

given external structure, inserting into all insertion places of each γ gives the same result

as summing over all 1PI graphs with that external structure weighted by their symmetry

factors. Kreimer also discussed that with the Ward identities for QED,
∑
Bγ

+ summing over

all γ with a given external structure and a given loop is a Hochschild 1-cocycle. Later this

was proved by van Suijlekom in [13].

5.2 Methods for Sampling Self-Avoiding Polygons

In Rechnitzer and Janse van Rensburg’s paper [7], they introduced a method called the

Generalised Atmospheric Rosenbluth Method (GARM) to sample self-avoiding polygons

(SAPs) and some other combinatorial objects. Here we use SAPs on square lattice to

illustrate their set up.

Given a SAP P , a positive generalised atmosphere is defined as inserting parallel

edges at a pair of vertices to obtain a longer SAP. Denote by a+(P ) the number of positive
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generalised atmospheres. For example, let P be the SAW then a+(P ) = 8 as shown in

Figure 4.1.

A negative generalised atmosphere is defined as contracting a pair of edges so as to

obtain a shorter SAW and a−(P ) denotes the number of negative generalised atmospheres.

For example, let P be the SAP then a−(s) = 4 as shown in Figure 5.2.

Figure 5.2: Negative generalised atmospheres of P

Start with the smallest SAP φ0 = , and get a sequence of SAPs φ = φ0, φ1, . . . , φn by

inserting a positive atmosphere at each step 0 ≤ j ≤ n − 1 with the probability a+(φj)
−1.

Denote by |φ| = n the length of the sequence φ. Then the probability of obtaining φ from

φ0 is

Pr(φ | φ0) =
n∏
k=1

a+(φk−1)−1.

For the sequence φ, define the weight

W (φ) =
n∏
k=1

a+(φk−1)

a−(φk)
.

With the weights used as multiplicative factors, it has been proved in [7],

〈W 〉n =
∑
φ

W (φ)Pr(φ | φ0) = c2n+4.

This means the mean weight of all sequences φ with length n is the number of SAPs of

length 2n+ 4.

In both the Bγ
+ in renormalization Hopf algebras and GARM a multiplicative factor is

used to deal with overcounting as opposed to the more usual additive process like inclusion-

exclusion. We began this project searching for a precise connection to capture this similarity,

but were not, so far, able to do so.
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Question 5. Is there a better common Hopf-algebraic language than the generating graph

approach for both cases?

Question 6. Do the weights for SAPs relate to Hochschild 1-cocycle maps?
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