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This week’s seminar lecture covers the first half of the material on the analytic version of the Null-
stellensatz used in the analytic geometry associated with the analysis of several complex variables. We
introduce some necessary definitions from analytic geometry first, and then give a road-map of the proof,
moving through 4 main steps, comparing the arguments to those needed for Hilbert’s Nullstellensatz from
general algebraic geometry. The details of these four main steps will be largely omitted, left to the second
part of the lecture.

Definitions for varieties

Definition 1. Let U ⊂ Cn be open, S ⊂ H(U), |S| <∞. Then

V (S) = {z ∈ U : f(z) = 0 ∀f ∈ S}.

For a closed T ⊂ U , we say that T is a holomorphic subvariety of U if for every λ ∈ U there exists a
neighbourhood Wλ 3 λ and a finite set Sλ ∈ H(Wλ) such that

T ∩Wλ = V (Sλ).

Note: we are defining these varieties analogously to general algebraic varieties. We have replaced
regular functions with holomorphic ones, and Tsariski open sets with open sets in the Euclidean topology.

Example 1. Let

Nk = {z = (z1, ..., zn) ∈ Cn : zk+1 = zk+2 = ... = zn = 0, Re(zk) > 0},
Hk = {z ∈ Cn : Re(zk) > 0}.

Then Nk is a holomorphic subvariety of Vk but not of Cn, since it is not closed in Cn, but Nk is not an
algebraic subvariety of Vk because Vk is not Tsariski open.

Definition 2. Two varieties V,W on U are equivalent at λ ∈ V ∩W if there is some neighbourhood
Uλ 3 λ such that V ∩ Uλ = W ∩ Uλ.

The germ of V at λ ∈ V is the equivalence class containing V , we write V to denote the germ of V .

In order to state the Nullstellensatz, we need to define the ideal and locus of a variety.

Definition 3. Let V be the germ of holomorphic variety at 0. Then id(V ) is the ideal of nH0 of functions
vanishing on V .

Definition 4. Let I be an ideal of nH0 and S be a finite generating set generating I (this exists becuase

nH0 is Noetherian). Then loc(I) is the germ of V (S).

We omit the proof of the following.

Proposition 1. Let V be a holomorphic variety at 0, and I be an ideal of nH0. Then

1. V1 ⊂ V2 ⇒ idV1 ⊃ idV2,

2. I1 ⊂ I2 ⇒ locI1 ⊃ locI2,

3. V = loc(idV ),

4. I ⊂ id(locI).

Definition 5. Let I be an ideal of a ring R. We define the radical of I to be
√
I = {f ∈ R : fk ∈ I for some k }.

1



The Nullstellensatz

Our goal is to show
id(locI) =

√
I

for:

1. I an ideal of C[z1, ..., zn] (Hilbert’s Nullstellensatz);

2. I an ideal of nH0 (Rückert’s analytic Nullstellensatz).

Note that in both cases,
√
I ⊂ id(locI) is clear. The hard part is in proving the opposite inclusion.

The proof of both cases has four main results to stand on. We first outline these below of Hilbert’s
Nullstellensatz.

1. Reduce to prime ideals. Let A be a Noetherian ring. Then if id(locI) =
√
I for prime ideals,

then id(locI) =
√
I for all ideals.

2. Noether normalisation. Let A be a finitely generated commutative algebra over an infinite field
K. Then there is an algebraically independent set {x1, ..., xn} ⊂ A consisting of linear combinations
of the generators of A such that if B = K[x1, ..., xn] then A is a finite extension of B.

3. [1, Cor. 4.3.3]. Let A be an integral extension of B, where A and B are integral domains. Let
P be a prime ideal of A. Then P is maximal if and only if P ∩B is a maximal ideal of B.

4. Going up theorem. Let A be an integral extension of B and P be a prime ideal of B. Then
P = Q ∩B for some prime ideal Q of A.

Assuming steps 1 through 4 above allow a proof of Hilbert’s Nullstellensatz. Below, we outline the
analogous steps for the analytic version.

1. Reduce to prime ideals

2. [1, Theorem 4.5.2] Let P be a non-zero prime ideal of nH0. Then we can choose linear coordinates
for Cn and m < n such that A = nH0/P is a finite extension of B = mH0 generated by the
images of zm+1, ..., zn.

3 & 4 [1, Theorem 4.5.4] Let P be a prime ideal of nH0. Suppose that the coordinates for Cn and m < n
are chosen so that nH0/P is a finite extension of mH0. Then V = locP is a union V = V ′ ∪ V ′′ of
germs such that π : Cn → Cm makes V ′ the germ of a finite branched holomorphic cover of pure
order on a neighbourhood of 0 ∈ Cm.

Note that the phrase finite branched holomorphic cover of pure order has not yet been defined. This
is defined in part 2 of the lecture.

Hilbert’s Nullstellensatz

By the reduction to prime ideals, we may assume that I is prime. Recall also that we need only show
that id(locI) ⊂

√
I.

Take f ∈ C[z1, ..., zn], f /∈ I. By Noether normalisation, we can choose coordinates and m < n such
that A = C[z1, ..., zn]/I is a finite extension of B = C[z1, ..., zm]. That is, the image of f in A satisfies a
minimal polynomial over B of the form

fk + bk−1f
k−1 + ...+ b1f + b0 ∈ I,

with bi ∈ B. By the minimality of this polynomial, and the fact that I is a prime ideal, we know that
b0 is not identically 0. Thus, there exists a point λ ∈ Cm with b0(λ) 6= 0. Let M = id{λ}, the ideal of
polynomials in B which are zero at λ. This is a maximal ideal of B, that is, B/M = C.

By the going up theorem, there must then be a prime ideal N of A such that N ∩B = M , and by [1,
Cor 4.3.3], N is maximal in A. Furthermore, A/N is a finite extension of B/M . But C is algebraically
closed, so A/N = C. Let ζ ∈ Cn be the point such that ζi is the image of zi in A/N . Then N = id{ζ}.
(Note: ζi = λi for i ≤ m, since N ∩B = M .)
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Now A = C[z1, ..., zm]/I, so all polynomials in I must vanish at ζ, including the minimal polynomial
over B satisfied by f :

fk(ζ) + bk−1(λ)fk−1(ζ) + ...+ b1(λ)f(ζ) + b0(λ)︸ ︷︷ ︸
6=0

= 0.

That is, f(ζ) 6= 0, so f /∈ id(locI). Thus, id(locI) ⊂ I ⊂
√
I, completing the proof.

Analytic Nullstellensatz

Again, we may assume that I is a prime ideal, and we need only show that id(locI) ⊂ I. The proof will
largely follow the same outline as the Hilbert Nullstellensatz.

Take f ∈ nH0, f /∈ I. By [1, Thm 4.5.2], we may choose coordinates and m < n such that A = nH0/I
is a finite extension of B = mH0. As before, the image of f in A satisfies a minimal polynomial over B
of the form

fk + bk−1f
k−1 + ...+ b1f + b0 ∈ I,

where the bi ∈ mH0. By minimality of the polynomial and primality of I, we have b0 6= 0. Choose a
polydisc ∆ ∈ Cm where each bi has a representative, and let Π : Cn → Cm be the natural projection. By
[1, Thm 4.5.4], after shrinking ∆ if necessary, we find that locI has a representative V in Π−1(∆) and

V = V ′ ∪ V ′′,

where Π : V ′ → ∆ is a finite branched holomorphic cover of pure order.
Let f be a representative of f on a neighbourhood U of 0, with U ⊂ Π−1(∆). In the next part of

this lecture, we will find that U contains points z ∈ V ′ ⊂ locI arbitrarily close to 0 with

fk(z) + ak−1(Π(z))fk−1(z) + ...+ a0(Π(z))︸ ︷︷ ︸
6=0

= 0.

Thus f(z) 6= 0, so f does not vanish on V and f /∈ id(locI), giving the result.

Conclusion

This finishes both proofs, under some fairly heavy assumptions. In the second part, many details of these
assumptions are filled in, and the mysterious finite branched holomorphic cover of pure order is defined.
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