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Last seminar we saw the (analytic) Nullstellansatz for varieties of complex germs. We also saw a proof for
the analytic Nullstellensatz; however we omitted the proof of the key theorems used to and also ended with
a floating definition. Now we shall produce some machinery to fill in the gaps of the Nullstellensatz proof
from last seminar. First we will give a reminder of what the analytic Nullstellensatz entails.

Theorem 0.1 (Analytic Nullstellensatz). Let I be an ideal of nH0 then id(loc(I)) =
√
I.

Now we shall give some definitions including the definition missing from last seminar.

Definition 0.2. Let V , W be topological spaces. A proper map π : V → W is a map that is continuous
and if K is compact in W then π-1(K) is compact in V .

Definition 0.3. Let V0 be an open subset of Cn and W0 be an open subset of Cm.

Then π : V0 → W0 is locally biholopmorphic if for all λ ∈ V0 there is a neighbourhood, U , of λ such that
π : U → π(U) is a biholomorphism.

Definition 0.4. Let V be a holomorphic subvariety of Cn and W be a holomorphic subvariety of Cm.

Let π : V →W be a finite-to-one proper holomorphic map.

Then π is a finite branched holomorphic cover if there are dense open subsets W0 ⊆W , V0 ⊆ V such that:

• V0 = pi-1(W0)

• W \W0 is a subvariety of W .

• π : V0 →W is locally biholomorphic.

We call π : V0 →W a dense regular subvariety of π : V →W .

For some examples of a biholomorphic map let V = {(z, w)C2 : z2 − w3 = 0} and W = C. Let

π1(z, w) = z (1)

and
π2(z, w) = w. (2)

Let V0 = V \ {(0, 0)} and W0 = W \ {0}. It is left as an exercise that π1 and π2 are biholomorphic via W0

and V0.

Now we shall show that finite branched holomorphic covers are more than just locally biholomorphic.
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Definition 0.5. Let V0 be an open subset of Cn and W0 be an open subset of Cm.

Then π : V → W is a finite holomorphic covering map if for all w ∈ W0 there is a neighbourhood, A, of w
such that π-1 is a finite disjoint union of open sets which are biholomorphic with A with π : A → π-1 their
biholomorphism.

Prop 0.6 (Proposition 4.4.2). If π : V → W is a finite branched holomorphic cover with W0 and V0 as
above then π : V0 →W0 is a finite holomorphic covering map.

Proof. Take w ∈W .

Let π(w)
-1

= {λ1, . . . , λm}.

It can be shown that the number of points in π-1(w) for w ∈ W0 is locally constant. If W0 is connected,
|π-1(w)| = r is a constant. We say that π : V →W and π : V0 →W0 are pure order r.

The maps in Equations 1 and 2, π1 and π2 are pure order 2 and 3 respectively.

Prop 0.7. Let π : V →W be a finite branched holomorphism from W : V0 →W0.

If W0 is locally connected, w ∈ W and λ ∈ pi-1(w) then there are arbitrarily normal neighbourhoods U of λ
and A = π(V ) of w such that π : U → A is a finite branched holomorphic cover of pure order.

Definition 0.8. Let π : V →W be a finite branched holomorphism from W : V0 →W0 and U and A be as
in Proposition 0.7.

Then the pure order stabilizes on sufficiently small neighbourhoods of λ and is called the branching order of
π at λ.

We shall now review polynomial theory.

Definition 0.9. If an integral domain is integrally closed in its field of fractions then we say its a normal
domain.

An example of a normal domain is given in the next theorem.

Theorem 0.10. UFD’s are normal domains.

Definition 0.11. Let k be a field and p ∈ k[x]. Then discriminant of p is

dp =
∏
i6=j

(xi − xj)2,

where x1, . . . , xn are the roots of p in some splitting field.

Theorem 0.12. If A is a normal domain and k is the field of fractions of A then for all p ∈ k[x], dp ∈ A
and dp = 0 if and only if p has multiple roots.

Now we shall return to developing our tools for proving the analytic Nullstellensatz. Our main tool is:
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Prop 0.13. Choose coordinates on Cn and let m < n.

Let π : Cn → Cm be projected onto the first m coordinates.

Let W be connected and open in Cm and U = π(W ).

For j = m+ 1, . . . , n let pj ∈ H(W )[zj ] be monic of degree greater than or equal to 1.

Write pj(z
′, zj) to evaluate the coefficients of pj at z′ and pj at z.

If
V = {(z1, . . . , zn) ∈ U : pj(π(z), zj) = 0,∀j = m+ 1, . . . , n}

then π : V →W is a finite branched holomorphic cover.

What is key for us is the construction of V0 and W0. Let dj ∈ H(W ) be the image of pj . Let D =
∪nj=m+1V (dj). Then we set W0 = W \D and V0 = π-1(W0).

Lemma 0.14. Given positive integers n and r there exists a finite set of linear functionals, {f1, . . . , fr}
such that for any set of distinct points {z1, . . . , zr} ⊆ Cn there is some i such that fi(zi) 6= fj(zi) for all j.

Prop 0.15 (Propsition 4.4.6). Let W ⊆ Cm be connected and open and D be a proper subvariety of W .

Let W0 = W \D and π : Cn → Cm be the projection with coordinates chosen in Prop 0.13.

If

• V0 is a subvariety of π-1(W0) with V̄0 ⊆ π-1(W ),

• π : V0 →W0 is a holomorphic covering map of order r and

• π : V̄0 →W is a proper map

then

1. V̄0 is a subvariety of π-1(W ),

2. π : V̄0 →W is a finite branched holomorphic cover,

3. for all w ∈W there are at most r elements in π-1(w) ∩ V̄0 and

4. each f ∈ H(V̄0) is a root of a monic polynomial of degree r with coefficients in H(W ).

From this theorem we get two Corollaries (ref) used to prove the Nullstellensatz.

The final piece to prove the Nullstellensatz is:

Theorem 0.16 (Theorem 4.5.4). Let P be a prime ideal of nH0.

Suppose m < n and coordinates have been chosen Cn so that nH0/P is a finite of nH0 then locP = V ′ ∪ V ′′

where V ′ and V ′′ are subvarieties of locP such that π : Cn → Cm gives V ′ as the germ of a finite branched
holomorphic cover of pure order on a neighbourhood of 0 in Cn.
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