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Abstract

We show that if M is a connected binary matroid of cogirth at least
five which does not have both an Fr-minor and an F7-minor, then M
has a circuit C such that M — C is connected and (M — C') = r(M).

Introduction

We shall consider the problem of finding sufficient conditions for the existence
of a circuit in a given matroid M whose deletion leaves the rank or connec-
tivity of M unchanged. The existence of such a circuit in graphs has been
considered by various authors. The most general result for simple graphs can

be deduced from a theorem of W. Mader [5, Satz 1].

Theorem 1 Let k be a positive integer and G be a simple k-connected graph
of minimum degree at least k+2. Then G has a circuit C such that G— E(C)

1s k-connected.

Stronger results for the special case when G is simple and k& = 2 can be found

in Jackson [4] and Thommassen and Toft [10].
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It seems natural to ask if Theorem 1 can be extended to a graph G, which
may contain multiple edges. We can obtain a partial result by applying The-
orem 1 to the underlying simple graph of &, if G has no edges of multiplicity
greater than two, and otherwise choosing C' to be a 2-circuit of GG belonging
to an edge of multiplicity at least three, to deduce

Corollary 2 Let k be a positive integer and G be a k-connected graph of
minimum degree at least k 4+ 3. Then G has a circuit C' such that G — E(C)
1s k-connected.

It follows from a result of Sinclair [9] that the bound & + 3 in Corollary
2 can be reduced to k + 2 for the special case when & = 1. This is not true
when k£ = 2, however, as can be seen from an example constructed by N.
Robertson and later B. Jackson (see [4]). However, replacing k 4+ 3 by k + 2
when k& = 2 in Corollary 2 is valid for graphs which do not contain a vertex of
degree four incident with two edge-disjoint 2-circuits by [9], for planar graphs
by [1], and, more generally, graphs with no Petersen minor, by [2].

Oxley asked in [7, Problem 14.4.8] if the following partial extension of
Theorem 1 when k& = 2 is valid for binary matroids: does every connected
binary matroid of girth at least three and cogirth at least four have a circuit C'
such that M — (' is connected? L Lemos (see [2]) has constructed a cographic
matroid of cogirth four which shows that the answer to Oxley’s question is
no. It remains an open problem, however, to decide if there exists an integer
t > 5 such that all connected binary matroids M of cogirth at least ¢ have a
circuit C' such that M —C'is connected. We shall show in Theorem 7 that this
assertion is true with ¢ = 5 for binary matroids M which do not have both
an F7- and an FF-minor. This gives a partial generalisation of Corollary
2 when £ = 2. Our proof uses the decomposition theory of Seymour in
[8] which implies that a 3-connected, vertically 4-connected binary matroid
which does not have both an Fr-minor and an F7-minor is either graphic
or cographic, or is isomorphic to Rig, Fr or F¥. We shall first show that
our result holds for graphic and cographic matroids. We then proceed by
contradiction and show that a smallest counterexample to the result would
be vertically 4-connected. It then only remains to check that the result holds
for matroids obtained from Rjo, F7 or F7 by parallel extensions.



2 Graphs

We shall consider finite graphs which may contain multiple edges, but no
loops. We consider a graph GG to be 2-connected if G — v is connected for
all v € V(G). We shall use Eg(v) to denote the set of edges of G incident
with a vertex v and put dg(v) = |Eg(v)|. We will suppress the subscript ¢
when it is clear to which graph we are referring. Given a circuit C' of G, put
€] = |E(C)].

We first obtain, in Lemma 4 below, a slight extension of the case k = 2
of Corollary 2. We need this extension for our inductive proof on matroids.
Lemma 4 itself follows from a result of Sinclair [9]. We include a proof in this
paper for the sake of completeness. We shall use the following elementary
result.

Lemma 3 Let GG be a graph on n vertices and Cy be a circuit of G such that
|Col < 3 and n > |Co|. Suppose that for all v € V(G) — V(Cy) we have
dg(v) > 4. Then G has a circuil C such that E(Co) N E(C) = 0.

Proof. If (G is not 2-connected then choosing C' to be any circuit in an end-
block of G which does not contain Cy we have E(Cy) N E(C) = . Hence we
may suppose that GG is 2-connected.

Let H = G — E(Cy). Suppose H is a forest. Then |E(H)| < n — 1.
Let ¢ be the number of edges between V(Cy) and V(G) — V(Cy). Then
|E(H)| = (t + Xoev@)-v(co) da(v)). Since G is 2-connected, ¢ > 2, and
since d(v) > 4 for all v € V(G) — V(Cy), we have |E(H)| > 2n — 2|Co| + 1.
Thus n < 2|Cy| — 2. Since n > |Cy|, we have |Co| = 3, and n = 4. Let
V(G) — V(Cy) = {v}. Using the assumption that H is a forest, we have
de(v) < 3. This contradicts an hypothesis on G and so the assumption that
H is a forest must be false. &

Lemma 4 Let G be a 2-connected graph on n vertices and Cy be a circuil of
G such that |Co| <3 and n > |Cy|. Suppose that for all v € V(G) — V(Cy)
we have dg(v) > 5. Then G — E(Cy) has a circuit C' such that G — E(C) is

2-connecled.

Proof. Suppose the theorem is false and let G be a counterexample. By
Lemma 3, we can choose a circuit C'in G — E(Cy). Let H = G — E(C),
let By be the block of H which contains Cy and B be an end-block of H
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distinct from By. We may suppose that C' has been chosen such that |E(B)|
is minimal. Let e be an edge of B chosen such that, if B contains a cut-vertex
z of H, then e is incident with z. Since dg(v) > 5 for all v € V(G) — V(Cy),
at most one vertex of B — e has degree less than two. Thus we may choose
a circuit C' contained in B — e. Using the minimality of |F(B)| and the fact
that (7 is 2-connected we see that each end-block of H— E(C") is incident with
C and each component of H — E(C") is incident with at least two vertices of
C. Thus G — E(C") = (H — E(C"))U E(C) is 2-connected. This contradicts

the choice of (G as a counterexample to the theorem. &

Given a graph G and U C V((), we use Ng(U) to denote the set of
vertices of V(G) — U adjacent to a vertex of U and G[U] to denote the
subgraph of G induced by U. For S C E(G), let GG/ S be the graph obtained
from GG by contracting the edges in S, and V(5) the set of vertices of
incident with §.

We next show, in Lemma 6 below, that the case £ = 2 of Corollary 2 can
be extended to cographic matroids. We shall use the following elementary
result.

Lemma 5 Let G be a connected graph on n vertices and Xy be a cocircuit
of G such that | Xo| <3 and |E(G)| > n+|Xo|—1. Suppose that G — Xq has
girth at least four. Then V(G) # V(Xo).

Proof. Let H; and H; be the two components of G — Xy. Suppose V(G) =
V(Xo). Then |V (H;)| < 3 and since GG — X has girth at least four, H; is a
tree for 1 <1 < 2. Thus

[E(G)] = [VH)| =1+ [V(H;)| = T+ [Xo| = n 4 [Xo| — 2.
This contradicts the hypothesis on |E(G)]. 1

Lemma 6 Let G be a 2-connected graph on n vertices and Xy be a cocircuit
of G such that | Xo| <3 and |E(G)| > n+|Xo|—1. Suppose that G — Xq has
girth at least five. Then there exists v € V(G) — V(Xy) such that G/FE(v) is

2-connecled.

Proof. Suppose the theorem is false and let G be a counterexample. By
Lemma 5, we can choose a vertex v in V(G) — V(Xp). Let H = G/E(v) and



z be the vertex of H corresponding to Ng(v) U {v}. Then z is the unique
cut vertex of H. Since Xo N E(v) = 0, X is a cocircuit of H and hence is
contained in a block B of H. Let U = V(B) — x. We may suppose that v
has been chosen such that |U] is maximal. Note that Ng(U) C {v} U Ng(v).
Furthermore, since GG is 2-connected, |[Ng(U)| > 2 and G[U U Ng(U) U {v}]
is 2-connected. Choose v’ € V(H) — V(B). Then v' € V(G) — V(Xp). Let
H' = G/E(v) and 2’ be the vertex of H corresponding to Ng(v') U {v'}.
Let B’ be the block of H' containing Xo and U’ = V(B') — 2’. Then U U
(Ng(U) — Ng(v')) is properly contained in V(B’). By the maximality of |U]
we must have Ng(U) C Ng(v'). Now the facts that Ng(U) C {v} U Ng(v)
and |Ng(U)| > 2 imply that E(v) U FE(v') contains a circuit of G of length
at most four. This contradicts the fact that G — X, has girth at least five.

3 Binary Matroids

We shall use the following operation on binary matroids from Seymour [8].
Given binary matroids M; and M, let M;/ AM; be the binary matroid with
E(M) = E(M)AE(M;) and circuits all minimal non-empty subsets of
E(M) of the form C;AC,, where C; is a circuit of M;. We refer the reader

to [7] for other definitions on matroids. Our main result is

Theorem 7 Let M be a connected binary matroid which does not have both
an Fr-minor and an FZX-minor. Lelt Cy be a circuil of M such that |Co| < 3
and r(M) > r(Cy). Suppose |X| > 5 for all cocircuits X of M such that
XNCy=10. Then M — Cy has a circuit C such that M — C is connected
and r(M — C) =r(M).

Proof. We proceed by contradiction. Suppose the theorem is false and let
M be a counterexample chosen such that r(M) is as small as possible.

Claim 1 M is vertically 3-connected.

Proof. Suppose that M has a vertical 2-separation (57, 53). Choose (Si, S2)
such that |S; N Cy| is minimal. Since r(S;) > 2 we have |S;| > 2. By [8, 2.6],
M = M;AMj, for minors M; and My of M such that 2 < r(M;) < r(M),
E(M)NE(My) = C§ for some 2-circuit C) = {f, g} of M;, and F(M,)—C{ =
S; for 1 < ¢ < 2. Since M is connected each M; is connected. Since M; is
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a minor of M, M; is binary and does not have both an Fr-minor and an
FZ-minor. Since Cy N E(M) = 0 we have Cy N Cy = 0. Since |Cy| < 3,
|Con E(My)] < 1.

Suppose CoNE(M;) = {e}. Then Cy = C1AC, for some circuits C; of M;,
1 <4< 2. Thus |Cq] =2 and e is parallel to f and ¢g in M;. Let h € 51 — ¢
and Y be a circuit of M which meets both S; and S;. Then YV = V{AY; A
for some circuits Y; of M; such that |Y;NCj =1,1 <7< 2. Thus Y, —Cl+e
is a circuit of both M; and M, and r(S; —e) = r(S1) > 2. Similarly since
e € Cyg C Sy 4 e we have r(Sy + ¢) = r(S2) > 2. Thus (57 —€,5; + ¢€) is
a vertical 2-separation of M. This contradicts the minimality of |S; N Cl.
Hence we must have Co N E(M;) = 0.

Let X be a cocircuit of My such that X; NCJ = . Then X; is a cocircuit
of M such that X; N Cy = 0 so by an hypothesis of the theorem we have
|X1| > 5. Using the minimality of (M) we deduce that M; — C{ has a
circuit C' such that My — C' is connected and r(M; — C) = r(M;). Since
M — C = (M; — C)AM; we have C' is a circuit of M — Cy such that M — C
is connected and r(M — C') = r(M). This contradicts the choice of M. Thus

M has no vertical 2-separation and hence M is vertically 3-connected.
Claim 2 M is vertically 4-connected.

Proof. Suppose that M has a vertical 3-separation (57, 53). Choose (Si, S2)
such that |S; N Cy| is minimal. Since |Co| < 3, |Co N E(M;)]| < 1. We first
show that |S;| > 4 for 1 < ¢ <2,

Suppose |S;] = 3 for some ¢ € {1,2}. Since r(S;) > 3 we must have
r(S;) = 3. Since r(Sy) + r(S2) — r(M) = 2 we have r(S;) = r(M) — 1, for
J = 3—t. Thus the closure of S; is a hyperplane of M. The complement of this
hyperplane will be a cocircuit Xg of M contained in S;. Since | Xo| < |S;| = 3,
it follows from an hypothesis of the theorem that Xy N Cy # (). Since M is
binary we must have | Xy N Cy| = 2. Since S; is independent we must have
|Col| = 3 and |S; N Cy| = 1. By the minimality of |57 N Cy|, we must
have ¢« = 2. Choosing ey € S; N Cy we have r(S; —e) < r(S1) and, since
eo € Co C Sy + eg, 1(S2 + €9) = r(S2) = 3. Thus (S; — €9, 52 + €g) is
either a vertical 2-separation of M, contradicting Claim 1, or it is a vertical
3-separation of M, contradicting the minimality of |S; N Cy|. Thus |S;| > 4
for ¢« € {1,2}.

By [8, 2.9], M = M;AM; for minors M; and M, of M such that 3 <
r(M;) < r(M), E(My) N E(My) = C] for some 3-circuit C§ = {f,g,h} of
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M;, and E(M;) — C}{ = S; for 1 <¢ < 2. Since M is connected, each M; is
connected. Since M; is a minor of M, M; is binary and does not have both
an Fr- and an FZ-minor. Since Cy N E(M) = 0 we have C{ N Cy = 0.

Suppose e € Cy N E(My). Then Cy = C1AC, for some circuit C; of M;,
1 <e¢<2 Thus C; — Cl ={e}and 1 < |C1NCH <20 If |CiNCY| =2
then replacing Cy by C7 = C1AC, we have |C; N C{| = 1. Thus we may
assume without loss of generality that e is parallel to f in M;. Let M be
the simple matroid obtained by replacing all parallel classes of M; by single
elements and let f, g and h represent their own parallel classes in M;. Using
Claim 1 it follows that M] is 3-connected. If f is a coloop M| — {g,h} then
C{ would contain a cocircuit of M]. Since M7 is binary this cocircuit would
have size two and hence would contradict the fact that M| is 3-connected.
Thus f is contained in some circuit of M] — {g,h}. Since e is parallel to
f we deduce that M has a circuit which contains e and is contained in 5.
Hence r(S71 —€) = r(S1) > 2. Similarly since e € Cy C Sy + e we have
r(Sy +¢e) = r(S2) > 2. Thus (S; — e,52 + €) is a vertical 3-separation
of M which contradicts the minimality of |S; N Cy|. Hence we must have
Co N E(M;) = 0.

Let X be a cocircuit of My such that X; NCJ = . Then X; is a cocircuit
of M such that X; N Cy = 0 so by an hypothesis of the theorem we have
|X1| > 5. Using the minimality of (M) we deduce that M; — C] has a
circuit C' such that M; — C is connected and r(M; — C') = r(M;). Since
M —C = (M; — C)A M, it follows that C' is a circuit of M such that M —C
is connected and (M — C) = r(M). This contradicts the choice of M. Thus
M has no vertical 3-separation and hence M is vertically 4-connected.

We are now ready to complete the proof of the theorem. Let M’ be
the simple matroid obtained by replacing all parallel classes of M by single
elements. By Claims 1 and 2, M’ is a 3-connected vertically 4-connected
binary matroid. By [8, 7.6 and 14.3], M is either graphic or cographic, or is
isomorphic to Ryg, F7 or F¥. Thus M is either graphic or cographic, or can
be obtained from Ry, F7 or FX by a sequence of parallel extensions. If the
latter alternative holds then since Rjg, F7 and FJ have many cocircuits of
size four, M — Cy must contain a circuit C' of size two. The 3-connectivity
of M" now implies that M — C' is connected and r(M — C') = r(M). Hence
M is graphic or cographic. Lemmas 4 and 6 now give a contradiction to the
choice of M as a counterexample to the theorem. 1



4 Closing Remarks

Remark 1 It follows from Corollary 2 that every connected graph G of min-
imum degree at least three has a circuit C' such that G — F(C) is connected.
Thus every graphic matroid M of cogirth at least three has a circuit C' such
that r(M) = r(M — C'). The same result holds for a cographic matroid M
of cogirth at least three. (This can be seen by considering the graph G for
which M is the cographic matroid. Then G has girth at least three and the
set of edges incident with any non-cutvertex of GG will give the required cir-
cuit C' of M.) The result does not extend to regular matroids of cogirth at
least three since it does not hold for Rjo (which has cogirth four). However,
if M is a binary matroid which does not have both an F7- and an F-minor,
and has cogirth at least five, then we may apply Theorem 7 to a component
of M to deduce that M has a circuit C' such that r(M) =r(M — C).

One may hope that all binary matroids M of sufficiently high girth have
a circuit C' such that r(M) = r(M — ). This is not the case. To see this
note that r(M) = r(M —C) if and only if C' does not contain any cocircuit of
M. Thus, if M is identically self-dual (and in particular if M = Rjq) then no
such circuit can exist. The assertion now follows since there exist identically
self-dual binary matroids of arbitrarily high cogirth. The column matroid
of the parity check matrix of the binary Reed-Muller code R(s,2s + 1), for
example, is identically self dual and has cogirth 251,
Remark 2 It is not true that every connected matroid of sufficiently high
girth has a circuit ' such that M — (' is connected. This can be seen by
considering the uniform matroid U, ,,,. It is still conceivable, however, that
this may hold for binary matroids.

Problem 1 Does there exist an integer t such that every connected binary
matroid M of cogirth at least t has a circuit C' such that M — C' is connected?

Remark 3 We could also ask for sufficient conditions for the existence of a
cocircuit in a matroid M the deletion of which preserves the connectivity of
M. The following reult of P.D. Seymour (see [6, Lemma 6]) is in the spirit
of this paper. It is a matroid analogue of an earlier graph theoretic result of

Kaugars (see [3, p. 31]).

Lemma 8 Let M be a connected binary matroid of girth and cogirth at least
three. Then M has a cocircuit X such that M — X is connected.
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