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Abstract

We prove the following result.

Let G be an undirected graph. If G has a nowhere zero flow with at most k different

values, then it also has one with values from the set {1,...,k}.

When £ > 5, this is a trivial consequence of Seymour’s “six-flow theorem”. When k& < 4 our proof

is based on a lovely number theoretic problem which we call the “Lonely Runner Conjecture”.

Suppose k runners having nonzero constant speeds run laps on a unit-length circular
track. Then there is a time at which all runners are at least 1/(k+1) from their common

starting point.

This conjecture appears to have been formulated by J. Wills (Montash. Math. 71 (1967)) and
independently by T. Cusick (Aequationes Math. 9 (1973)). Fortunately for our purposes, this
conjecture has been verified for k£ < 4 by Cusick and Pomerance (J. Number Theory 19 (1984)) in
a complicated argument involving exponential sums and electronic case checking. A major part of

this paper is an elementary self-contained proof of the case kK = 4 of the Lonely Runner Conjecture.
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1 Introduction

Let G = (V, F) be an undirected graph. A nowhere zero flow of GG is an orientation of G supplied
with a vector f = (f.) of positive integers indexed by E(G), such that for every v € V(G) the sum
of f. on edges entering v is the same as that on edges leaving ». The number f. is called the value
of the edge e. The theory of nowhere zero flows is a major topic in combinatorics related to graph
coloring and the cycle double cover conjecture; see [9, 14, 16].

The main result of this paper is the following.

Theorem 1.1 Let G be an undirected graph. If G has a nowhere zero flow with at most k distinct

values, then it also has one with all values from the set {1,...,k}.

In view of the matroid duality [16, 15, 9, 11, 14] between vertex colorings and nowhere zero
flows there is a cographic analogue to Theorem 1.1. A coloring of G is a function ¢ : V(G) — R, so
that for all zy € F, c(z) # c(y).

Theorem 1.2 If G has a coloring with real numbers so that the set {|c(z)—c(y)| : zy € E} has at
most k distinct values, then G has a (k4 1)-coloring (and thus one where |c(z)— c(y)| € {1,....k}
forallzy e E.)

Theorem 1.2 is easy to prove: By orienting each edge toward the endpoint with the larger color
and identifying the color classes, one obtains an acyclic digraph having maximum out-degree k. An
easy greedy algorithm results in a (k + 1)-coloring of G.

Theorem 1.1 is more difficult. Our proof relies on Seymour’s siz-flow theorem [13] and a number
theoretic result of Cusick and Pomerance [6] to which we give a short proof. We state here the
six-flow theorem. A graph is called bridgeless, if it has no bridge, where e € F is a bridge if G — e

has more components than G.
Theorem 1.3 FEvery bridgeless graph has a nowhere zero flow with values from the set {1,...,5}.

There is a common generalization of Theorems 1.1 and 1.2 regarding flows in regular matroids
(see [11, 15]) which is strongly suggested by Seymour’s regular matroid decomposition theorem [12].

A matrix is totally unimodular if every subdeterminant belongs to {0,+1}.

Conjecture 1.4 lLet A be a totally unimodular matriz and suppose that Af = 0 has a real solution
f = (f.) where each f. is nonzero and where |{|f.| : € € E(G)}| < k. Then there exists a solution
I =(f!) with each |f!| € {1,2,...,k}.

The analogous statement concerning group-valued flows [16, 9] is false. For example, the graph
with two vertices and three parallel edges has a flow with range {1} in Z3, but not in the integers.
The paper is organized as follows. In Section 2, Conjecture 1.4 is reduced to the “Lonely Runner
Problem”; in particular Theorem 1.1 is reduced to the special case k < 4. A general proof technique

for this problem is introduced in Section 3, and applied to the case & = 4 in Section 4.



2 Runners and Flows

Let us informally state the Lonely Runner Problem: At time zero, k participants depart from
the origin of a unit length circular track to run repeated laps. Each runner maintains a constant
nonzero speed. Is it true that regardless of what the speeds are, there exists a time at which the
k runners are simultaneously at least 1/(k 4 1) units from the starting point? The term “lonely
runner” reflects an equivalent formulation in which there are £ + 1 runners with distinct speeds.
Is there a time at which a given runner is ‘lonely’, that is, at distance at least 1/(k 4 1) from the
others? This poetic title (given by the second author) made its way through an internet inquiry
(of the second and last author) up to the cover page of a public relation booklet for the Weissman
Institute in Israel [22].

We introduce some notation. The sets of real numbers and positive integers are denoted R
and N respectively. The residue class of @ € R modulo 1 (called the fractional part of a) is
denoted by (a). We view the unit-length circle C as the set {(a) : @ € R}, which we frequently
identify with the real interval [0,1). An instance of the lonely runner problem consists of a set
of runners R := {1,2,...,k} and a speed vector v := (v1,...,v;) having nonzero real entries. At
time ¢ = 0, each » € R begins running on C from the point 0 maintaining the constant speed
v,. The position of runner r on C' at time t is (tv,). The position of R at time ¢ is the vector
(tv) = ({tv1), ..., (tvy)) € [0,1)%. A vector & = (z1,...,7;) € [0,1)* is a position (for the speed
vector v) if there exists ¢ € R with z = (tv). The set of all positions is denoted X = X (v) C [0, 1).
The distance between two points on C'is the length of the shorter of the two (arc) intervals between
them. We say that » € R is distant (from 0) in © € X or at time t if z, = (tv,) € [57, %] A
subset R’ C R is distant (in some position z) if each r € R’ is distant in z. (here, k is understood
by context to equal |R|, not |R'|).

The aforementioned internet inquiry led us to the following assertion, which we call the Lonely
Runner Conjecture. This conjecture appears to have been introduced by J. Wills [17] and again,
independently by T. Cusick [3].

Conjecture 2.1 For all k € N and v € (R — {0})¥, there exists a position where R is distant.

This problem appears in two different contexts. Cusick [3, 4, 5, 6] was motivated by a beautiful
application in n dimensional geometry — view obstruction problems. Qur statement of the problem
is closer to the diophantine approximation approach of Wills [1, 17, 18, 19, 20, 21]. A more general
conjecture appears in [2]. The cases k = 2,3,4 were first proved in [17],[1],[6] respectively.

Theorem 2.2 If k < 4, then for any v € (R — {0})* there exists a time at which R is distant.

The proof by Cusick and Pomerance [6] of the case k = 4 is not easy, and requires a computer
check. In sections 3 and 4 we provide a simple self-contained proof. Section 3 also contains a very

short proof for the case k = 3.



We now prove Theorem 1.1 using Theorems 2.2 and 1.3.
Proof of Theorem 1.1. Let f be a nowhere zero flow with £ different values. If £ > 5, then the
result is a trivial consequence of Theorem 1.3 since any graph having a nowhere zero flow must
be bridgeless. If & < 4, then by Theorem 2.2 there exists ¢ € R such that the fractional part of
each entry of ¢f is in the interval [k—i—l’ k-|—1] The flow tf is a feasible flow in the edge-capacitated
network (G, [, u) where [ = [tf| and u = [tf] (we take floors and ceilings componentwise). But
then there also exists a feasible integer-valued flow for (G, 1, u) (Ford and Fulkerson [7]), in which
each edge e has value either |tfe] or [tf.]. Let us denote this flow by [¢f]|. Thus tf — [tf] is a
flow with all entries in [=£-

F+1° k+1] U [k+17 k+1]
edges corresponding to negative entries yields a flow with values in [1, k]. Again, there also exists

Multiplying this flow by k& + 1 and reorienting the

then an integer flow with values in [1,£]. O
Note: we may loosely denote the final flow in the proof of Theorem 1.1 as [(k+ 1)(f — [tf])].
We remark that this proof can be directly generalized to flows in regular matroids by applying
Hoffman’s theorem [8] in order to define f' = |(k + 1)(f — [tf])]. Thus, Conjecture 1.4 is a weak

form of the Lonely Runner Conjecture.

Theorem 2.3 For any k € N, if the Lonely Runner Conjecture holds true for k runners, then the

statement of Conjecture 1.4 holds true for that particular value of k.

The remainder of this paper is devoted to the Lonely Runner Conjecture. Wills [17] reduced
the Lonely Runner Conjecture from the case of irrational speeds to the rational case. So when
proving any case k > 1, one can assume without loss of generality that » € N¥, whence the speeds
express the number of laps the runners make in unit time. One can further assume that ¢ € [0, 1),
although there is usually no advantage in doing so.

Proof of Theorem 2.2 when k < 2. The case £ = 1is trivial. In case k = 2 we prove a stronger

statement:

Suppose v1,v9 € N are relatively prime speeds. At any time t, the nearer runner has

-
v1+v2

distance at most |2E22| /(v) 4+ v3). Moreover, this bound is achieved at time t =

for some T € N.

Whenever the distance from 0 to the nearer runner is maximum, we have (tv;) = 1 — (tvg). This
equality holds if and only if ¢ is an integer multiple of 1/(v1 4+ v2). For such ¢, both runners are
at distance a/(v1 + v2) for some integer a < |“3*2|. Since ged(vy,v1 + v2) = 1 we can solve the
congruence v17 = [(v1 + v2)/2] mod vy + vg, to obtain a time at which the bound on a is achieved,

proving the statement. a



3 Pre-jumps

We state the fact that the set X of positions is closed under addition modulo 1in a particular form

suggesting a technique used by all the proofs hereafter.

(1) If 21,72 € X and a € Z, then the vector z = (x1 + azy) € [0,1)* is also in X. If moreover,
x1 = (t1v), 9 = (tv), and t = t; + aty mod 1, then z = (tv).

Our use of (1) is as follows. We first note the existence of certain “key” positions in X which
we call pre-jumps. In the proof of our main result, it sometimes becomes convenient to add one of
these pre-jumps to a position that has already been constructed, thereby obtaining a position in
which all runners are distant. Qur first example of pre-jumps will be used in a short proof of the

case k = 3. (Compare with the proofs in [1] and [3].)

(2) Let v € N* k> 3. Ifged(vy,...,v5_1) does not divide vy, then there exists a time when R is
distant if and only if there exists a time when R\ {k} is distant.

Proof. Let d > 2 be the greatest common divisor defined in the statement, and suppose without

loss of generality that ged(d, v;) = 1. Then

(%v,) = (3v,) =+ =(=tw,) =0 forr =1,...,k — 1, whereas

{<%vk>,<gvk>,...,<%vk>}: gL =

Let now = (tv) be a position where R\ {k} is distant. Since R \ {k} is also distant in each of
the d positions (z + %'v> (j =0,1,...,d — 1), it suffices to show that & is distant in one of these
positions. However, this follows from the fact that 1/d is at most the length 1 — 2/(k 4+ 1) of the
interval of distant positions since £ > 3 and d > 2. |

Proof of Theorem 2.2 when k < 3. We assume that the speeds vy, vy, v3 are distinct positive

integers having no common factor. If all three speeds are odd, then <%U> = (%, %,%

assume that vy is even. By (2) we may further assume that v; and v3 are odd. So (3v) = (3,0,3),

), SO we may

and this will provide our pre-jump z; = <t1'v> i = l.

Consider the time interval T := | 411]2 T -], during which runner 2 is for the first time in the
.3 Forr=1,3,let T, = {t € 0,1): (tv,) € [}, 2]}.

If T\ (T1UTs) # 0, then use (1) with the defined pre-jump z1, an arbitrary to € T'\ (T} UT3),
and o = 1: ((t1 4 t2)v) = (3,0,%) + (t2v). Since 2 is the only distant runner at time ¢5, {1,2,3} is
distant at time ¢; + t5.

We may now assume T C Ty U T5. Suppose that T" C T;, for some i € {1,3}. Then T is

contained in one of the closed intervals comprising 7;, which implies v, > v;. Furthermore, 7 first

distant region |

becomes distant no later than 2 does, so vy < v; which contradicts vy # v;.
Thus T C Ty UTs, TNT; # 0 (i = 1,3). Both TNTy and T N T5 consist of disjoint closed
intervals and their union is 7. Hence § # (T NTy) N (T NT3) =T NTy N T5, and we are done. O



4 The case k =4

Before completing the proof of Theorem 2.2, we set some notation and present two more pre-jump
facts which hold true whenever £+ 1 is prime. The notation a|b means that a evenly divides b. For
fixed k > 2 we partition the circle C' =[0,1) as {0} U C; U C3 where

- k k

Ch '—(ka}q)u(k+171)u{k-1+17k-2u7 ) and
_ (1 2 2 3 E=1 _k

Cy _(k+17k+1 U(k+1vk+1)u U ( F1° k+1

Given a speed vector v € N* and a position z € X = X(v) we define D := {r € R: (k+1)|v,} and
z)

partition the runners R as Ro(z)U Ry(z) U Ry(z) where
Ro(z) = DU{reR:z, =0},
Ri(z) = {reR\D:z, €Ci},
Ro(z) = {re R\ D:xz, € (Cq}.

(3) Let k+1 be prime, and suppose there exists x € X in which D is distant, and |Ra(z)| < |Ro(z)|.

Then there exists a time when R is distant.

Proof. We consider the list of £ positions (z + lc-]|-_1”> (j=1,2,...,k). Since k + 1 is prime, we

have

(Frror) = - = (Fgor) = 0 ifreD,
{<kl?v7’>7'-'7<kk?v7’>}:{kl?""’%} lfTER\D

Using this, it is straightforward to check that, for m = 0,1, 2, each runner in R,,(z) is distant in
exactly k£ — m of the listed positions. Thus, there are at most |Rq(z)| 4+ 2| R2(z)| positions in the
list in which R is not distant. If |Ry(z)| < |Ro(2)|, then |Rq(z)| + 2|Ro(z)| < k, so R is distant in
at least one of the k listed positions. O

Here is an easy corollary.

(4) Suppose that k + 1 is prime, and the only speed which it divides is vy. If there exists d € N
dividing at least k/2 different speeds, but not dividing vy, then there exists a time when R is

distant.

Proof. Let R':={r € R:d|v,}. Since d > 2 and 2 ¢ R', there exists j € {0,...,d— 1} such that
runner 2 is distant in z := <§v>. We have that 2, = 0 for each r € R’, so Ry(z) 2 {2} U R’, and
therefore |Ro(z)| > 1+ |R/| > & = |R|/2, whence |Ro(z)| > |R2(z)|. Since D = {2} is distant, we
are done by (3). ]

Proof of Theorem 2.2. We assume k£ = 4, R = {1,2,3,4}, all speeds are distinct and have
no common prime factor. Consider the (proper) subset D = {r € R : 5|v.}. If |D| = 0, then



R is distant at time % Suppose 2 < |D| < 3. By induction on k there exists a position y
where D is distant. Either we are done at y, or some runner in R\ D is not distant, whence
|Ro(y)| + |R1(y)| > |D] + 1 > 3, s0 |[Ra(y)| < 1 whereas |Ro(y)| > |D| > 2 > 1> |Ra(y)| and we
are done by (3). We henceforth assume D = {2}, whence 2 € Ry(z) for every position z.

If no runner is faster than 2, then at time %, 2 is the only distant runner, whence |R2($)| =0,
|R0(5”T2)| =1, and we are again done by (3). We thus assume vy > v3, v3, v4.

At least one of v3, v4, say vs, is not equal to vy — vy. Since vg, v3 are distinct and less than v,
the assumptions vs # vy and vs # v1 — v2 imply v3 Z tvy mod vy. If d :=gcd(vy,v3) > 1, then if d
divides vy, we are done by (2); if it does not, we are done by (4).

Thus we can assume gecd(wvy,v3) = 1. Then there exists o € N, avs = 1 mod v;. Let z be the
position at time % We have z1 = 0 and 23 = 1/v; < 1/v3 < 1/5,50 1,2 € Ro(z) and 3 € Ri(z).
If D = {2} is distant in z, then we are done by (3) since 1,2 € Rg(z) whereas 3 € Ry(z) so
|Ra(z)| < 1. So we may assume 2 is not distant in 2.

We notice two facts. First, the distance of z3 from 0 is at least twice that of x5 (this follows
from vy # 0,+v3 mod vy and ged(a,v1) = 1, which implies 2, = <%vg> # 0,4+1/v; whence z5 €
[2/v1,1 — 2/v1].) Second, if a runner has distance § < 1/4 from 0 in some position z € X, then it
has distance 26 in position (2z). Let 2’ be the first position in the sequence (2z), (4z), (8z),...in
which 2 is distant. As before, 1,2 € Rg(z) whereas, by the two facts and the minimality in the

choice of 2/, 2% € (0,1/5) so 3 € Ry(2'), and we are again done by (3). O
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