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Abstract

We prove the following conjecture of Bill Jackson (J. London Math. Soc. (2) 21
(1980) p. 391).

If G is a 2-connected multigraph with minimum degree at least 4 and

containing no Petersen minor, then G contains a circuit C' such that

G — E(C) is 2-connected.

In fact, G has at least two edge-disjoint circuits which can serve as C'. Until now,

the conjecture had been verified only for planar graphs and for simple graphs.
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1 Introduction

In this paper a graph may have multiple edges, but no loops. A graph is simple if it has no
multiple edges. A circuit in a graph G is a connected 2-regular subgraph of G. A circuit
in G is removable if G — E(C') is 2-connected. A Petersen minor of a graph G is a minor of ¢
which is isomorphic with Petersen’s graph. A graph is called eulerian if all its vertices have
even degree.

The study of removable circuits in a graph seems to have been initiated by A. Hobbs [6],
who asked whether every 2-connected eulerian graph with minimum degree at least 4 contains a
removable circuit. The answer to this question is no, as was first realized by N. Robertson [11],

and later, independently, by B. Jackson [7]. Their counterexample is depicted in Figure 1.

Figure 1 A 2-connected 4-regular eulerian graph without removable circuit.

The fact that the counterexample in Figure 1 contains multiple edges, was shown to be

unavoidable by the following result.

1.1 Theorem ( JACKSON [7])
Let G be a 2-connected simple graph with minimum degree k > 4 and let e € F(G). Then
there exists a removable circuit C' in G of length at least k — 1 and such that e ¢ E(C).

In fact, a similar result for arbitrary connectivity can be derived from an older result of

W. Mader [8, Satz 1]. We state only the corollary here.

1.2 Theorem ( MADER [8])
Let G be a k-connected simple graph with minimum degree at least k 4+ 2. Then GG contains a

circuit C' such that G — E(C') is k-connected.



A result with a somewhat different flavor was obtained by C. Thomassen and B. Toft.

1.3 Theorem ( THOMASSEN & ToFT [13])
Let G be a 2-connected simple graph with minimum degree at least 4. Then G contains an

induced circuit C such that G — V(C) is connected and G — E(C') is 2-connected.

Theorems 1.1-1.3 all show that a 2-connected simple graph with minimum degree at least 4
contains a removable circuit. But the problem remains to find sufficient conditions such that
this conclusion holds for nonsimple graphs. Since all known examples of 2-connected graphs
with minimum degree at least 4 and containing no removable circuit contain the Petersen

graph as a minor, the following conjecture was made in [7].

1.4 Conjecture ( JACKSON [7])
Let G be a 2-connected graph with minimum degree at least 4 and containing no Petersen

minor. Then G contains a removable circuit.
The special case of Conjecture 1.4 for planar graphs was proved in [3].

1.5 Theorem ( FLEISCHNER & JACKSON [3])
Let G be a planar 2-connected graph with minimum degree at least 4. Then G contains a

removable circuit.

In this paper we will present a proof of Conjecture 1.4. In fact, we will prove the following

stronger result.

1.6 Theorem
Let G be a 2-connected graph with minimum degree at least 4 and containing no Petersen

minor. Then G contains 2 edge-disjoint removable circuits.

Theorem 1.6 follows from an even slightly stronger result, the exact statement of which can
be found in Section 3.

The remainder of this paper is organized as follows. In the next section, we prove a a special
case of our main result regarding eulerian graphs containing no Petersen minor. The general
case is proved in Section 3. Section 4 contains some general remarks, possible extensions and

related open problems.



2 The eulerian case

The goal of this section is to prove the following result, which is an important step toward the

proof of the general theorem.

2.1 Theorem
Let G be a 3-connected eulerian graph having no Petersen minor. Then there exist two edge-

disjoint removable circuits in GG, each having length at least 3.

A circuit decomposition of G is a set of circuits in G whose edge sets partition E(G). A
hypergraph H is a set of vertices V(H) together with a multiset E(H) of hyperedges. FEach
hyperedge is a nonempty subset of V(H). For A, B C V(H) we denote by [A, B]y the set of
hyperedges in ‘H with at least one vertex in each of A and B. A hypergraph H = (V, F) is
k-edge connected if for every partition (A, B) of V into two nonempty parts |[A, Bly| > k.
If v € V, then H — v denotes the hypergraph with vertex set V' \ {v} and hyperedge set
{e\{v}|e€ E(H)and |e\ {v}| >1}.

2.2 Lemma
Let 'H be a hypergraph of order at least 2. Let k > 1. If H is k-edge connected, then there

exist two vertices vy, vy in H such that both H — vy and H — vy are [% k]-edge connected.

Proof Yor |[V(H)| = 2, the result follows immediately from the definition of edge-connectivity.

Suppose |V(H)| > 3 and that there exists v € V(H) such that H — v is not [ k]-edge

connected. Then there is a partition (A, B) of V(H) \ {v} into nonempty parts such that

I[A, Bln| < [% k] — 1. Let H4 denote the hypergraph obtained from H by identifying all

vertices in B U {v} with a new vertex b. More precisely, V(H4) = AU {b} and FE(H4) =
{e€e E(H)|e CAYU{(enA)U{b} | € € [A,BU{v}]x}. Tt is straightforward to check
that H4 is a k-edge connected hypergraph. Since |V(H4)| < |V (H)|, we can inductively find

two vertices z,y in V(H 4) such that both H4 — 2 and H4 — y are [% k]-edge connected. We

may assume z # b, hence z € A. We claim that H — z is f% k]-edge connected. Suppose this

is not true. Then there is a partition (A’, B’) of V(H) \ {2} into nonempty parts such that

I[A", B'x| < [% k] — 1. We may assume v € A’. Set B* = BN B’ and suppose B* # . By

the choice of A, B, A’, B’ we have |[A, B*]x| < [ k] — 1 and |[A, B*]x| < [ k] — 1. Since



AU A" = V(H) \ B*, this implies |[B*,V(H)\ B*]x| < 2([3k] — 1) < k — 1, contradicting
the fact that H is k-edge connected. Thus we have B* = (), hence B" C A. But then
[B",V(Ha — 2) \ B'ln,| = |[B', A'ln| < [§k] — 1, contradicting that H4 — z is [ k]-edge

connected. This shows that H — z is [} k]-edge connected. Similarly, there is a vertex z’ € B

such that H — 2’ is [ k]-edge connected, which proves the lemma. [ ]

2.3 Lemma
Let G be a 3-connected graph containing a circuit decomposition L in which every circuit has

length at least 3. Then there exist two circuits in £ that are removable in G.

Proof We define the hypergraph H; as follows. Set V(H;) = £ and E(Hz) = {e, | v €
V(G)}, where e, ={C € L | v e V(C)}. Since G is 3-connected and £ contains no circuits
of length 2, H, is 3-edge connected. Since G is 3-connected, £ contains at least 2 circuits,
hence H, contains at least 2 vertices. So by Lemma 2.2, there exist two circuits C7,C5 in £
such that Hy — Cy and Hy — (5 are 2-edge connected. We will show that this implies that
G — E(Cy) and G — E(C3) are 2-connected. Suppose that G — E(C4) is not 2-connected. Then
we can partition the edges of G — E(C4) into two parts A, B such that |V(G[A]) NV (G[B])| < 1.
Thus for any circuit C'in £\ {C1} we have E(C) C A or £(C) C B. This induces a partition
of V(H; — C4) into two parts such that at most one hyperedge of H; — C intersects both
parts, contradicting that H, — C7 is 2-edge connected. Similarly, G — E(C3) is 2-connected.
Thus C1,Cy € L are both removable in G. [ ]

The following result is a special case of the main result in [1].

2.4 Theorem ( ALspacH, GODDYN & ZHANG [1])
Let G be a 2-connected eulerian graph containing no Petersen minor. Assume further that
every edge in G has multiplicity at most 2. Then there exists a circuit decomposition £ of G

such that every circuit in £ has length at least 3.
We now can give the proof of Theorem 2.1.

Proof of Theorem 2.1 Let GG be a 3-connected eulerian graph having no Petersen minor.
First suppose G contains edges of multiplicity at least 3. Since G is 3-connected and eulerian,

the end vertices of these edges have degree at least 6. So if we remove two edges from an edge



of multiplicity at least 3, the remaining graph is still 3-connected and eulerian. Moreover, a
removable circuit in the smaller graph is certainly removable in the original graph. So we can
assume that G has only edges of multiplicity 1 or 2. By Theorem 2.4, there exists a circuit
decomposition £ of GG such that every circuit in £ has length at least 3. By Lemma 2.3, there

are two circuits in £ that are removable in GG, proving the theorem. [ |

2.5 Remark
By applying and extending the ideas used in the proofs of the Claims 1, 2, and 3 in the proof
of Theorem 3.1 below, we may replace in Theorem 2.1 the hypothesis that G is 3-connected

with the weaker hypothesis that G is 2-connected with minimum degree at least 4.

3 The general case

In order to eliminate the minimum degree condition in Theorem 1.6, we extend slightly the
definition of a removable circuit; a circuit C' in G is removable if G — E(C') is the union of
a 2-connected graph with a ( possibly empty ) set of isolated vertices. A digon is a circuit of
length two. A digon C' in G is lonely if exactly two edges in G join the two vertices of C'. A
circuit is good in G if it is removable in G and not a lonely digon.

The following result immediately implies Theorem 1.6.

3.1 Theorem
Let G be a 2-connected graph different from a circuit and having no Petersen minor. Suppose G

has exactly k € {0,1} vertices of degree 3. Then there exist 2 — k edge-disjoint good circuits
in G.

We denote by dg(v) the degree of a vertex » in graph G, and denote by v;(G) the number of
vertices in G having degree i. An edge cut is the set of edges §(X) having exactly one end
vertex in X, for some X C V(G) with @ # X # V(G); a k-edge cut is an edge cut having

cardinality k. Where convenient, we sometimes identify a circuit by its edge set.

Proof of Theorem 3.1 Suppose the theorem is false, and let H be a counterexample for

which |E(H)|is minimum.



Claim 1 H has no 2-edge cut.

Proof Suppose that §(X1) = {e, f} is a 2-edge cut in H. Since H is 2-connected and not
a circuit, e and f are not parallel. Thus the graph H' obtained from H by contracting e is
loopless and satisfies the hypothesis of the theorem with v3(H') < v3(H). By the minimality
of H, H' has 2 — v3( H') edge-disjoint good circuits. Expansion of e transforms these circuits
into at least 2 — v3(H ) edge-disjoint circuits which are each removable in H. Since H is a
counterexample, one of these circuits, say C7, is a lonely digon in H. This can happen only if
each of the two edges g, h of | induce a triangle with {e, f} and e N f is a vertex of degree 2
in H. Thus Dy = {e, f,g} is a circuit which is good in H. As H is a counterexample, we
have v3(H) = 0 and thus H’ has a second removable circuit which corresponds to a removable
circuit Cy in H. The circuit C5 is edge-disjoint from ;7 and cannot be a lonely digon. If Cy
is edge-disjoint from D1, then we are done. So we may assume that Cy contains e and f. But

now Cy — {e, f} + ¢ is a good circuit in H edge-disjoint from Dy, a contradiction. O
Note that in particular Claim 1 implies that H has no vertex of degree 2.
Claim 2 H has no pairy € V(H), e € E(H) such that H —y — e is disconnected.

Proof Suppose that y,e is such a pair. Let Xy, Xy C V(H) be such that | Xq|,|X2| > 2,
X1UX, =V(H), X1n X3 = {y}, and e is the unique edge in H with an end vertex in X1\ {y}
and an end vertex in X3 \ {y}. By Claim 1, H[X;] and H[X3] contain at least 2 edges. For
1 = 1,2, let z; denote the end vertex of e in X;, and define H; to be the graph obtained
from H[X;] by adding a new vertex u; and two new edges u;y and w;z;. By Claim 1, at least
two edges join y to other vertices in X;, so dg(y) > 4 and dg,(y) > 3, ¢ = 1,2. To obtain
a contradiction, it suffices to show for 7 = 1,2 that if no vertex in V(H;) \ {y} has degree 3
in H;, then H[X;] contains a circuit which is good in H. Suppose v3(H;) = 0. Since H is
2-connected, H; is 2-connected and satisfies the hypothesis of the theorem. By the minimality
of H, H; has 2 edge-disjoint good circuits. One of these two circuits does not contain u;, and
is therefore removable in H. By construction of H;, this circuit is not a lonely digon and is
thus good in H, a contradiction. Thus we may assume v3(H;) = 1 and dp,(y) = 3. By the
minimality of H, H; has a good circuit. Since this circuit does not contain y, it is removable

in H. Again, by construction of H;, this circuit is a good circuit in H, a contradiction. O



Claim 3 H is 3-connected.

Proof Suppose {z,y} is a vertex cut in H. Let Xy, Xy C V(H) be such that | X1],|X2| > 3,
X1UXe,=V(H), X1Nn Xy ={z,y}, and no edge of H has an end vertex in X7 \ {z,y} and an
end vertex in X9\ {z,y}. Applying Claim 2, at least two edges join z to a vertex in X;\{z,y},
i =1,2. A similar statement holds for y. Let H' be the graph obtained from H by deleting all
edges joining z to y. Then dy/(z),dg/(y) > 4 and so v3(H') = v3(H). The hypothesis of the
theorem is satisfied by H'. If H' # H, then by minimality, there are 2 — v3( H) edge-disjoint
good circuits in H’. These circuits are also good in H, a contradiction. Thus we have shown

that
(1)  H has no edge joining z to y.

For ¢ = 1,2, we define H; to be the graph obtained from H[X;] by adding two new edges e;, f;,
each joining z to y. For ¢ = 1,2 we have dg,(z), dm,(y) > 4, so H; satisfies the hypothesis of the
theorem, and has strictly fewer edges than H has. Furthermore, v3( Hy)+v3(Hz) = v3(H) < 1,
so we may assume v3(H;y) = 0 and v3(Hz) = v3(H). Thus H; has 2 — v3(H;) good circuits,
i = 1,2. We have three observations regarding these 4 — v3(H) circuits in Hy U Hy. First,
by (1), none of these circuits contains more than one edge from {ey, fi1, eq, f2}. Secondly, if any
one of these circuits does not contain any of ey, f1, €2, fo, then that circuit is also good in H.
Thirdly, if one of these circuits, say Dq, contains exactly one of e, fi and another of these
circuits, say D, contains exactly one of eq, f, then Dy U Dy — {eq, f1, €2, fo} is good in H.
Applying these three observations to the 4 — v3( H) circuits obtained above, one can construct
in all cases 2 — v3(H) edge-disjoint good circuits in H, achieving the desired contradiction.

a
In what follows, an edge e = uv of H is called an (a,b)-edge if diy(u) = @ and dg(v) = b.
Claim 4 H has no (a,b)-edge with a,b > 5.

Proof If e is such an edge, then, since H is 3-connected, H — e satisfies the hypothesis with
vs(H — e) = v3(H). By the minimality of H, H — e has 2 — v3(H — €) edge-disjoint good

circuits. Each of these circuits is also good in H, a contradiction. |
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Claim 5 H has no edge of multiplicity greater than 2.

Proof Suppose that u,v € V(H) are joined by at least three edges. By Claim 3, u and v
each have at least two neighbors in V(H )\ {u, v}, so dg(u),dm(v) > 5, contradicting Claim 4.

a
Claim 6 H has no (3,b)-edge with b > 5.

Proof If e = uv is such an edge and dy(u) = 3, then H — e satisfies the hypothesis with
v3(H —e) = v3(H)—1=0. By minimality, # — e has two good circuits. At least one of these

circuits does not contain w; this circuit is good in H, a contradiction. a
Claim 7 H has no (3,4)-edge.

Proof Suppose e = uv is such an edge where diy(u) = 3. Then H — e satisfies the hypothesis
with v3(H — e) = v3(H) = 1. By minimality, H — e has a good circuit C. If C' does not
contain u, then C is good in H, a contradiction. Thus we assume u € V(C'). We distinguish

two cases.

Case 1: C contains a vertex w with dg(w) > 5.
Let P be a w,w-path in C' and assume that w has been chosen such that every vertex in
V(P) \ {u,w} has degree 4 in H. Since C is removable in H — e, and therefore removable
in H, the graph H' = H — E(P) is 2-connected and satisfies the hypothesis of the theorem
with v3(H') = v3(H) — 1 = 0. By the minimality of H, H’ contains two edge-disjoint good
circuits. Since dp/(u) = 2, one of these two circuits, say C1, does not contain u. One easily
checks that (' is a good circuit in H.

Case 2: Every vertex in V(C')\ {u} has degree 4 in H.
Let f = uz be an edge of C incident with » and let P be the path ' — f. Again the graph
H' = H — E(P) satisfies the hypothesis of the theorem, but now v3(H') = v3(H) = 1. By the
minimality of H, H' has a good circuit Cy. Since dg/(z) = 3 and dg/(u) = 2, C; does not
contain z and therefore C; does not contain u. This implies that (7 is a good circuit in H.

In either case we contradict H being a counterexample, proving Claim 7. a

11



Claim 8 H is 4-regular.

Proof By Claims 1, 6 and 7, H has minimum degree 4 and thus v3(H) = 0. Suppose € is a
(4,b)-edge with b > 5. Then H — e satisfies the induction hypothesis with v3(H —e) = 1, so
H — e contains a good circuit €. One easily checks that C' is good in H. We aim to find two
edge-disjoint good circuits in H. It is possible that neither of them will equal C'. We consider

three cases.

Case 1: C contains two distinct vertices v, w with dg(v), dg(w) > 5.
Let P be a v,w-path in C and assume that all vertices in V(P) \ {v,w} have degree 4 in H.
Since C' is removable in H, the graph H' = H — E(P) satisfies the hypothesis of the theorem
with v3(H') = v3(H) = 0. By the minimality of H, H' has two edge-disjoint good circuits,
and these two circuits are also edge-disjoint and good in H.

Case 2: C contains exactly one vertex w with dg(w) > 5.
Let e = wv be an edge of C incident with w and let P = C'—e. Then H — E(P) satisfies the
hypothesis of the theorem with v3(H') = v3(H)+ 1 = 1. Thus H’ contains a good circuit C’,
and this circuit is also good in H. Since dg/(v) = 3, C' does not contain e, and so C' is edge

disjoint from C. Hence C' and C' are edge-disjoint good circuits in H.

Case 3: All vertices in C' have degree 4 in H.
Let H' = H— E(C). Since C' is removable in H, H' is 2-connected and satisfies the hypothesis
with v3(H') = v3(H) = 0. Thus H' has two edge-disjoint good circuits Cy,Cy. We claim that
one of these is removable, and hence good in H. As (7, Cy and C are edge-disjoint in H,
and dg(v) = 4 for each v € V(H), each vertex in C is belongs to at most one of Cy,Cs.
Since C'is not a lonely digon, Claim 5 implies that C' has length at least 3. Therefore either C
or Cy, say Cy, satisfies |[V(C)\ V(Cy)| > [1|V(C)[] > 2. Thus there are at least two distinct
vertices in C' which belong to the non-trivial 2-connected component of H' — E(C4). It follows
that H — E(C) has exactly one non-trivial component, and this component is 2-connected.

Thus (' is removable in H as claimed, and C, (' are edge-disjoint good circuits in H.

In each case we have contradicted H being a counterexample, and Claim 8 is proved. a

The theorem now follows immediately from Claims 3 and 8 and Theorem 2.1. [ |
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4 Remarks

This section contains some relevant examples, conjectures and extensions.

4.1 Some examples

The connectivity requirement in Lemma 2.3 is necessary. For example, the graph of Figure 2

has four distinct circuit decompositions into circuits of length at least three. In each of these

Figure 2 A 2-connected graph containing circuit decompositions in which
every circuit has length at least 3, but containing no removable circuit of length

at least 3.

decompositions £, the hypergraph H, is a circuit with multiple edges so no circuit in £ is
removable. In fact, the graph has no removable circuits at all except for lonely digons.
Conversely, Figure 3 depicts an eulerian graph which has a removable circuit of length at
least three, even though every circuit decomposition must use a lonely digon.
If G is a graph having no good circuit (in the sense of Theorem 3.1), then we may obtain a
graph having no removable circuit at all by replacing all lonely digons with two lonely digons
which are “in series”, in the manner of the graph of Figure 1. An alternative view is to replace

each lonely digon in G with an edge of weight 2. This raises a more general problem.

4.1 Problem
Which 2-connected edge-weighted graphs (G, p),p: E — {1,2,...}, have a circuit C such that
G — (E(C)np~'(1)) is 2-connected 7

13



Figure 3 A 2-connected graph containing no circuit decomposition in which
all circuits have length at least 3, but containing a removable circuit ( shown in

bold ) of length at least 3.

A faithful circuit cover of an edge-weighted graph (G, p) is a list of circuits such that each
e € E(G)is in exactly p(e) of the circuits in the list. A strengthened form of Lemma 2.3 holds
here. We omit the proof as it is similar to that of Lemma 2.3, with regard to Remark 2.5, and

using the more general statement of Theorem 2.4 found in [1].

4.2 Lemma

Suppose (G, p) has a faithful circuit cover, where G is 2-connected and has no Petersen minor.
Then (G, p) has a faithful circuit cover (Cq,Cq,...,Cy) such that, for each i = 1,2,...,k,
C1UCU---UC; is a 2-connected subgraph of GG.

This result cannot be extended to graphs which have Petersen minors, as demonstrated by
the graph of Figure 4. However, it could be the case that the conclusion holds true for all

3-connected weighted graphs (G, p) which have a faithful circuit cover.

4.2 Petersen Conjectures

We denote by P the 4-regular multigraph obtained from Petersen’s graph by duplicating each
of the five edges in one of its 1-factors. It is clear that P plays a central role in the examples in
the previous subsection. This observation and a lack of counterexamples tempt us to venture

the following.

14
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Figure 4 A 2-connected edge-weighted graph ( thin edges have weight 1, bold
edges have weight 2 ) having a faithful circuit cover, but no faithful circuit cover

that satisfies the properties in Lemma 4.2.

4.3 Conjecture
If G is a 3-connected graph with minimum degree at least 4 and G has no removable circuit
different from a lonely digon, then GG is isomorphic to P or may be obtained from copies of P

via repeated applications of the graph composition operation depicted in Figure 5.

Gy Gy G

Figure 5 If neither Gy nor G5 has a removable circuit different from a lonely

digon, then neither has G.

An apparently weaker conjecture seems to contain much of the difficulty of Conjecture 4.3.
This unpublished conjecture was posed by Goddyn [5], and is weaker than a conjecture of
Fleischner and Jackson ( see Conjecture 12 in [2]).

Let o be a permutation of {1,...,n}. A o-prism is the graph obtained from two disjoint
circuits (vqvg---v,v1), (uruz---uyuq) by adding a digon between vertices v; and Ug(y), for

t=1,...,n.

15



4.4 Conjecture
Let H be a o-prism with n > 2 having no removable circuit different from a digon. Then

H=P.

Conjecture 4.4, which we call the “Prism Conjecture”, is known to hold true whenever the
underlying simple graph of H is 3-edge colorable or has no Petersen minor [1]. Little else

appears to be known regarding Conjecture 4.4.

4.3 Complexity

Determining whether a graph contains a Petersen minor can be done in polynomial time [12],
so there exists a polynomial time algorithm to decide whether a given graph satisfies the
hypothesis of Theorem 3.1. By our results we know that such a graph contains a removable

circuit. On the other hand, the complexity of the following problem is unknown.

(P1) Given a 2-connected graph G with minimum degree at least 4 and containing no Pe-

tersen minor, find a circuit C such that G — E(C') is 2-connected.

This is in contrast to the published proofs of Theorems 1.1, 1.3 and 1.5, all of which translate
to polynomial time algorithms for finding removable circuits.

It is the application of Theorem 2.4 which hinders a conversion of the proof of Theorem 3.1
into a polynomial algorithm for (P1). More precisely, the proof of Theorem 3.1 entails a

polynomial reduction of (P1) to the following construction problem for Theorem 2.4.

(P2) Given a 3-connected 4-regular graph G containing no Petersen minor, find a decompo-

sition of GG into circuits of length at least 3.

However, (P2) is of unknown complexity [1]. Circumventing this problem appears to require

a completely different proof of Theorem 2.1.

4.4 Extension to matroids

J. Oxley proposed the following problem in [10] ( see this book for definitions and notation ).

The cogirth of a matroid M is the minimum cardinality of a cocircuit in M.

16



4.5 Problem ( OxLEY [10, (14.4.8)])
Let M be a simple connected binary matroid having cogirth at least 4. Does M have a circuit C'

such that M \ C is connected 7

For graphic matroids, Problem 4.5 is answered in the affirmative by any of the Theorems 1.1
to 1.3. In fact, the condition “having cogirth at least 4” translates to the condition “is 4-edge
connected” for graphs, which means that the conditions in Problem 4.5 for graphs are more
restrictive than those in Theorem 1.1.

For cographic matroids, Problem 4.5 translates as follows. A circuit 7" in M*(G) corre-
sponds to a bond (a minimal edge cut ) in G. The matroid M*(G)\ T is connected if and only
if either |E(G /T)| =1 or G /T is loopless and 2-connected. Here G /T denotes the graph
obtained from G by contracting all edges in T, but not deleting any resulting multiple edges

and loops.

4.6 Problem
Let G be a 2-connected, 3-edge connected graph with girth at least 4. Does G contain a
bond B such that G | B is 2-connected ?

The answer to Problem 4.6 (and Problem 4.5) is “no” in general. The following counterex-
ample, due to M. Lemos, was communicated to us by J. Oxley in December, 1995. Let H
be the complete bipartite graph with vertex partition (X7, X3) where |X1| = |X3| = 5. For
¢t = 1,2 and for each 3-subset § C X;, we add to H two new vertices zg,ys, and add a new
edge joining each of the six pairs in {zg,ys} x §. Contracting any bond in the resulting graph
results in a graph which is not 2-connected.

Extending the main result of this paper to matroids entails removing the word “simple”
from Problem 4.5, and removing the requirement “3-edge connected” from Problem 4.6. Here,
there is a much smaller cographic counterexample which seems to play a role analogous to that
played by the graph P in the graphic case.

Let B be a bond of cardinality six in K5, and let G be the graph obtained from K5 by
duplicating each edge in F(K5) — B and then subdividing both edges of each resulting digon
exactly once. Then G is 2-connected with girth at least 4, but contracting any bond of G
leaves a graph which is not 2-connected.

This example inspires the following.
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4.7 Conjecture
Let G be a 2-connected graph with girth at least 4 and having no minor isomorphic with Ks.
Then G contains a bond B such that G / B is 2-connected.

More generally, we ask the following.

4.8 Question
What is the largest minor-closed class of matroids such that every connected matroid M in

this class having cogirth at least 4 has a circuit C' such that M \ C' is connected ?

There is a construction similar to the one preceding Conjecture 4.7 which involves the dual
Fano F7 (this time B is a cocircuit of size 4 and we perform a series and parallel extension on
the elements of /X— B ). Also, the uniform matroid U; 5 has no removable circuit. This suggests
that M*(K5), F7, Uy 5 and Petersen’s graph should be excluded minors for Question 4.8. This
list appears to be related to the list of excluded minors for binary matroids having the “circuit
cover property” as given in [4].

The “dual” problems, obtained by replacing “circuit” with “cocircuit” in Problems 4.5
and 4.8, appear to have a completely different quality. For example, P. Seymour (see [9,
Lemma 6] ) has shown that a connected binary matroid M of girth and cogirth at least 3 has

a cocircuit B such that M \ B is connected.
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