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Abstract

The concepts of (k,d)-coloring and the star chromatic number, studied by Vince,
by Bondy and Hell, and by Zhu are shown to reflect the cographic instance of a wider
concept, that of fractional nowhere-zero flows in regular matroids.

Introduction

Vince [12] introduced the following generalization of chromatic number.

DEFINITION 1.1 A (k,d)-coloring of a graph G is a function c :
E(G), |e(z) — c(y)| > d. (Here, Zy denotes the cyclic group of residues mod k, and |a| is the smaller
of the two integers a and k — a.) The star chromatic number, x*(G), is the infimum of k/d over all

(k,d)-colorings of G.

V(G) — Zi, such that for every zy €

Vince proved, by means of analytical arguments, that this infimum is a minimum (and hence rational).

He also proved that for every k, d such that k/d > x*(G), there exists a (k, d)-coloring of G. Setting d = 1
we have that the chromatic number of G is x(G) = [x*(G)]. Later, Bondy and Hell [1] improved Vince’s
result by giving a purely combinatorial proof. A further study and an alternate definition of x*(G) in
terms of homomorphisms into intervals of a unit circle appear in [14]. The purpose of this note is to
show that (k, d)-colorings are an instance of the more general concept of fractional nowhere-zero flows in

regular matroids.
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2 Fractional Flows in Graphs

It is helpful to introduce the notion of fractional flows in graphs before considering the general matroidal
case. Let k be a positive integer. A k-flow in a graph G is an orientation w(G) together with a function
f:E(G)— {0,+1,+2,...,4+(k — 1)} such that the net flow Zuu66+(u) flou) — Zuveé—(v) f(uv) is zero
for each v € V(G). The flow indez, £(G) is the least k for which G has a nowhere-zero k-flow (that is,
f(e) # 0, for all e € E(G)). This parameter has been studied by many authors (see [8] for a thorough
review). We generalize this notion with the following.

DEFINITION 2.1 A (k,d)-flow in a graph G is a k-flow (w(G), f) such that the range of f is contained in
{xd,+(d+1),...,+(k—d)}. The star flow index £*(G) is the infimum of k/d over all (k,d)-flows in G.

Thus, a (k,1)-flow is the same as a nowhere-zero k-flow. We shall see that, analogously to (k,d)-
colorings, the infimum in Definition 2.1 is a minimum, and G has a (k, d)-flow whenever k/d > £*(G),
and thus that £(G) = [£*(G)].

It is well known that, in the setting of matroids, vertex colorings and nowhere-zero flows are dual
concepts. In particular, if G is a plane graph and H its planar dual, then x(G) = £(H). We shall see
that a similar correspondence holds between the concepts of star chromatic number and star flow index.

3 Flows in Matroids

The proper setting for the study of flows and colorings is that of regular matroids. We assume familiarity
with the circuit/cocircuit axioms of basic matroid theory such as in [13]. Let C (B) denote the {0,1}-
valued circuit-element (cocircuit-element) incidence matrix of a matroid M. If M is binary then, over
GF(2), we have CBT = 0. An orientation w(M) of M is a signing (1 ~— =1) of the elements of C and
B such that CBT = 0 as rational matrices. It is well known that a binary matroid is orientable if and
only if it is regular. (See [13] for terminology and a proof.) It is a good exercise to find the relationship
between orientations of a graph G and of the graphic matroid M(G). For any circuit C' in w(M), let C*
(C7) denote the set of elements in C' which are positively (negatively) oriented with respect to w(M).
For any cocircuit B in w(M), we define Bt and B~ similarly.

Let T be an abelian group. A T'-flow in a regular matroid M is an orientation w(M) and a function
f M — T such that for every cocircuit B, ) g4+ f(e) =) . g f(e). A flow f is said to be nowhere-
zero if f(e) # 0, for all e € M. An integer flow is a T-flow where T = Z, the ring of integers. For integers
0 <d<k,a (k,d)-flowis an integer flow with values in the set {+d,+(d + 1),...,+(k — d)}, and a
nowhere-zero k-flow is a (k, 1)-flow. As with graphs, the star flow indez £*(M) is the infimum of k/d over
all (k, d)-flows in M, and the flow index {(M) is the minimum k for which M has a nowhere-zero k-flow.

The following facts about nowhere-zero flows are well known and can be found in [11].

PRrROPOSITION 3.1 Let w(M) be an oriented regular mairoid.

1. If M has no coloops (one-element cocircuits) then M has a nowhere-zero k-flow for some integer

k, and hence E(M) and £*(M) are bounded.

2. For any abelian group U of order k, M has a nowhere-zero U-flow if and only iof M has a nowhere-
zero k-flow. Furthermore, if f is a Zp-flow in M, then M has a k-flow f' such that f'(e) = f(e)
(mod k), foralle € E.

Our starting point is the following lemma, due to Hoffman [7].



LEMMA 3.2 (HOFFMAN’S LEMMA) Let M be an oriented regular matroid. Given a pair of non-negative
rational functions l,u : M — Q such that 0 < Il(e) < u(e) for e € M, there exists a rational flow
[ M — Q such that l(e) < f(e) < u(e) for every e € M if and only if, for every cocircuit B,

Sde)< > ue) and D> l(e) < D ule). (1)

ee Bt e€eB— e€B— ecBt+

Additionally, f can be chosen to be integer valued provided that | and u are integer valued.

In case M is graphic, Hoffman’s Lemma is just the Ford-Fulkerson flow theorem [3]. If M is cographic
then this is the Potential Differences Existence Theorem of Ghouila-Houri [5]. If /(e) = [ and u(e) = u
are constant, then (1) becomes:

[ |BT|

— < 5 <
|B~|

<
Nl:

Thus by Hoffman’s Lemma with | = d and u = k — d, we obtain the following.

THEOREM 3.3 A regular matroid M has a (k,d)-flow if and only if there exists some orientation w(M)
such that, for any cocircuit B, d/(k —d) < |B*|/|B~| < (k —d)/d.

COROLLARY 3.4 The star flow indez (M) of a regular matroid M is the minimum over all orientations

w(M) of

{| +| |B+| B is a cocircuit in w(M)}.
|B=|"|B*]
Bl Bl , S

ax{— : B is a cocircuit in w(M)}.
[B=" B+

This maximum is unbounded (and hence £*(M) := oo) if and only if M has a coloop. Putting d = 1,
we have that for any regular matroid M,

A (k,d)-coloring ¢ : V(G) — Z, of an (arbitrarily oriented) graph G induces a Zp-nowhere-zero flow
f in the cographic matroid M*(G) by letting f(zy) = c(x) — c(y) for every arc zy € G. By 2. of
Proposition 3.1, this is equivalent to the existence of an integer flow in M*(G) whose values range in
absolute value between d and k — d, that is, a (k,d)-flow in M*(G). This process can be reversed to
obtain a (k, d)-coloring of G from a (k, d)-flow of M*(G). Thus from Theorem 3.3 we have the following.

COROLLARY 3.5 The star chromatic number x*(G) = £*(M*(G)) of a graph G equals

] ICI}
ct o

min max{——
w(@ C

where the minimum is over all orientations of G and the mazimum is over all circuits of G.

We note that the characterization of the (integer) chromatic number x = [x*] of a graph via the
formula of Corollary 3.5 was proved independently of Hoffman’s Lemma by Minty [9].



4 Some Observations Regarding x* and ¢*

(1) Vince’s results [12] regarding the star-chromatic number of a graph immediately follow from Corollary
3.5. For example, in the case of the odd circuit Cyj41, at least £ + 1 edges must be similarly oriented in
any orientation and hence x*(Car41) = 2k + 1)/k =2+ 1/k.

(2) Let ¢ : V. — Zi be a (k,d)-coloring of a graph G = (V, E). For each a € Zj let I(a) denote the
independent set {v € V : ¢(v) € {a,a+1,...,a+d—1} (mod k) }. The k independent sets {I(a) : a € 71}
together cover every vertex exactly d times. Let us call such a collection a (k, d)-independent cover. Since
any graph with a (&, d)-independent cover has an independent set of size at least |V|d/k, it follows that
a(G) > |V|/x*(G), an improvement on the well-known bound |V |/x(G).

Although a (k, d)-coloring always provides a (k, d)-independent cover, the two concepts are not equiv-
alent. Take, for example, the graph G on 10 vertices and 35 edges obtained by adding all edges joining
two disjoint circuits of length five. Each ‘side’ of G1g induces a Cs subgraph and hence has a (5, 2)-
independent cover. Two such covers, one from each ‘side’; form a (10, 2)-independent cover of G1g. On
the other hand, G1g does not admit a (10, 2)-coloring as x(G1g) = 6.

(3) A weighted independent cover is a collection of independent sets, each of which is assigned a positive
rational weight, such that the total weight of the sets containing each vertex is at least 1. The fractional
chromatic number x/(G) is defined to be the least total weight of any weighted independent cover of
GG. This parameter has been studied in several papers (see [4],[6] for example). As the existence of a
(k,d)-independent cover of G implies x¥(G) < k/d we have the following.

OBSERVATION 4.1 For any graph G, X (G) < x*(G).

Equality does not always hold here; for instance, x/(G1o) = 5 while x*(G10) = 6. (We leave these for
the reader to check!)

(4) Let the graph G = (V, E1UFE?2) be the union two subgraphs G; = (V| E1) and G2 = (V, F3). Obviously,
X(G) < x(G1)x(G2). Such a product formula also holds for the flow index — a fact utilized in Seymour’s
proof [10] that £(G) < 6 = 2 x 3 for any 2-edge connected graph G. Unfortunately analogous statements,
where x and & are replaced by x* and &%, are false. A counterexample for x* is provided again by the
graph Ghg; the star chromatic number of the disjoint union of two C5’s is 2.5 and x*(Kj55) = 2, whereas
x*(G10) = 6. Using a similar construction one can find, for any pair of rational numbers a,b > 2, a
graph G consisting of two subgraphs G; and G, such that x*(G1) = a, x*(G2) = b and x*(G) = [a][b].

Analogous examples exist for £*.

(5) We finish with an extension of the notion of chromatic number to (general) orientable matroids. As
explained in [2], orientable matroids need not be binary (as is tacitly assumed in some works such as
[13]). The following definition is more general than — but consistent with — that given in in Section 3.
An orientation of an arbitrary matroid is a signing 1 — +1 of € and B such that, for any row C of C
and any row B of B, if C., B. # 0 for some e € E, then there exists f € E\{e} such that one of C.B,,
C; By equals +1 and the other equals —1. A matroid is orientable if it has at least one orientation. One
can use Corollaries 3.4 and 3.5 to define £*(M) and x*(M) (and hence (M) and x(M)) for an arbitrary
orientable matroid M. There are several natural questions one might ask. For example, the chromatic
number of a (loop-free) orientable matroid of rank r is bounded by the size of its largest circuit, which is
at most r + 1. However, we do not know whether the flow index of a (coloop-free) orientable matroid of
bounded rank is bounded. (This is true for regular matroids since their underlying simple matroids have
bounded size.)

Two orientations of M are said to belong to the same reorientation class if one is obtained from
the other by multiplying a corresponding set of columns of B and C by —1. Although regular matroids
have only one reorientation class, orientable matroids can have many reorientation classes. Winfried
Hochstattler has pointed out that it may be more sensible to define £* (and x*) for each reorientation
class (M) of M by appropriately restricting the minimum in Corollary 3.4.



DEFINITION 4.2 The star flow indez of a reorientation class (M) of an orientable matroid M is given

by
|B| |B]

€ (w(M) = x5y 5o

wEw(M) B

where the mazimum s taken over the cocircuits B of M.
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