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Abstract

In a latin square of order n, a near transversal is a

collection of n−1 cells which intersects each row,

column, and symbol class at most once. A longstanding

conjecture of Brualdi, Ryser, and Stein asserts that every

latin square possesses a near transversal. We show that

this conjecture is true for every latin square that is main

class equivalent to the Cayley table of a finite group.
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1 | INTRODUCTION AND MAIN THEOREMS

A latin square of order n is an n × n array in which each row and column is a permutation of
some set of n symbols. We refer to the set of cells containing any fixed symbol as a symbol class.
Let L= [Li,j] be a latin square of order n. A partial transversal of L is a collection of cells which
intersects each row, column, and symbol class at most once. A transversal is a partial transversal
of size n and a near transversal is a partial transversal of size n−1. Although it is
straightforward to find latin squares possessing no transversals (see [22, p. 405]), there is no
known example of a latin square which does not possess a near transversal.

Conjecture 1. Every latin square possesses a near transversal.

First discussed in the literature roughly 50 years ago, Conjecture 1 has been variously
attributed to Brualdi, Ryser, and Stein (see [22, Section 5]). The strongest general lower bound
to date is due to Hatami and Shor [15], who showed that every latin square possesses a partial
transversal of size n−O (log2(n)). There have also been numerous attempts to establish this
conjecture as a special case of some stronger statement, including work in terms of hypergraph
matchings [1, 2, 10], covering radii of sets of permutations [6, 16, 19], and colorings of strongly
regular graphs [4, 7, 11]. The present paper approaches Conjecture 1 from the opposite direction
by proving its most widely discussed special case (see [18, p. 335]).
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It is well‐known that latin squares are equivalent to multiplication tables of finite
quasigroups [18, Section 1.1]. When a latin square L corresponds to the multiplication table of
an associative quasigroup (ie, a group) G then we say that L is group‐based. In this case we refer
to L as the Cayley table of G and write L= L(G) to indicate the relationship between L and G.

A theorem of Hall [13] implies that, for every Abelian group G, the group‐based latin square
L(G) possesses a near transversal. It has also been known since the 1950s that L(G) possesses a
transversal (from which we obtain a near transversal by removing any cell) whenever G has odd
order [5], or G is solvable and has noncyclic Sylow 2‐subgroups [14]. More recently, Evans and
Wilcox [8, 23] characterized the groups G for which L(G) possesses a transversal. Building on this
characterization, we establish the restriction of Conjecture 1 to group‐based latin squares.

Theorem 2. Every group‐based latin square possesses a near transversal.

It is worth noting that Theorem 2 can be trivially extended to a slightly wider class of latin
squares. The existence of a near transversal is not affected by relabelling the rows, columns, or
symbols of L, nor is it affected by permuting the roles played by rows, columns, and symbols.
Thus, every latin square which is main class equivalent (see [18, Section 1.4]) to a group‐based
latin square possesses a near transversal by Theorem 2.

We prove Theorem 2 using a graph‐theoretic technical lemma; we refer the reader to [12] for
background information and any undefined terms related to graphs. Letting  denote the set
indexing the rows and columns of the latin square L, the latin square graph Γ(L) is defined on
the vertex set ∈r c r c{( , ) : , } with (r, c) ~ (s, d) if and only if one of r= s, c= d, or Lr,c= Ls, d
holds. Note that there is a natural tripartition of Γ(L)'s edges into, respectively, row edges,
column edges, and symbol edges. Moreover, there is a bijective correspondence between near
transversals of L and independent sets of size n−1 in Γ(L).

Given graphs Γ= (V, E) and Γ= (V′, E′), the disjoint union of Γ and Γ′ is Γ+ Γ′≔ (V ⊔ V′,
E ⊔ E′). For a positive integer k, we write kΓ for the disjoint union of k copies of Γ. Given a set
W⊆ V, the induced subgraph of Γ with respect to W is Γ[W]≔ (W, {e∈ E : e⊆W}). The Möbius
ladder of order 2n, denoted asMn, is the cubic graph formed from a cycle of length 2n—referred
to as the rim of Mn—by adding n edges, one joining each pair of vertices at distance n in the
initial cycle. The prism graph of order 2n, denoted as Yn, is the Cartesian product of a cycle of
length n and an edge; in other words, Yn is obtained from two copies of the n‐cycle by adding
edges between corresponding vertices.

Lemma 3. Let L be a group‐based latin square of even order n, let k be the greatest power
of 2 dividing n, and let l≔ n/k. If L does not possess a transversal, then there is a positive
integer m dividing l such that Γ(L) has an induced subgraph isomorphic to

⎜ ⎟⎛
⎝

⎞
⎠≔ M

l m
YΛ +

−

2
.n m km k, 2

Section 2 will be devoted to proving Lemma 3, while Section 3 mentions two possible extensions
of the present work. We conclude this section by proving Theorem 2 assuming Lemma 3.

Proof of Theorem 2. Let L be a group‐based latin square of order n. We may assume
L does not possess a transversal. As first shown in [5], this implies n is even. We may therefore,
apply Lemma 3 to find an induced copy of Λn,m in Γ(L). Because the (2k(l−m))‐vertex
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graph ( )Yl m
k

−

2 2 is bipartite, it contains an independent set of size at least k(l−m). Moreover,
one can find an independent set of size km− 1 in Mkm by greedily selecting vertices in cyclic
order around its rim. Thus Λn,m contains an independent set of size (l−m)k+ km−1=n−1
which corresponds to a near transversal of L. □

2 | PROOF OF LEMMA 3

Let G be a group of order n with identity element e and let Syl2(G) denote the isomorphism
class of G's Sylow 2‐subgroups. A bijection σ : G→ G is called a complete mapping of G if
the set {L(G)g,σ(g) : g ∈ G} is a transversal of L(G). Using the classification of finite simple
groups, partial results of Hall and Paige, and an as yet unpublished computational result
due to Bray, Evans, and Wilcox recently characterized the groups possessing complete
mappings.

Theorem 4 (Evans [8], Hall and Paige [14], and Wilcox [23]). A finite group G possesses a
complete mapping if and only if Syl2(G) is either trivial or noncyclic.

It is not hard to check that if H is a group of odd order, then the identity map is a complete
mapping. Another nicely structured complete mapping for groups of odd order was found by
Beals, Gallian, Headley, and Jungreis.

Lemma 5 (Beals et al. [3]). For every group H of odd order m, there exists an ordering
H = {h0, h1,…, hm−1} such that, taking indices modulo m, both hi↦ hi + 1 and hi↦ hi are
complete mappings.

Given two subsets X1, X2⊆G the product set of X1 by X2 is

≔ ∈ ∈X X x x x X x X{ : , }.1 2 1 2 1 1 2 2

We write Xy for the product set X{y}. Let K be a subgroup of G and let H be a normal subgroup
of G. We say that G is the semidirect product of K and H, written G=K⋉H, if K ∩H= {e},
KH=G, and ∣G∣= ∣K∣ ∣H∣. The following was noted in [14] as following from a result of
Burnside.

Lemma 6 (Burnside; Hall and Paige [14]). Let G be a finite group and let K be a Sylow
2‐subgroup of G. If K is cyclic and nontrivial, then there is a normal subgroup of odd order
H ⊲G such that

⋉G K H= .

To simplify notation we set [n]≔ {0, 1,…, n−1} for every positive integer n.
Proof of Lemma 3. Let L be a latin square based on a group G of order n= kl, where
k≥ 2 is a power of 2 and l is odd. Moreover, suppose L does not possess a transversal.
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Theorem 4 tells us that Syl G( ) = k2 . It then follows from Lemma 6 that G contains a
normal subgroup H of order l and an element b of order k such that

〈 〉 ⋉G b H= .

Let a≔ bk/2. As H⊲G and a has order 2, H has an automorphism

↦α h aha: .

Let

≔ ∈H h H α h h{ : ( ) = }*

and observe that H* is a subgroup of H. Let m≔ ∣H*∣. As m divides l and l is odd, m is
odd. By Lemma 5, there is an ordering H* = {h0, h1, …, hm−1} for which the map
hi ↦ hi+1 is a complete mapping. Here and throughout the rest of this proof, indices
are taken modulo m.

Let Γ≔ Γ(L). Toward defining a set W⊆ V(Γ) which induces Λn,m, let

≔ ∈

≔ ∈

≔ ∪

T b h h b i km

T b h h b i km

T T T

{( , ) : [ ]},

{( , ) : [ ]}, and

.

i
i i

i

i
i i

i

1

2 +1
+1

1 2

Furthermore, let F≔H\H* and let

≔ ∈ ∈

≔ ∈ ∈

≔ ∪

U b f fb f F i k

U b f fb f F i k

U U U

{( , ) : , [ ]},

{( , ) : , [ ]}, and

.

i i

i i

1

2
+1

1 2

Finally, let

≔ ∪W T U .

See Figure 1 for an example of this construction. We show the induced subgraph Γ
[W]≅Λn,m via the following three "14" claims.

Claim 1. T ∩U=∅ and there is no edge between T and U.

As G= 〈b〉⋉H, every element of G has a unique representation of the form g= bih for i∈ [k]
and h∈H. Therefore, the definition of F implies

〈 〉 ∩ 〈 〉 ∅b H b F = .* (1)

But for every (t, s)∈ T and every (u, v)∈U we have t∈ 〈b〉H* and u∈ 〈b〉F. Thus T ∩U=∅
and there are no row edges between T and U.
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As H⊲G we have bHb−1 =H. Moreover, as a= bk/2, for every h∈H* we have
α(bhb−1) = bhb−1, so bhb−1∈H*. Thus

bH b H= .* *−1 (2)

It then follows from the definition of F that

bFb F=−1 (3)

and, as the identity map is a complete mapping of both H and H*,

↦f f Fis a permutation of2 (4)

Thus for every (u, v)∈U, both v and uv are in 〈b〉F. But 2 tells us that for every (t, s)∈ T, both
s and ts are in 〈b〉H*. It then follows from 1 that there are no column edges and no symbol edges
between T and U.

Claim 2. Γ[U] consists of l m−

2
disjoint copies of Y2k.

Observe that, when enumerating the vertices in U, every element of 〈b〉F occurs exactly
twice as a first coordinate and, by 3, exactly twice as a second coordinate. Thus, each vertex in
the induced subgraph Γ[U] is incident to exactly one row edge and exactly one column edge, so
that the row and column edges in Γ[U] form a 2‐factor (of Γ[U]). Specifically, they form l−m
disjoint 2k‐cycles {Cf : f∈ F}, with each Cf defined by the vertex‐sequence

f f f fb bf fb bf fb b f fb b f f( , ), ( , ), ( , ), ( , ), …, ( , ), ( , ).k k k2 −1 −1 −1

FIGURE 1 Cayley table of  〈 〉S b c d b c d bc cb bd d b× = , , | = = = 1, = , =3 3
2 3 3 2 with T and U

highlighted. Here k= 2, H= 〈c, d〉, and H* = 〈c〉, with H* ordered by hi= ci. The first six rows and columns are
indexed by 〈b〉H* and the main diagonal is T1 ∪U1 [Color figure can be viewed at wileyonlinelibrary.com]
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It follows from the definitions of H* and F that α∣F is a fixed‐point free involution. Thus, to
establish Claim 2 it suffices to show that for every i, j∈ [k], every f, h∈ F, and every ϵ, δ∈ {0, 1},
the vertices (bif, fbi+ϵ) and (bjh, hbj+δ) are joined by a symbol edge if and only if j≡ i+ k/2
(mod k), h= α(f), and ϵ= δ.

The “if” direction of this equivalence follows directly from the definition of α. For the
converse direction we assume

b f b b h b=i i j j δ2 +ϵ 2 +

and, as latin square graphs are loopless, (bif, fbi+ϵ)≠ (bjh, hbj+δ). It follows from 3 and 4 that

∈ ∈b f b b F b h b b Fand .i i i j j δ j δ2 +ϵ 2 +ϵ 2 + 2 +

Thus ϵ= δ and ∣i− j∣ ∈ {0, k/2}.
Now if i= j, then bif 2bi+ϵ= bih2bi+ϵ and 4 implies f= h, contradicting the fact that (bif, fbi+ϵ)≠

(bjh, hbj+δ). It follows that j is the unique element of [k] satisfying j≡ i+ k/2 (mod k). Thus

∕ ∕b h b b f b b α f b= = ( ) ,i i i k i k i i2 +ϵ + 2 2 +ϵ+ 2 2 +ϵ

so h2 = α(f 2)= (α(f ))2 and 4 implies h= α(f).

Claim 3. Γ[T] is isomorphic to Mkm

Observe that, when enumerating the vertices in T, every element of 〈b〉H* occurs exactly
twice as a first coordinate and, as 〈b〉 and H* commute by 2, exactly twice as a second
coordinate. Thus, as is the case for Γ[U], each vertex in Γ[T] is incident to exactly one row edge
and exactly one column edge. Unlike in Γ[U], the row and column edges of Γ[T] form a single
cycle of length 2mk. Indeed, as m is odd and ∣b∣ is a power of 2,

h h h h b bh h b b h b h b h h( , ), ( , ), ( , ), …, ( , ), ( , )k
m

k
m

k
m0 0 0 1 1 1

−1
−1

−1
−1

−1
−1 0

is a Hamilton cycle in Γ[T] which contains all of Γ[T]'s row and column edges.
To establish Claim 3 it suffices to show that for every i, j∈ [km] and every ϵ, δ∈ {0, 1}, the

vertices (bihi, hi+ϵb
i+ϵ) and (b jhj, hj+δb

j+δ) are joined by a symbol edge in Γ[T] if and only if
≡i j m km+ (mod )

k

2
and ϵ= δ.

Indeed if ≡i j m km+ (mod )
k

2
, then i≡ j(modm) and, as m is odd, i≡ j+ k/2(mod k).

Together with ϵ= δ, as well as Lemma 5 and the definition of H*, this implies

b h h b b ah h ab b h h b= = ,i
i i

i j
j j δ

j δ j
j j δ

j δ
+ϵ

+ϵ
+

+
+

+

which establishes the “if” direction of the desired equivalence.
For the converse direction consider (bihi, hi+ϵb

i+ϵ), (bjhj, hj+δb
j+δ)∈ T and assume that the

group elements defining this pair of distinct vertices satisfy

b h h b b h h b= .i
i i

i j
j j δ

j δ
+ϵ

+ϵ
+

+
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From 2 we see that

∈ ∈b h h b b H b h h b b Hand .* *i
i i

i i j
j j δ

j δ j δ
+ϵ

+ϵ 2 +ϵ
+

+ 2 +

Thus ϵ= δ and i≡ j (mod k/2). Now bj∈ {bi, bi+k/2} and as H* is pointwise fixed by the
automorphism α : h↦ bk/2hbk/2, both possible values of bj yield hihi+ϵ= hjhj+ϵ. Lemma 5 then
implies hi= hj, so i≡ j(modm).

Suppose bj= bi, which is equivalent to i≡ j(mod k). As gcd(k, m) = 1 and i, j∈ [km], this
implies i= j, contradicting the fact that (bihi, hi+ϵb

i+ϵ) and (bjhj, hj+δb
j+δ) are distinct vertices.

Therefore j≡ i+ k/2 (mod k) and, as k/2 and m are coprime, we conclude that
≡i j m km+ (mod )

k

2
. □

3 | CONCLUDING REMARKS

The most obvious extension of the present paper is the general case of Conjecture 1. However, a
proof of this conjecture would likely differ substantially from the argument presented above.
Indeed, latin square graphs are in general not vertex‐transitive, calling into question whether
general latin square graphs can be shown to possess the sort of “nice” induced subgraphs found
in Lemma 3.

There is, however, an extension of Theorem 2 to which the above techniques may be
applicable. A partial transversal is nonextendable if it is not contained in any larger partial
transversal. The following conjecture was noted by Evans [9, p. 470] as a weak version of a
conjecture of Keedwell concerning sequenceable groups.

Conjecture 7 (Evans [9]). For every finite non‐Abelian group G, the latin square L(G)
possesses a nonextendable near transversal.

If true, Conjecture 7 cannot be extended to any Abelian groups: an old result of Paige [21]
implies that, if G is Abelian, then L(G) possesses either a transversal or a nonextendable near
transversal, but it cannot possess both. In contrast, it is known that, for every integer k≥ 1, the
Cayley table of dihedral group D4k+2 of order 4k+ 2 possesses both a transversal and a non‐
extendable near transversal [17].

We have established Conjecture 7 for those non‐Abelian groups which do not possess
transversals. Perhaps our techniques can be used to find maximal independent sets of size n− 1
in latin square graphs based upon non‐Abelian groups with noncyclic or trivial Sylow
2‐subgroups. As far as we know, Conjecture 7 has not been attacked directly. However, many
partial results are known due to its connection to sequenceable groups (see eg, [20]).
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