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Abstract A thrackle on a surface X is a graph of size e and order n drawn on X such
that every two distinct edges of G meet exactly once either at their common endpoint,
or at a proper crossing. An unsolved conjecture of Conway (1969) asserts that e ≤ n
for every thrackle on a sphere. Until now, the best known bound is e ≤ 1.428n. By
using discharging rules we show that e ≤ 1.4n − 1.4.
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1 Introduction

Let G = (V, E) be a finite simple connected graph with n vertices and e edges. A
graph can be represented on the plane, with vertices being considered as points or
shown as small circles, and edges are simple curves joining the points corresponding
to their ends. Such a representing of a graph G is called a drawing of G on the plane.
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A graph is said to be planar, if it can be drawn on the plane so that its edges intersect
only at their ends.

In late 1960s, John H. Conway defined a new kind of graph drawing: a thrackle. A
thrackle of G is a drawing of G on the plane such that every two distinct edges of G
either

• share an endpoint, and then they have no other point in common; or
• do not share an endpoint, in which case theymeet exactly once at a proper crossing.

A graph that can be drawn as a thrackle is said to be thrackable.

Conway’s Thrackle Conjecture Every thrackable graph has at most as many edges
as vertices.

This conjecture was first mentioned by Richard Guy and Douglas R. Woodall in 1969.
Woodall [9] introduced the following generalized notion of thrackle which has been
used by several authors [3–7].

Generalized Thrackle A graph drawing is a generalized thrackle if any two distinct
edges meet an odd number of times, either at a common end point, or at a proper
crossing.

The Conway’s Thrackle Conjecture is very difficult and still remains unresolved. In
the past 40 years, many researches have worked on this problem and some progress
has been made. Lovász stated that a 4-cycle is not thracklable, and claimed that no
thrackable graph contains two vertex disjoint odd cycles. By various methods, Fulek
and Pach determined three other similar configurations which are not thrackable, i.e.,
no thrackable graph contains two 6-cycles where their intersection is a path of length
l, l = 0, 1, 2, 3. The following two results permit us to invoke properties of planar
graphswhen studying both bipartite and non-bipartite (generalized) thrackable graphs.

Lemma 1.1 [7] Every thrackable bipartite graph is planar.

Lemma 1.2 [4,7] A bipartite graph can be drawn as a generalized thrackle on the
plane if and only if it is planar; a non-bipartite graph can be drawn as a generalized
thrackle on the plane if and only if it has a parity 2-cell embedding on N1.

Lemma 1.2 was then extended by Cairns and Nikolayevsky to orientable sufaces,
and they present an analogous theorem for non-bipartite graphs, as shown in the
following two theorems.

Theorem 1.3 [3] A bipartite graph G can be drawn as a generalized thrackle on a
closed orientable connected surfaceSg with genus 2g if and only if G can be embedded
on Sg.

Theorem 1.4 [4] A connected non-bipartite graph G can be drawn as a generalized
thrackle on an oriented closed surface Sg if and only if G admits a parity embedding
on a non-orientable closed surface N2g+1.

Applying Euler’s Formula [8] is a natural idea that helps us to find upper bounds
on |E | of a thrackle. Results stated above make it possible to reduce upper bounds on
|E | as in the following four theorems.
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Theorem 1.5 [7] Every thrackle with n vertices has at most 2n − 3 edges. Every
generalized thrackle with n vertices has at most 3n − 4 edges.

Based on the same idea, but extended to general surfaces, Cairns and Nikolayevsky
[3] stated the theorem below improving the bound in Theorem 1.5.

Theorem 1.6 Every thrackle with n vertices has at most 3(n − 1)/2 edges. Every
generalized thrackle with n vertices has at most 2n − 2 edges.

This upper bound was further reduced to 1.428n by Fulek and Pach [6], where their
proof involved the Conway’s Doubling Method (Conway, 1969).

Theorem 1.7 Every thrackle with n vertices has at most 1.428n edges.

In this paper, we aim to show the following.

Theorem 1.8 Let G be a thrackable graph with n vertices and e edges. Then
e ≤ 1.4n − 1.4.

2 Proof of Theorem 1.8

Definition 2.1 [6] Given three integers c′, c′′ > 2, l ≥ −min(|c′|, |c′′|), the dumbell
DB(c′, c′′, l) is a simple graph consisting of two distinct cycles of length c′ and c′′

such that

• l = 0, the two cycles share a vertex.
• l > 0, the two cycles are connected by a path of length l.
• −min(c′, c′′) < l < 0, the two cycles share a path of length −l.

Cairns and Nikolayevsky pointed out at [4, p., 119] that the Conway’s Thrackle
Conjecture has been verified for every graph of order at most 11. In particular, we
have the following.

Lemma 2.2 [6] DB(6, 6, l) for l ∈ {−3,−2,−1, 0} are not thrackable.

2.1 Discharging Rules

By Lemma 1.1, every bipartite thrackable graph is planar. LetG be a plane embedding
of a bipartite thrackable graph with n vertices and m edges. Let F be a face of G on
the plane, and bd(F) be its facial boundary. The size of bd(F), that is the length of
the facial walk of F , is called the degree of F , denoted by d(F). A k-face is a face
of degree k, and a k+-face is a face of degree at least k. Two faces are adjacent if and
only if their boundaries share some common edges.

Lemma 2.3 Suppose G is not isomorphic to C6. Then G has no two adjacent distinct
6-faces.

123



Discrete Comput Geom (2017) 58:410–416 413

Fig. 1 An 8-face incident with
six bad edges

Proof Let H be a subgraph of G induced by two adjacent distinct 6-faces. Then
n(H) ≤ 10, and n(H) < e(H). By a conclusion in [4, p., 119] that the Conway’s
Thrackle Conjecture is verified for every graph of order at most 11, H is not thrack-
able unless H has at most one circuit. But this hypothesis holds only if H ∼= C6, a
contradiction. ⊓(

Since the Conway’s Thrackle Conjecture is verified for every graph of order at most
11, every face of degree at most 10 is bounded by a circuit.

An edge e ∈ E(G) is a bad edge if and only if it is incident with a 6-face. The
following proposition immediately comes from Lemma 2.3.

Proposition 2.4 Let e ∈ E(G) be a bad edge. Then e must be incident with an 8+-face
and a 6-face.

Lemma 2.5 Each 8-face is incident with at most six bad edges. Furthermore, if an
8-face is incident with six bad edges, then it must be incident with two distinct 6-faces
as shown in Fig. 1.

Proof Let F be an 8-face of G , and let P be the subgraph induced by a set of edges
in bd(F) each of which is incident with a 6-face.

Suppose |E(P)| ≥ 7. Since each edge in P is incident with a 6-face, by Lemmas 2.2
and 2.3, consecutive edges in P must be incident with the same 6-face. Thus, all edges
in P must be incident with exactly one 6-face. Since |E(P)| ≥ 7, this is impossible.
Therefore, |E(P)| ≤ 6.

Suppose |E(P)| = 6.Then the 8-face F must be adjacentwith at least twodistinct 6-
faces ofG. Let F ′ be one of the 6-faces adjacent with F . Let PF ′ be a subgraph induced
by a set of edges in bd(F), where each of them is incident with the 6-face F ′. Thus,
PF ′ is a union of finite vertex disjoint paths p1, p2, . . . , pk , where E(p j ) ⊆ E(PF ′).
Let v be an endvertex of a path p j . Then v is incident with two distinct edges e1, e2,
where e1 ∈ E(p j ) and e2 ∈ E(bd(F)) \ E(PF ′). By Lemmas 2.2 and 2.3, e2 is not
incident with any 6-face of G.

If k ≥ 3, then F must be incident with at least three different edges each of which
is not incident with any 6-face of G, implying that |E(P)| ≤ 5, a contradiction.

Thus, PF ′ is a single path. Furthermore, there are only three possibilities when
|E(P)| = 6, as shown below (Fig. 2). Case 2 contains a DB(6, 6,−2), contradicting
Lemma 2.2, and Case 3 contains a 4-cycle, which is not thrackable.

Hence, when |E(P)| = 6, F must be adjacent with two distinct 6-faces F1, F2,
which is Case 1 in Fig. 2. ⊓(

123



414 Discrete Comput Geom (2017) 58:410–416
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Fig. 2 Three possibilities when |E(P)| = 6

By Proposition 2.4, our discharging rules are as follows. Let w(F) = d(F) be the
original weight of each face of G, where d(F) is the degree of F .

Discharging Rule Suppose G is not isomorphic to C6. Let F be a face of G. Let e be
a bad edge of G, thus e is incident with an 8+-face and a 6-face. Transfer 1/6 across
e from the 8+-face to the 6-face to obtain a new face weighting w∗.

Let r be the number of bad edges inG incident with F . When F is an 8+-face, the new
weight of F is w∗(F) = w(F) − r/6. When F is a 6-face, w∗(F) = 6+ 6/6 = 7.

If F is an 8-face, then by Lemma 2.5, w∗(F) ≥ 8 − 1 = 7. If F is a 10+-face of
G, w∗(F) ≥ d(F) − d(F)/6 ≥ 50/6 > 7. Therefore, after applying the discharging
rules, w∗ ≥ 7 for each face of G.

Now we are quite close to finishing the proof of Theorem 1.8. However, we need
to be a little bit more careful. Notice that during the discussion above, we lost the
generality by only discussing bipartite graphs. The next section will correct this.

2.2 Non-bipartite Thrackable Graph on Projective Plane

Let G be a non-bipartite graph. Let T : G → S0 be a thrackle drawing of G on the
sphere S0. The next result is a statement equivalent to Theorem 1.1 in [1].

Lemma 2.6 Let G be a non-bipartite thrackable graph on the plane. Then there exists
an even-faced 2-cell embedding E : G → N1 of G on the projective plane.

Since E is even-faced and 2-cell, and G contains no 4-cycle, the discharging rules
defined above can be applied to all non-bipartite thrackable graphs after they have
been embedded on the projective plane.

2.3 A New Upper Bound on |E(G)|

Now we are ready to complete the proof of Theorem 1.8.
Let G be a graph with n vertices and e edges. Suppose G ∼= C6. Apparently, e ≤ n

without applying the discharging rules, which satisfies Theorem 1.8. Thus, we may
assume that G is not isomorphic to a C6.

Let v ∈ V (G) be a vertex of degree 1. We apply induction to the graph G − v, and
observe that
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e(G − v)

n(G − v)
= e − 1

n − 1
.

Thus

e(G)

n(G)
≤ max

(
1,

e − 1
n − 1

)
≤ max

(
1,

e(G − v)

n(G − v)

)
≤ 1.4.

So we may also assume that each vertex of G has degree at least 2.
Now suppose G is a vertex minimal counterexample to Theorem 1.8, that is,

e > 1.4n − 1.4. First we see that G is connected. Otherwise, let G1 be a com-
ponent of G and let G2 = G − V (G1). Then |E(G1)| ≤ 1.4|V (G1)| − 1.4, and
|E(G2)| ≤ 1.4|V (G2)|− 1.4, which implies that e ≤ 1.4n − 2.8. Suppose v is a cut-
vertex ofG. LetG1 andG2 be two parts ofG that v splitsG into, that is,G1∪G2 = G
and G1 ∩ G2 = v. Since G is a vertex minimal counterexample, we have

e = |E(G1)| + |E(G2)| ≤ 1.4(n − |V (G1)| + 1) − 1.4+ 1.4|V (G1)| − 1.4

= 1.4n − 1.4,

which leads to a contradiction. Hence G is 2-connected.
Then we apply the discharging rules to G. First we consider the case where G is

bipartite. By Lemma 1.1, G is even-faced planar. Let F be a face of G. Since 4-cycle
is not thrackable, the degree of F is at least 6. Let w∗ be as defined in Sect. 2.1.

According to the above discharging rules, w∗(F) ≥ 7. By Handshaking Lemma
([2]),

2e =
∑

F

d(F) =
∑

F

w(F) =
∑

F

w∗(F) ≥ 7 f, (1)

so f ≤ 2e/7. Applying Euler’s Formula for the plane ([2]), we obtain

2 = n+ f − e ≤ n+ 2
7
e− e = n− 5

7
e ⇒ e ≤ 7

5
(n−2) ⇒ e ≤ 1.4n−2.8.

This leads to a contradiction as G is a counterexample to Theorem 1.8.
Now suppose G is non-bipartite. By Lemma 2.6, G is even-faced projective planar.

Let F be a face of G. Thus, w∗(F) ≥ 7, and by Handshaking Lemma, f ≤ 2e/7. By
Euler’s Formula for projective plane,

1 = n+ f − e ≤ n+ 2
7
e− e = n− 5

7
e ⇒ e ≤ 7

5
(n−1) ⇒ e ≤ 1.4n−1.4,

which leads to a contradiction as well. Hence, there exists no vertex counterexample
to Theorem 1.8. Therefore, e ≤ 1.4n − 1.4. ⊓(
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