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Abstract

The chromatic number of a Latin square is the least number of partial
transversals which cover its cells. This is just the chromatic number of its
associated Latin square graph. Although Latin square graphs have been widely
studied as strongly regular graphs, their chromatic numbers appear to be
unexplored. We determine the chromatic number of a circulant Latin square,
and find bounds for some other classes of Latin squares. With a computer,
we find the chromatic number for all main classes of Latin squares of order
at most eight.
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1. Introduction and preliminaries

Let L be a Latin square of order n. The chromatic number of L, denoted
by �(L), is the minimum number of partial transversals of L which together
cover the cells of L. Since each partial transversal uses at most n of the n

2

cells in L, we observe the following.

Proposition 1. Every Latin square L of order n satisfies �(L) � n, with
equality holding if and only if L has an orthogonal mate.

Therefore �(L) serves as a measure of how close L is to having an orthogonal
mate. We are surprised that reference to this natural invariant seems to be
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absent from the substantial literature regarding transversals and orthogonal-
ity of Latin squares1. An early version of some of our results appears in the
M. Sc. thesis [12, in Farsi, Persian language] of the fourth author, under the
supervision of the third author. In this paper, we find some bounds on �(L)
for general Latin squares and special classes such as complete Latin squares,
Cayley tables of groups, circulants, and all Latin squares of order at most
eight.

For the definitions not given here one may refer to [1] and [4]. Let L

be a Latin square of order n with cells {(r, c) | r, c 2 {0, 1, 2, . . . ,n � 1}};
each cell contains a symbol from an alphabet of size n, and no row or column
of L contains a repeated symbol. A cell (r, c) containing the symbol s =
Lr,c is sometimes represented by the triple (r, c, s). A partial transversal of

length k is a set of k cells, where no two cells have the same row, column or
symbol. A transversal is a partial transversal of length n. The Latin square
L has an orthogonal mate if and only if it has a decomposition into disjoint
transversals. We say that L is row-complete if every ordered pair of distinct
symbols appears (exactly once) in the set

{(s, s0) | (r, c, s), (r, c+ 1, s0) 2 L, for 0  r  n� 1 and 0  c  n� 2}.
The Latin square graph of L is the simple graph �(L) whose vertices are
the cells of L, and where distinct cells (r, c, s) and (r0, c0, s0) are adjacent if
(exactly) one of the equations r = r

0, c = c

0, s = s

0 is satisfied. Accordingly,
each edge of �(L) is called, respectively, a row edge, a column edge or a symbol

edge. Latin square graphs were introduced by R. C. Bose [2] as examples
of strongly regular graphs; see [8, Section 10.4] for further discussion. Bose
used the notation L3(n) for this graph. But this notation does not specify
the Latin square from which the graph arises. So we use the notation �(L)
for the graph corresponding to the given Latin square L.

The independent sets of �(L) are the partial transversals of L, and �(L)
is the chromatic number of �(L). The isomorphism class of �(L) is not
a↵ected by relabelling the rows, columns or symbols of L, nor is it changed
by applying a fixed permutation to the coordinates of every triple (r, c, s) in
L. Thus �(L) is an invariant of the main class of L.

Let (G, �) be a finite group of order n. A Cayley table for G is an n ⇥ n

matrix, denoted LG, where the cell (i, j) contains the group element gi � gj,

1
See the Addendum for further details
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for some fixed enumeration G = {g0, . . . , gn�1}. It is easy to see that LG is
a Latin square. If G is a cyclic group, then LG is called a circulant Latin
square. Figure 1 shows the graph of the circulant LZ3 .

Figure 1: The graph �(LZ3) with each vertex (r, c, s) labelled by s.

We summarize the results of this paper. Let L be a Latin square of order
n.

• n  �(L)  3n� 2.

• If L is row-complete, then �(L)  2n.

• For large n we have �(L) = n+ o(n).

• For every group G of order n, either �(LG) = n or �(LG) � n+ 2.

• If L is a circulant (that is L ⇠= LZn), then�(L) =

(
n if n is odd

n+ 2 if n is even.

• If n  8, then

�(L) 
(
n+ 1 if n is odd

n+ 2 if n is even.
(1)

We propose the following.

Conjecture 1. Every Latin square L satisfies (1).

Conjecture 1 would surely be challenging to prove, even for Cayley tables
of groups. Since (n + 1)(n � 1) < n

2 and (n + 2)(n � 2) < n

2, every Latin
square L which satisfies (1) must have a transversal (if n is odd) or a partial
transversal of length n � 1 (if n is even). So Conjecture 1 would imply two
long-standing conjectures of Brualdi-Stein and Ryser.
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Conjecture 2. ([5, 15]) Every Latin square of even order n contains a par-
tial transversal of length n� 1.

Conjecture 3. ([14]) Every Latin square of odd order contains a transversal.

2. Some Upper Bounds

The graph of a Latin square L of order n is regular of degree 3n�3. This
immediately gives �(L)  3n� 2. We can improve this bound in case L has
additional structure.

A k-plex is a set of kn cells which has k representatives from each row and
each column and each symbol of L. A (k1, k2, . . . , kd)-partition is a partition
K1,K2, . . . ,Kd where each Ki is a ki-plex.

Proposition 2. If a Latin square L of order n has a (k1, k2, . . . , kd)-partition,
then �(L)  3n� 2d.

Proof. Let K1,K2, . . . ,Kd be a (k1, k2, . . . , kd)-partition of L. For each i,
the induced subgraph �(L)[Ki] is regular of degree 3ki � 3, so it is (3ki � 2)-

colorable. Thus, �(L) 
dX

i=1

(3ki � 2) = 3n� 2d.

Wanless [16, 17] has conjectured that every Latin square of order n has a
(k1, k2, . . . , kd)-partition where d � bn

2 c. If true, his conjecture would improve
the general upper bound to �(L)  2n+ 1.

Corollary 1. Let t be the maximum number of disjoint transversals in a
Latin square L of order n. Then

⇢
�(L)  3n� 2t� 2 if t  n� 2
�(L) = n otherwise.

A Latin square L of order n is row-complete (sometimes it is called a
Roman square) if the ordered pairs (Li,j,Li,j+1) are all distinct for 0  i 
n� 1 and 0  j  n� 2. Row-complete Latin squares are used in the design
of sequential experiments [5].

Proposition 3. If L is a row-complete Latin square of order n, then �(L) 
2n.
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01 13 32 24
12 20 03 35
23 31 10 06
30 02 21 17

Figure 2: Subscripts indicate an 8-coloring of row-complete Latin square of order 4.

Proof. We color each cell Li,j, 0  i  n � 1 and 0  j  n � 2, with the
entry of Li,j+1. By the definition of row-complete, the cells with color c are
a partial transversal in L. We color the last column of L with n new colors.
This gives �(L)  2n. See Figure 2 for an example.

The above bounds are far from optimal for large Latin squares. Let V

be the disjoint union R [ C [ S where R, C, S is the set of rows, columns,
and symbols of a Latin square L of order n. Let H = (V ,E) be the 3-
uniform 3-partite hypergraph, where there is a hyperedge {r, c, s} 2 E for
every cell (r, c, s) 2 L. Then H is a linear hypergraph i.e., no two hyperedges
share more than one vertex, and H is regular of degree n. Also �(L) is the
chromatic index of H, the least number of colors needed to color E so that
no two adjacent hyperedges get the same color. The following general result
of Molloy and Reed [11] implies an asymptotically optimal bound for �(L).

Theorem 1. For every k there exists a constant ck such that every k-uniform
linear hypergraph of maximum degree n has chromatic index at most n +
ck(log n)4n1�1/k.

Corollary 2. As n ! 1 every Latin square L of order n satisfies �(L) 
n+ o(n).

3. Chromatic Number of Cayley Tables

The set of finite groups G for which �(LG) = |G| has been recently
characterized.

Theorem 2. For any finite group G of order n with identity element ✏, the
following are equivalent.

1. �(LG) = n

2. �(LG)  n+ 1.
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3. LG has a transversal.

4. For some enumeration g1, g2, . . . , gn of G we have g1g2 . . . gn = ✏.

5. Every Sylow 2-subgroup of G is either trivial or non-cyclic.

Proof. The equivalence of statements 1. and 3. is classic, while the equiv-
alence of 4. and 5. was shown in [6]. The equivalence of 3. and 4. was
conjectured by Hall and Paige [9], and proved by Bray, Evans and Wilcox
using the classification of finite simple groups (see [7]). Trivially, 1. implies
2. Also, 2. implies 3., as per the discussion before Conjecture 2 .

Corollary 3. We have

1. �(LG) = |G| for every group G of odd order (also see [3]).

2. For every group G of order n, either �(LG) = n or �(LG) � n+ 2.

3. Let G be an Abelian group of order n, �(LG) � n+ 2 if and only if G
has a unique element of order 2 (also see [13]).

The rest of this section is devoted to proving that the lower bound of Corol-
lary 3(3) is tight for cyclic groups.

Theorem 3. For n � 1 the circulant Latin square of order n satisfies

�(LZn) =

(
n if n is odd

n+ 2 if n is even.

Our proof of Theorem 3 utilizes the following class of graphs.

Definition. The Möbius ladder of order 2n is the cubic graph M obtained
from a cycle C of length 2n by adding n new edges, each connecting an
opposite pair of vertices of C. The cycle C is called the rim of M , and the
added edges are called the rungs of M . (See Figure 3 and Figure 4(b)). Two
vertices of M are said to be nearly antipodal in M if they are at distance n�1
in C.

The following proposition is straightforward to verify.

Proposition 4. If x, x0 are nearly antipodal vertices of a Möbius ladder M ,
then M � {x, x0} is bipartite.

6



4 5

5

70

1

2

3

1

0 7

6

6

2

3 4

Figure 3: A Möbius ladder of order 16.

Let LZn = {(r, c, s) 2 Zn ⇥ Zn ⇥ Zn | s = r + c (mod n)} be the circulant
Latin square of order n. For 0  i < n, we define the ith right diagonal of
LZn to be the set Ti = {(r, r + i, 2r + i) | 0  r  n� 1}.
Proposition 5. For 0  i < n, the subgraph hTi[Ti+1i of �(LZn) induced by
the 2-plex Ti[Ti+1 is isomorphic to the Möbius ladder of order 2n. Moreover
if n = 2m is even, then every cell x 2 Ti is nearly antipodal to each of the
cells x

0 = x+ (m,m+ 1, 1) and x

00 = x+ (m� 1,m,�1).

Proof. The row edges and column edges in hTi [ Ti+1i comprise the rim of
the Möbius ladder. For each (r, c, s) 2 Ti, we have c�r = i, c+r = s, and the
only other solution to the system {c0 � r

0 2 {i, i+1}, c0 + r

0 = s} (mod n) is
(r0, c0) = (r+bn

2 c, c+dn
2 e). Therefore each symbol edge in hTi[Ti+1i is a rung

joining an opposite pair of vertices along the rim of hTi [ Ti+1i. If n = 2m
and x 2 Ti, then both x

0 and x

00 are nearly antipodal to x since they are
adjacent to x+ (m,m, 0) along the rim of hTi [ Ti+1i, and {x, x+ (m,m, 0)}
is a rung of hTi [ Ti+1i.
See Figure 4 for an example.

Proof of Theorem 3. If n is odd it follows by Corollary 3(1).
If n is even, by Corollary 3(3), it su�ces to show that �(LZ2m) has a proper
(2m+ 2)-coloring for m � 1. This is true for m = 1 since �(LZ2) ⇠= K4. We
assume m � 2 and let k = dm

2 e. Using the notation [t] = {0, 1, . . . , t � 1},
we define four sets of cells:

X = {xj | j 2 [k]}, X

0 = {x0
j | j 2 [k]},

Y = {yj | j 2 [m� k]}, Y

0 = {y0j | j 2 [m� k]},
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0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 0
2 3 4 5 6 7 0 1

3 4 5 6 7 0 1 2

4 5 6 7 0 1 2 3
5 6 7 0 1 2 3 4
6 7 0 1 2 3 4 5
7 0 1 2 3 4 5 6

4

17

3

7

0

5

6

45

6

0

1

2

3

2

(a) (b)

Figure 4: For LZ8 we indicate T4 [ T5 in bold face, and underline the near antipodal cells

x = (0, 4, 4) and x

00
= x+ (3, 4,�1) = (3, 0, 3) in the Möbius ladder hT4 [ T5i.

where

xj = (j, 3j, 4j), x

0
j = xj + (dr, dc, ds), for j 2 [k],

yj = xj + (0, 2k, 2k), y

0
j = yj + (dr, dc, ds), for j 2 [m� k],

and where

(dr, dc, ds) =

(
(m, m+ 1, 1) if m ⌘ 0 (mod 3),

(m� 1,m,�1) if m 6⌘ 0 (mod 3).

Each of these sets is (essentially) a translation of X:

X

0 = X + (dr, dc, ds), (2)

Y [ Y

0 =

(
(X [X

0) + (0, 2k, 2k) if m is even,

(X [X

0 \ {xk, x0
k}) + (0, 2k, 2k) if m is odd.

(3)

See Figure 5 for examples.
Claim: Each of X [ X

0 and Y [ Y

0 is an independent set in the graph
�(LZ2m).
Proof of Claim: By (3) it su�ces to prove the statement for X [ X

0 =
{xj, x0

j | j 2 [k]}. For any integer t, we define t 2 [2m] to be the least
positive residue of t modulo 2m. For j 2 [k] we write xj = (rj, cj, sj) and
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0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11 0
2 3 4 5 6 7 8 9 10 11 0 1
3 4 5 6 7 8 9 10 11 0 1 2
4 5 6 7 8 9 10 11 0 1 2 3
5 6 7 8 9 10 11 0 1 2 3 4
6 7 8 9 10 11 0 1 2 3 4 5
7 8 9 1011 0 1 2 3 4 5 6
8 9 10 11 0 1 2 3 4 5 6 7
9 10 11 0 1 2 3 4 5 6 7 8
10 11 0 1 2 3 4 5 6 7 8 9
11 0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 9 10 1112 13 0
2 3 4 5 6 7 8 9 10 11 12 13 0 1
3 4 5 6 7 8 9 10 1112 13 0 1 2
4 5 6 7 8 9 10 11 12 13 0 1 2 3
5 6 7 8 9 10 11 12 13 0 1 2 3 4
6 7 8 9 10 11 1213 0 1 2 3 4 5
7 8 9 1011 12 13 0 1 2 3 4 5 6
8 9 10 11 12 13 0 1 2 3 4 5 6 7

9 10 11 12 13 0 1 2 3 4 5 6 7 8
10 11 12 13 0 1 2 3 4 5 6 7 8 9
11 12 13 0 1 2 3 4 5 6 7 8 9 10
12 13 0 1 2 3 4 5 6 7 8 9 10 11
13 0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 5: The cells X [X

0
(bold face) and Y [ Y

0
(underlined bold face) are shown for

LZ12 and for LZ14 .

x

0
j = (r0j, c

0
j, s

0
j), and define the following six multisets:

R = {r0, r1, . . . , rk�1}, R

0 = {r00, r01, . . . , r0k�1},
C = {c0, c1, . . . , ck�1}, C

0 = {c00, c01, . . . , c0k�1},
S = {s0, s1, . . . , sk�1}, S

0 = {s00, s01, . . . , s0k�1}.

We aim to show that none of R [ R

0, C [ C

0, S [ S

0 has a repeated entry.
For j 2 [k] each of the numbers rj = j, cj = 3j, sj = 4j is bounded above
by 4(k � 1) < 2m, so we have

rj = rj = j, cj = cj = 3j, sj = sj = 4j.

Therefore none of the lists R, C, S has a repeated entry. By (2), none of
the lists R

0, C

0, S

0 has a repeated entry, so it su�ces to show that each
of the sets R \ R

0, C \ C

0, S \ S

0 is empty. First, since m � 2 we have
k < m so R ✓ {0, 1, . . . ,m � 2}. For j 2 [k] we have r

0
j = rj + dr 2

{rj + m, rj + (m � 1)} ✓ {m � 1,m, . . . , 2m � 1}. Therefore r

0
j = r

0
j and

R\R

0 = ;. Second, for j 2 [k] we have c0j = cj + dc 2 {cj +(m+1), cj +m}.
Therefore 0  c

0
j < 4m and

c

0
j =

(
3j + dc, if cj + dc < 2m

3j + dc � 2m, if cj + dc � 2m.
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If m ⌘ 0 (mod 3), then dc = m + 1 so c

0
j ⌘ 1 (mod 3). If m 6⌘ 0 (mod 3),

then dc = m so c0j ⌘ ±m (mod 3). In both cases we find c

0
j 6⌘ 0 ⌘ cj (mod 3)

for j 2 [k]. Therefore C \ C

0 = ;. Third, for j 2 [k] we have s

0
j = sj ± 1 so

sj is even and s

0
j is odd. Since 2m is even, we conclude that sj is even and

s

0
j is odd for every j 2 [k]. Therefore S \ S

0 = ; and the claim is proved.

For every j 2 [m] we apply Proposition 5 to the 2-plex

Mj := T2j [ T2j+1,

where Ti is the ith right diagonal of LZ2m . Each induced subgraph hMji
is a Möbius ladder. For j 2 [k] we have that xj 2 T2j, so the cell x0

j =
xj + (dr, dc, ds) is nearly antipodal to xj in hMji. Similarly, for j 2 [m � k]
we find that yj and y

0
j are nearly antipodal vertices of hMj+ki. We now

consider the following partition of LZ2m into m+ 1 parts.

{Mj�{xj, x
0
j} | j 2 [k]}[{Mj+k�{yj, y0j} | j 2 [m�k]}[{X [X

0[Y [Y

0}
By Proposition 4 and the above claim, each part induces a bipartite subgraph
of �(LZ2m). We conclude that �(LZ2m)  2m+ 2.
See Figure 6 for some examples.

04 11 25 33
15 20 34 02
23 32 01 10
30 03 12 21

06 11 23 32 47 55
15 20 31 46 53 04
24 35 40 51 02 13
33 44 57 00 16 22
42 56 05 14 21 30
50 03 12 25 34 41

08 11 22 33 49 55 66 77
16 20 31 48 52 64 75 09
27 36 40 51 63 72 04 15
39 47 56 60 78 03 12 24
45 54 67 79 01 10 23 38
53 65 74 06 17 21 30 42
62 73 05 14 26 37 41 50
70 02 13 25 34 46 57 61

Figure 6: Colorings of LZ4 , LZ6 , and LZ8 by the method of Theorem 3. The colors are

given as subscripts.

4. Latin squares of small orders

We have computed �(L) for all main classes of order n, 2  n  7.
N. Shajari has verified by computer that all 283657 main classes of Latin
squares of order 8 as listed in [10] are 10-colorable. The results are summa-
rized in Table 1.
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n Number of main classes Main class number as listed in [4] �

2 1 2.1 (LZ2) 4

3 1 3.1 (LZ3) 3

4 2
4.2 (LZ2⇥Z2) 4
4.1 (LZ4) 6

5 2
5.1 (LZ5) 5
5.2 6

6 12
6.2, 6.3, 6.4, 6.5, 6.10, 6.11 7
6.1, 6.6, 6.7, 6.8, 6.9, 6.12 8

7 147
7.3, 7.6, 7.7, 7.71, 7.105, 7.137 7
All other main classes of order 7 8

8 283657 All main classes as listed in [10]  10

Table 1: Chromatic numbers of Latin squares of order n, 2  n  8.

Acknowledgements. The work of Luis Goddyn was supported by NSERC
Canada, while E.S. Mahmoodian was visiting Simon Fraser University and
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Addendum. One of the referees for this paper asserts that �(L) has been
studied before by at least four di↵erent groups or individuals, he/she has
discussed the invariant with some of these groups, and has seen it mentioned
in several conference talks, but knows of no written work on the topic. An-
other referee informs us that some of our results are contained in a paper by
Nicholas Cavenagh and Jaromy Kuhl that is the same concept but they call
it “chromatic index” rather than “chromatic number”, and is about to be
published in Contributions to Discrete Mathematics 12 (2016), issue 2.
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