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Abstract. We present a tool that shows, that the existence of a k-nowhere-zero-flow is compatible with 1-,2-
and 3-sums in regular matroids. As application we present a conjecture for regular matroids that is equivalent

to Hadwiger’s conjecture for graphs and Tuttes’s 4- and 5-flow conjectures.
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1. Introduction

A (real) matrix is totally unimodular (TUM) if each subdeterminant belongs to {0,±1}. Totally unimodular
matrices enjoy several nice properties which give them a fundamental role in combinatorial optimization and
matroid theory. In this note we prove that the TUM possesses an attractive property.

Let S ⊆ R, and let A be a real matrix. A column vector f is a S-flow of A if Af = 0 and every entry of f
is a member of ±S.

For any additive abelian group Γ use the notation Γ∗ = Γ \ {0}. For a TUM A and a column vector f with
entries in Γ, the product Af is a well defined column vector with entries in Γ, by interpreting (−1)γ to be the
additive inverse of γ.

It is convenient to use the language of matroids. A regular oriented matroid M is an oriented matroid
that is representable M = M [A] by a TUM matrix A. Here the elements E(M) of M label the columns of
A. Each (signed) cocircuit D = (D+, D−) of M corresponds to a {0,±1}-valued vector in the row space of
A and having minimal support. The +1-entries in this vector constitute the sets D+. It is known [19, Prop.
1.2.5] that two TUMs represent the same oriented matroid if and only if the first TUM can be converted to
the second TUM by a succession of the following operations: multiplying a row by −1, adding one row to
another, deleting a row of zeros, and permuting columns (with their labels).

For S ⊆ E(M) we use the notation f(S) =
∑

e∈S f(e). Let M = M [A] be the regular oriented matroid
represented by the TUM A. Let S ⊆ Γ where Γ is an abelian group. An S-flow of M is a function f : E(M)→
S for which Af = 0, where f is interpreted to be a vector indexed by the column labels of A. For any S ⊆ Γ
we say that a regular matroid M has an S-flow if any of the TUMs that represent M has an S-flow. By
the previous paragraph, this property of M is well defined. Since the rows of a TUM A generate the cocycle
space of M = M [A], we have that a function f : E(M)→ Γ is a flow if and only if for every signed cocircuit
D = (D+, D−) we have that f(D) = 0 where f(D) is defined to equal f(D+)− f(D−).

Let Γ be a finite abelian group. Let M be a regular oriented matroid, and let F ⊆ E(M) and let f : F → Γ.
Let τΓ(M,f) denote the number of Γ∗-flows of M which are extensions of f .

Theorem 1. Let M be an regular oriented matroid. Let F ⊆ E(M) and let f, f ′ : F → Γ. Suppose that for
every minor N of M satisfying E(N) = F , we have that f is a Γ-flow of N if and only f ′ is a Γ-flow of N .
Then τΓ(M,f) = τΓ(M,f ′).

Proof. We proceed by induction on d = |E\F |. If d = 0, then there is nothing to prove. Otherwise let e ∈ E\F .
If e is a coloop of M , then τΓ(M,f) = τΓ(M,f ′) = 0. If e is a loop of M , then by applying induction to
M \ e, we have τΓ(M,f) = τΓ(M,f ′) = (|Γ| − 1)τΓ(M\e, f). Otherwise we apply Tutte’s deletion/contraction
formula [3] and induction to get

τΓ(M,f ′) = τΓ(M/e, f ′)− τΓ(M\e, f ′) = τΓ(M/e, f)− τΓ(M\e, f) = τΓ(M,f).
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�

Corollary 2. Let D be a positively oriented cocircuit of a regular oriented matroid M . Let f, f ′ : D → Γ.
Suppose that for every S ⊆ D we have that f(S) = 0 if and only if f ′(S) = 0. Then τΓ(M,f) = τΓ(M,f ′).

Proof. Let N be a minor of M satisfying E(N) = D. Then E(N) is a disjoint union
⋃

iDi of positively
oriented cocircuits of N [9, Prop. 9.3.1]. Thus f is a Γ∗-flow of N if and only if f has no zeros, and f(Di) = 0
for each i. The result follows from Theorem 1. �

Corollary 3. Let M be a regular oriented matroid which has a Γ∗-flow f .

(1) Let e ∈ E(M) and γ ∈ Γ∗. Then M has a Γ∗-flow f ′ with f ′(e) = γ.
(2) Let D be a signed cocircuit of M of cardinality three. Let f ′ : D → Γ∗ satisfy f ′(D) = 0. Then f ′

extends to a Γ∗-flow of M .

Proof. (1) In any minor N with E(N) = {e}, both f ′ and f �{e} are Γ∗-flows of N if and only if N is a
loop. Thus by Theorem 1 τΓ(M,f ′) = τΓ(M,f) > 0.

(2) Let S ⊂ D. For any e ∈ D we have f ′(D \ {e}) = f ′(D)− f ′(e) = −f ′(e) 6= 0. Therefore f ′(S) = 0 if
and only if S = D. Since f is a Γ-flow and D is a positively oriented cocircuit of D we have f(D) = 0.
Since f(e) 6= 0 for e ∈ D we again have that f(S) = 0 if and only if S = D. It follows from Theorem
1 that τΓ(M,f ′) = τΓ(M,f) > 0.

�

A k-nowhere zero flow (k-NZF) of a regular oriented matroid M is an S-flow of M for S = {1, 2, . . . , k−1} ⊂
R. We frequently use the following observation of Tutte [15].

Proposition 4. Let Γ be an abelian group of order k, and let S = {1, 2, . . . , k − 1} ⊂ R. Then M has a
k-NZF if and only if M has a Γ∗-flow. In particular, the existence of a Γ∗-flow in M depends only on |Γ|.

A key step in the proof of Proposition 4 is the conversion of a Γ∗-flow into a k-NZF, where Γ is the group
of integers modulo k. By modifying this argument, one can show that the statement of Corollary 3 remains
true if each occurrence of the symbol Γ∗ is replaced by the set of integers S = {±1,±2, . . . ,±(k − 1)}. We
omit the proof of this fact, as it is not needed in this paper.

2. Seymour decomposition

We provide here a description of Seymour’s decomposition theorem for regular oriented matroids. We refer
the reader to [13] for further details. We first describe three basic types of regular oriented matroids.

A oriented matroid is graphic if it can be represented by the {0,±1}-valued vertex-edge incidence matrix of
a directed graph, where loops and multiple edges are allowed. Any {0,±1}-valued matrix which whose rows
span the nullspace of a network matrix is called a dual network matrix . Dual network matrices are also TUM,
and an oriented matroid is cographic is it is representable by a dual network matrix. The third class consists
of all the all the orientations of one special regular matroid R10. Every orientation of R10 can be represented
by the matrix [I|B] where B is obtained by negating a subset of the columns of the following matrix.

+ 0 0 + −
− + 0 0 +
+ − + 0 0
0 + − + 0
0 0 + − +

(1)

Here “+” and “−” respectively denote +1 and −1.
Let M1, M2 be regular oriented matroids. If E(M1) and E(M2) are disjoint, then the 1-sum M1 ⊕1 M2 is

just the direct sum of M1 and M2. The signed cocircuits of M1⊕1M2 are the signed subsets of E(M1)∪E(M2)
which are signed cocircuits of either M1 or M2. If M1 ∩M2 = {e} and e is neither a loop nor a coloop in
each Mi, then the 2-sum M1 ⊕2 M2 has element set E(M1)∆E(M2), where “∆” is the symmetric difference
operator. A signed cocircuit is a signed subset of E(M1 ⊕2 M2) that is either a signed cocircuit of M1 or M2,
or is a signed set of the form

D = (D+
1 ∆D+

2 , D
−
1 ∆D−2 )(2)
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where each (D+
i , D

−
i ) is a signed cocircuit of Mi, and e ∈ (D+

1 ∩ D
+
2 ) ∪ (D−1 ∩ D

−
2 ). If M1 ∩M2 = B and

B = (B+, B−) is a signed cocircuit of cardinality 3 in each Mi, then the 3-sum M1 ⊕3 M2 has element set
E(M1)∆E(M2). A signed cocircuit is a signed subset of E(M1 ⊕3 M2) that is either a signed cocircuit of M1

or M2, or a signed subset of the form (2) where each (D+
i , D

−
i ) is a signed cocircuit of Mi, with D1 ∩D2 = ∅

and (B+, B−) equals one of the following ordered pairs:

( (D+
1 ∩B+) ∪ (D+

2 ∩B+) , (D−1 ∩B−) ∪ (D−2 ∩B−) )

( (D−1 ∩B+) ∪ (D−2 ∩B+) , (D+
1 ∩B−) ∪ (D+

2 ∩B−) ).

The oriented version of Seymour’s decomposition theorem [13] and can be derived from [5, Theorem 6.6].

Theorem 5. Every regular oriented matroid M can be constructed by means of repeated application of k-sums,
k = 1, 2, 3, starting with oriented matroids, each of which is isomorphic to a minor of M and each of which is
either graphic, cographic, or an orientation of R10.

We note that Schriver [12] states an equivalent version of Theorem 5 in terms of TUMs, that requires a
second representation of R10 in (1) due to his implicit selection of a basis.

Here is the main tool of this paper, which we employ in two subsequent applications.

Theorem 6. Let k ≥ 2 be an integer and let M be a set of regular oriented matroids that is closed under
minors. If every graphic and cographic member of M has a k-NZF, then every matroid in M has a k-NZF.

Proof. Let M ∈M. We proceed by induction on |E(M)|. If M is an orientation of R10, then M has a 2-NZF
since R10 is a disjoint union of circuits, and each circuit is the support of a {0,±1}-flow in M . If M is graphic
or cographic, then we are done by assumption. Otherwise, by Theorem 5, M has two proper minors M1,
M2 ∈ M. such that M = M1 ⊕i M2, for some i = 1, 2, 3. By induction, each Mi has a k-NZF. Thus by
Proposition 4, both minors have a Γ∗-flow where Γ is any fixed group of order k. By Corollary 3, we may
assume that these Γ∗-flows coincide on M1 ∩M2. Hence the union of these functions is a well defined Γ∗-flow
on M and we are done by another application of Proposition 4. �

3. Tutte’s flow Conjectures and Hadwiger’s Conjecture

In this section we will present a conjecture that unifies two of Tutte’s Flow Conjectures and Hadwiger’s
Conjecture on graph colorings.

Conjecture 7 (H(k)[4]). If a simple graph is not k-colorable, then it must have a Kk+1-minor.

While H(1) and H(2) are trivial, Hadwiger proved his conjecture for k = 3 and pointed out that Klaus
Wagner proved that H(4) is equivalent to the Four Color Theorem [18, 2, 10]. Robertson, Seymour and
Thomas [11] reduced H(5) to the Four Color Theorem. The conjecture remains open for k ≥ 6.

Tutte [15] pointed out that the Four Color Theorem is equivalent to the statement that every planar graph
admits an 4-NZ-flow. Generalizing this to arbitrary graphs he conjectured that

Conjecture 8 (Tutte’s Flow Conjecture [15]). There is a finite number k ∈ N such that every bridgeless
graph admits a k-NZ-flow.

and moreover that

Conjecture 9 (Tutte’s Five Flow Conjecture [15]). Every bridgeless graph admits a 5-NZ-flow.

Note that the latter is best possible as the Petersen graph does not admit a 4-NZ-flow. Conjecture 8 has
been proven independently by Kilpatrick [7] and Jaeger [6] with k = 8 and improved to k = 6 by Seymour [14].

Conjecture 9 has a sibling which is a more direct generalization of the Four Color Theorem.

Conjecture 10 (Tutte’s Four Flow Conjecture [16, 17]). Every graph without a Petersen-minor admits a
4-NZ-flow.

In [16, 17] Tutte cited Hadwiger’s conjecture as a motivating theme and pointed out that while

“Hadwiger’s conjecture asserts that the only irreducible chain-group which is graphic is the
coboundary group of the complete 5-graph”



4 LUIS A. GODDYN AND WINFRIED HOCHSTÄTTLER

Conjecture 10 means that

“the only irreducible chain-group which is cographic is the cycle group of the Petersen graph.”

The first statement refers to the case where the rows of a totally unimodular matrix A consist of a basis of
signed characteristic vectors of cycles of a digraph.

Combining these we derive the following formulation in terms of regular matroids. First let us call any
integer combination of the rows of A a coflow. Clearly, by duality resp. orthogonality, flows and coflows yield
the same concept in regular matroids. Note that the existence of a k-NZ-coflow in a graph is equivalent to
k-colorability [16].

Conjecture 11 (Tutte’s Four Flow Conjecture, matroid version). A regular matroid that does not admit a
4-NZ-flow has either a minor isomorphic to the cographic matroid of the K5 or a minor isomorphic to the
graphic matroid of the Petersen graph.

Equivalently, we have

Conjecture 12 (Hadwigers’s Conjecture for regular matroids and k = 4). A regular matroid that is not
4-colorable, i.e. that does not admit a NZ-4-coflow, has a K5 or a Petersen-dual as a minor.

Some progress concerning this Conjecture was made by Lai, Li and Poon using the Four Color Theorem

Theorem 13 ([8]). A regular matroid that is not 4-colorable has a K5 or a K5-dual as a minor.

Tutte’s Five Flow Conjecture now suggests the following matroid version of Hadwiger’s conjecture:

Conjecture 14 (Hadwigers’s Conjecture for regular matroids and k ≥ 5). If a regular matroid is not k-
colorable for k ≥ 5, then it must have a Kk+1-minor.

Theorem 15. (1) Conjecture 11 is equivalent to Conjecture 10.
(2) Conjecture 14 for k = 5 is equivalent to Conjecture 9.
(3) Conjecture 14 for k ≥ 6 is equivalent to Conjecture 7.

Proof. (1) By Weiske’s Theorem [4] a graphic matroid has no K∗5 -minor. Hence Conjecture 11 clearly
implies Conjecture 10. The other implication is proven by induction on |E(M)|. Consider a regular
matroid M , that is not 4-colorable, i.e. that does not admit a NZ-4-coflow. Clearly, M cannot be
isomorphic to R10. If M is graphic, it must have a K5-minor by the Four Color Theorem [2, 10]
and an observation of Klaus Wagner [18]. If M is cographic it must have a Petersen-dual-minor
by Conjecture 10. Otherwise, by Theorem 5, M has two proper minors M1, M2 ∈ M. such that
M = M1 ⊕i M2, for some i = 1, 2, 3 and at least one of them is not 4-colorable by Theorem 6. Using
induction we find either a Petersen-dual-minor or a K5-minor in one of the Mi and hence also in M .
Thus, Conjecture 10 implies Conjecture 11.

(2) We proceed as in the first case using H(5) for graphs [11] instead of the Four Color Theorem.
(3) We proceed similar to the first case, with only a slight difference in the base case. If M is graphic, it

must have a Kk+1-minor by Conjecture 7. M cannot be cographic by Seymour’s 6-flow-theorem [14].
�

Remark 16. James Oxley pointed that Theorem 15 could also be proven using splitting formulas for the
Tutte polynomial (see e.g. [1]), Seymour’s decomposition and the fact that the flow number as well as the
chromatic number are determined by the smallest non-negative integer non-zero of certain evaluations of the
Tutte polynomial.
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18. K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Mathematische Annalen 114 (1937), no. 1, 570–590.

19. Neil White, Combinatorial geometries, Cambridge University Press, September 1987.


