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ABSTRACT. We present a tool that shows, that the existence of a k-nowhere-zero-flow is compatible with 1-,2-
and 3-sums in regular matroids. As application we present a conjecture for regular matroids that is equivalent
to Hadwiger’s conjecture for graphs and Tuttes’s 4- and 5-flow conjectures.
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1. INTRODUCTION

A (real) matrix is totally unimodular (TUM) if each subdeterminant belongs to {0, £1}. Totally unimodular
matrices enjoy several nice properties which give them a fundamental role in combinatorial optimization and
matroid theory. In this note we prove that the TUM possesses an attractive property.

Let S C R, and let A be a real matrix. A column vector f is a S-flow of A if Af =0 and every entry of f
is a member of +5.

For any additive abelian group I" use the notation I'* = T"\ {0}. For a TUM A and a column vector f with
entries in I', the product Af is a well defined column vector with entries in I', by interpreting (—1)~v to be the
additive inverse of ~.

It is convenient to use the language of matroids. A regular oriented matroid M is an oriented matroid
that is representable M = M[A] by a TUM matrix A. Here the elements E(M) of M label the columns of
A. Each (signed) cocircuit D = (D', D) of M corresponds to a {0,+1}-valued vector in the row space of
A and having minimal support. The +1-entries in this vector constitute the sets DT. Tt is known [19, Prop.
1.2.5] that two TUMs represent the same oriented matroid if and only if the first TUM can be converted to
the second TUM by a succession of the following operations: multiplying a row by —1, adding one row to
another, deleting a row of zeros, and permuting columns (with their labels).

For S C E(M) we use the notation f(S) = > ¢ f(e). Let M = M[A] be the regular oriented matroid
represented by the TUM A. Let S C T" where T is an abelian group. An S-flow of M is a function f : E(M) —
S for which Af = 0, where f is interpreted to be a vector indexed by the column labels of A. For any S CT'
we say that a regular matroid M has an S-flow if any of the TUMs that represent M has an S-flow. By
the previous paragraph, this property of M is well defined. Since the rows of a TUM A generate the cocycle
space of M = M[A], we have that a function f : E(M) — T is a flow if and only if for every signed cocircuit
D = (D%, D7) we have that f(D) = 0 where f(D) is defined to equal f(D*) — f(D™).

Let T be a finite abelian group. Let M be a regular oriented matroid, and let F C E(M) and let f : F — T
Let (M, f) denote the number of I'*-flows of M which are extensions of f.

THEOREM 1. Let M be an reqular oriented matroid. Let ' C E(M) and let f, f' : F — T'. Suppose that for
every minor N of M satisfying E(N) = F, we have that f is a T-flow of N if and only f' is a T-flow of N.
Then TF(M7 f) = TF(M7 fl)

Proof. We proceed by induction on d = |E\ F|. If d = 0, then there is nothing to prove. Otherwise let e € E\ F.
If e is a coloop of M, then (M, f) = (M, ') = 0. If e is a loop of M, then by applying induction to
M\ e, we have 0 (M, ) = o(M, f') = (|T'| = )70 (M \e, f). Otherwise we apply Tutte’s deletion/contraction
formula [3] and induction to get

TF(Ma f/) = TF(M/67 fl) - TF(M\ea f/) = TF(M/€7 f) - TF(M\ea f) = TF(M7 f)
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COROLLARY 2. Let D be a positively oriented cocircuit of a regular oriented matroid M. Let f,f' : D — T.
Suppose that for every S C D we have that f(S) =0 if and only if f'(S) =0. Then (M, f) = (M, f).

Proof. Let N be a minor of M satisfying E(N) = D. Then E(N) is a disjoint union |J; D; of positively
oriented cocircuits of N [9, Prop. 9.3.1]. Thus f is a I's-flow of N if and only if f has no zeros, and f(D;) =0
for each i. The result follows from Theorem 1. |

COROLLARY 3. Let M be a regular oriented matroid which has a T*-flow f.
(1) Lete € E(M) and v € T*. Then M has a T*-flow f" with f'(e) = .
(2) Let D be a signed cocircuit of M of cardinality three. Let ' : D — T'* satisfy f/(D) = 0. Then f'
extends to a T'*-flow of M.

Proof. (1) In any minor N with E(N) = {e}, both f" and f [{c} are I'*-flows of N if and only if N is a
loop. Thus by Theorem 1 (M, f') = (M, f) > 0.
(2) Let S C D. For any e € D we have f'(D\ {e}) = f(D) — f'(e) = —f'(e) # 0. Therefore f'(S) =0 if
and only if S = D. Since f is a I'-flow and D is a positively oriented cocircuit of D we have f(D) = 0.
Since f(e) # 0 for e € D we again have that f(S) =0 if and only if S = D. It follows from Theorem
1 that 7'1"(]\47 f/) = T[‘(M,f) > 0.
O

A k-nowhere zero flow (k-NZF) of a regular oriented matroid M is an S-flow of M for S = {1,2,...,k—1} C
R. We frequently use the following observation of Tutte [15].

PROPOSITION 4. Let T’ be an abelian group of order k, and let S = {1,2,...,k —1} C R. Then M has a
k-NZF if and only if M has a T*-flow. In particular, the existence of a T*-flow in M depends only on |T|.

A key step in the proof of Proposition 4 is the conversion of a I'*-flow into a k-NZF, where I" is the group
of integers modulo k. By modifying this argument, one can show that the statement of Corollary 3 remains
true if each occurrence of the symbol I'* is replaced by the set of integers S = {+1,£2,...,+(k —1)}. We
omit the proof of this fact, as it is not needed in this paper.

2. SEYMOUR DECOMPOSITION

We provide here a description of Seymour’s decomposition theorem for regular oriented matroids. We refer
the reader to [13] for further details. We first describe three basic types of regular oriented matroids.

A oriented matroid is graphic if it can be represented by the {0, £1}-valued vertex-edge incidence matrix of
a directed graph, where loops and multiple edges are allowed. Any {0, £1}-valued matrix which whose rows
span the nullspace of a network matrix is called a dual network matriz. Dual network matrices are also TUM,
and an oriented matroid is cographic is it is representable by a dual network matrix. The third class consists
of all the all the orientations of one special regular matroid R;g. Every orientation of Rjg can be represented
by the matrix [I|B] where B is obtained by negating a subset of the columns of the following matrix.

+ 0 0 + -
-+ 0 0 +
(1) + — 4+ 0 0
0 + — + 0
0 0 + — +

Here “+” and “—” respectively denote +1 and —1.

Let My, My be regular oriented matroids. If E(M;) and E(Ms;) are disjoint, then the 1-sum M; @, My is
just the direct sum of M; and M. The signed cocircuits of My @1 M, are the signed subsets of E(M;)UE(Ms)
which are signed cocircuits of either My or My. If My N My = {e} and e is neither a loop nor a coloop in
each M;, then the 2-sum Mj @9 Ms has element set E(M;)AE(Ms), where “A” is the symmetric difference
operator. A signed cocircuit is a signed subset of F(M; @2 Ms) that is either a signed cocircuit of M; or Ma,
or is a signed set of the form

(2) D = (D ADy, Dy AD;)
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where each (D;f, D;) is a signed cocircuit of M;, and e € (Df N DY) U (Dy N Dy). If My N My = B and
B = (B*,B7) is a signed cocircuit of cardinality 3 in each M;, then the 3-sum M; @3 M> has element set
E(M1)AE(Ms). A signed cocircuit is a signed subset of E(M; ®3 Ms) that is either a signed cocircuit of M
or Ma, or a signed subset of the form (2) where each (D;f, D;") is a signed cocircuit of M;, with D; N Dy = 0)
and (B, B™) equals one of the following ordered pairs:

((Df NB*)U (D NBY), (D NB7)U(Ds NB))
((Dy NBTHYU(D; NnBY), (DynB™)u(Dy NB7)).
The oriented version of Seymour’s decomposition theorem [13] and can be derived from [5, Theorem 6.6].

THEOREM 5. FEvery reqular oriented matroid M can be constructed by means of repeated application of k-sums,
k =1,2,3, starting with oriented matroids, each of which is isomorphic to a minor of M and each of which is
either graphic, cographic, or an orientation of Ryg.

We note that Schriver [12] states an equivalent version of Theorem 5 in terms of TUMs, that requires a
second representation of Ryg in (1) due to his implicit selection of a basis.
Here is the main tool of this paper, which we employ in two subsequent applications.

THEOREM 6. Let k > 2 be an integer and let M be a set of regular oriented matroids that is closed under
minors. If every graphic and cographic member of M has a k-NZF, then every matroid in M has a k-NZF.

Proof. Let M € M. We proceed by induction on |E(M)|. If M is an orientation of Ryg, then M has a 2-NZF
since Ry is a disjoint union of circuits, and each circuit is the support of a {0, £1}-flow in M. If M is graphic
or cographic, then we are done by assumption. Otherwise, by Theorem 5, M has two proper minors My,
My € M. such that M = My ®; M,, for some ¢ = 1,2,3. By induction, each M; has a k-NZF. Thus by
Proposition 4, both minors have a I'*-flow where I" is any fixed group of order k. By Corollary 3, we may
assume that these I'*-flows coincide on M7 N M. Hence the union of these functions is a well defined I'*-flow
on M and we are done by another application of Proposition 4. O

3. TuTTE’S FLOW CONJECTURES AND HADWIGER'S CONJECTURE

In this section we will present a conjecture that unifies two of Tutte’s Flow Conjectures and Hadwiger’s
Conjecture on graph colorings.

CoNJECTURE 7 (H(k)[4]). If a simple graph is not k-colorable, then it must have a Kj11-minor.

While H(1) and H(2) are trivial, Hadwiger proved his conjecture for k¥ = 3 and pointed out that Klaus
Wagner proved that H(4) is equivalent to the Four Color Theorem [18, 2, 10]. Robertson, Seymour and
Thomas [11] reduced H(5) to the Four Color Theorem. The conjecture remains open for k > 6.

Tutte [15] pointed out that the Four Color Theorem is equivalent to the statement that every planar graph
admits an 4-NZ-flow. Generalizing this to arbitrary graphs he conjectured that

CoNJECTURE 8 (Tutte’s Flow Conjecture [15]). There is a finite number k € N such that every bridgeless
graph admits a k-NZ-flow.

and moreover that
CONJECTURE 9 (Tutte’s Five Flow Conjecture [15]). Every bridgeless graph admits a 5-NZ-flow.

Note that the latter is best possible as the Petersen graph does not admit a 4-NZ-flow. Conjecture 8 has
been proven independently by Kilpatrick [7] and Jaeger [6] with & = 8 and improved to k = 6 by Seymour [14].
Conjecture 9 has a sibling which is a more direct generalization of the Four Color Theorem.

CONJECTURE 10 (Tutte’s Four Flow Conjecture [16, 17]). Every graph without a Petersen-minor admits a
4-NZ-flow.
In [16, 17] Tutte cited Hadwiger’s conjecture as a motivating theme and pointed out that while

“Hadwiger’s conjecture asserts that the only irreducible chain-group which is graphic is the
coboundary group of the complete 5-graph”
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Conjecture 10 means that
“the only irreducible chain-group which is cographic is the cycle group of the Petersen graph.”

The first statement refers to the case where the rows of a totally unimodular matrix A consist of a basis of
signed characteristic vectors of cycles of a digraph.

Combining these we derive the following formulation in terms of regular matroids. First let us call any
integer combination of the rows of A a coflow. Clearly, by duality resp. orthogonality, flows and coflows yield
the same concept in regular matroids. Note that the existence of a k-NZ-coflow in a graph is equivalent to
k-colorability [16].

CONJECTURE 11 (Tutte’s Four Flow Conjecture, matroid version). A regular matroid that does not admit a
4-NZ-flow has either a minor isomorphic to the cographic matroid of the K5 or a minor isomorphic to the
graphic matroid of the Petersen graph.

Equivalently, we have

CONJECTURE 12 (Hadwigers’s Conjecture for regular matroids and k = 4). A regular matroid that is not
4-colorable, i.e. that does not admit a NZ-4-coflow, has a K5 or a Petersen-dual as a minor.

Some progress concerning this Conjecture was made by Lai, Li and Poon using the Four Color Theorem
THEOREM 13 ([8]). A regular matroid that is not 4-colorable has a K5 or a Ks-dual as a minor.
Tutte’s Five Flow Conjecture now suggests the following matroid version of Hadwiger’s conjecture:

CONJECTURE 14 (Hadwigers’s Conjecture for regular matroids and k > 5). If a regular matroid is not k-
colorable for k > 5, then it must have a Kj1-minor.

THEOREM 15. (1) Conjecture 11 is equivalent to Conjecture 10.
(2) Conjecture 14 for k =5 is equivalent to Conjecture 9.
(3) Congecture 14 for k > 6 is equivalent to Conjecture 7.

Proof. (1) By Weiske’s Theorem [4] a graphic matroid has no KZ-minor. Hence Conjecture 11 clearly
implies Conjecture 10. The other implication is proven by induction on |E(M)|. Consider a regular
matroid M, that is not 4-colorable, i.e. that does not admit a NZ-4-coflow. Clearly, M cannot be
isomorphic to Rjg. If M is graphic, it must have a Ks-minor by the Four Color Theorem [2, 10]
and an observation of Klaus Wagner [18]. If M is cographic it must have a Petersen-dual-minor
by Conjecture 10. Otherwise, by Theorem 5, M has two proper minors M7, My € M. such that
M = M; &; Ms, for some 7 = 1,2,3 and at least one of them is not 4-colorable by Theorem 6. Using
induction we find either a Petersen-dual-minor or a Ks-minor in one of the M; and hence also in M.
Thus, Conjecture 10 implies Conjecture 11.

(2) We proceed as in the first case using H(5) for graphs [11] instead of the Four Color Theorem.
(3) We proceed similar to the first case, with only a slight difference in the base case. If M is graphic, it
must have a Kji-minor by Conjecture 7. M cannot be cographic by Seymour’s 6-flow-theorem [14].
|

REMARK 16. James Ozley pointed that Theorem 15 could also be proven using splitting formulas for the
Tutte polynomial (see e.g. [1]), Seymour’s decomposition and the fact that the flow number as well as the
chromatic number are determined by the smallest non-negative integer non-zero of certain evaluations of the
Tutte polynomial.
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