NOWHERE-ZERO FLOWS IN REGULAR MATROIDS AND HADWIGER'S CONJECTURE

LUIS A. GODDYN AND WINFRIED HOCHSTÄTTLER

To the memory of Reinhard Börger

Abstract

We present a tool that shows, that the existence of a k-nowhere-zero-flow is compatible with 1-,2and 3 -sums in regular matroids. As application we present a conjecture for regular matroids that is equivalent to Hadwiger's conjecture for graphs and Tuttes's 4- and 5-flow conjectures.

KEYWORDS: nowhere zero flow, regular matroid, chromatic number, flow number, total unimodularity

1. Introduction

A (real) matrix is totally unimodular (TUM) if each subdeterminant belongs to $\{0, \pm 1\}$. Totally unimodular matrices enjoy several nice properties which give them a fundamental role in combinatorial optimization and matroid theory. In this note we prove that the TUM possesses an attractive property.

Let $S \subseteq \mathbb{R}$, and let A be a real matrix. A column vector f is a S-flow of A if $A f=0$ and every entry of f is a member of $\pm S$.

For any additive abelian group Γ use the notation $\Gamma^{*}=\Gamma \backslash\{0\}$. For a TUM A and a column vector f with entries in Γ, the product $A f$ is a well defined column vector with entries in Γ, by interpreting $(-1) \gamma$ to be the additive inverse of γ.

It is convenient to use the language of matroids. A regular oriented matroid M is an oriented matroid that is representable $M=M[A]$ by a TUM matrix A. Here the elements $E(M)$ of M label the columns of A. Each (signed) cocircuit $D=\left(D^{+}, D^{-}\right)$of M corresponds to a $\{0, \pm 1\}$-valued vector in the row space of A and having minimal support. The +1 -entries in this vector constitute the sets D^{+}. It is known [19, Prop. $1.2 .5]$ that two TUMs represent the same oriented matroid if and only if the first TUM can be converted to the second TUM by a succession of the following operations: multiplying a row by -1 , adding one row to another, deleting a row of zeros, and permuting columns (with their labels).

For $S \subseteq E(M)$ we use the notation $f(S)=\sum_{e \in S} f(e)$. Let $M=M[A]$ be the regular oriented matroid represented by the TUM A. Let $S \subseteq \Gamma$ where Γ is an abelian group. An S-flow of M is a function $f: E(M) \rightarrow$ S for which $A f=0$, where f is interpreted to be a vector indexed by the column labels of A. For any $S \subseteq \Gamma$ we say that a regular matroid M has an S-flow if any of the TUMs that represent M has an S-flow. By the previous paragraph, this property of M is well defined. Since the rows of a TUM A generate the cocycle space of $M=M[A]$, we have that a function $f: E(M) \rightarrow \Gamma$ is a flow if and only if for every signed cocircuit $D=\left(D^{+}, D^{-}\right)$we have that $f(D)=0$ where $f(D)$ is defined to equal $f\left(D^{+}\right)-f\left(D^{-}\right)$.

Let Γ be a finite abelian group. Let M be a regular oriented matroid, and let $F \subseteq E(M)$ and let $f: F \rightarrow \Gamma$. Let $\tau_{\Gamma}(M, f)$ denote the number of Γ^{*}-flows of M which are extensions of f.
Theorem 1. Let M be an regular oriented matroid. Let $F \subseteq E(M)$ and let $f, f^{\prime}: F \rightarrow \Gamma$. Suppose that for every minor N of M satisfying $E(N)=F$, we have that f is a Γ-flow of N if and only f^{\prime} is a Γ-flow of N. Then $\tau_{\Gamma}(M, f)=\tau_{\Gamma}\left(M, f^{\prime}\right)$.

Proof. We proceed by induction on $d=|E \backslash F|$. If $d=0$, then there is nothing to prove. Otherwise let $e \in E \backslash F$. If e is a coloop of M, then $\tau_{\Gamma}(M, f)=\tau_{\Gamma}\left(M, f^{\prime}\right)=0$. If e is a loop of M, then by applying induction to $M \backslash e$, we have $\tau_{\Gamma}(M, f)=\tau_{\Gamma}\left(M, f^{\prime}\right)=(|\Gamma|-1) \tau_{\Gamma}(M \backslash e, f)$. Otherwise we apply Tutte's deletion/contraction formula [3] and induction to get

$$
\tau_{\Gamma}\left(M, f^{\prime}\right)=\tau_{\Gamma}\left(M / e, f^{\prime}\right)-\tau_{\Gamma}\left(M \backslash e, f^{\prime}\right)=\tau_{\Gamma}(M / e, f)-\tau_{\Gamma}(M \backslash e, f)=\tau_{\Gamma}(M, f)
$$

Corollary 2. Let D be a positively oriented cocircuit of a regular oriented matroid M. Let $f, f^{\prime}: D \rightarrow \Gamma$. Suppose that for every $S \subseteq D$ we have that $f(S)=0$ if and only if $f^{\prime}(S)=0$. Then $\tau_{\Gamma}(M, f)=\tau_{\Gamma}\left(M, f^{\prime}\right)$.

Proof. Let N be a minor of M satisfying $E(N)=D$. Then $E(N)$ is a disjoint union $\bigcup_{i} D_{i}$ of positively oriented cocircuits of N [9, Prop. 9.3.1]. Thus f is a $\Gamma *$-flow of N if and only if f has no zeros, and $f\left(D_{i}\right)=0$ for each i. The result follows from Theorem 1 .

Corollary 3. Let M be a regular oriented matroid which has a Γ^{*}-flow f.
(1) Let $e \in E(M)$ and $\gamma \in \Gamma^{*}$. Then M has a Γ^{*}-flow f^{\prime} with $f^{\prime}(e)=\gamma$.
(2) Let D be a signed cocircuit of M of cardinality three. Let $f^{\prime}: D \rightarrow \Gamma^{*}$ satisfy $f^{\prime}(D)=0$. Then f^{\prime} extends to $a \Gamma^{*}$-flow of M.

Proof. (1) In any minor N with $E(N)=\{e\}$, both f^{\prime} and $f \upharpoonright_{\{e\}}$ are Γ^{*}-flows of N if and only if N is a loop. Thus by Theorem $1 \tau_{\Gamma}\left(M, f^{\prime}\right)=\tau_{\Gamma}(M, f)>0$.
(2) Let $S \subset D$. For any $e \in D$ we have $f^{\prime}(D \backslash\{e\})=f^{\prime}(D)-f^{\prime}(e)=-f^{\prime}(e) \neq 0$. Therefore $f^{\prime}(S)=0$ if and only if $S=D$. Since f is a Γ-flow and D is a positively oriented cocircuit of D we have $f(D)=0$. Since $f(e) \neq 0$ for $e \in D$ we again have that $f(S)=0$ if and only if $S=D$. It follows from Theorem 1 that $\tau_{\Gamma}\left(M, f^{\prime}\right)=\tau_{\Gamma}(M, f)>0$.

A k-nowhere zero flow $(k-N Z F)$ of a regular oriented matroid M is an S-flow of M for $S=\{1,2, \ldots, k-1\} \subset$ \mathbb{R}. We frequently use the following observation of Tutte [15].

Proposition 4. Let Γ be an abelian group of order k, and let $S=\{1,2, \ldots, k-1\} \subset \mathbb{R}$. Then M has a $k-N Z F$ if and only if M has a Γ^{*}-flow. In particular, the existence of $a \Gamma^{*}$-flow in M depends only on $|\Gamma|$.

A key step in the proof of Proposition 4 is the conversion of a Γ^{*}-flow into a k-NZF, where Γ is the group of integers modulo k. By modifying this argument, one can show that the statement of Corollary 3 remains true if each occurrence of the symbol Γ^{*} is replaced by the set of integers $S=\{ \pm 1, \pm 2, \ldots, \pm(k-1)\}$. We omit the proof of this fact, as it is not needed in this paper.

2. Seymour decomposition

We provide here a description of Seymour's decomposition theorem for regular oriented matroids. We refer the reader to [13] for further details. We first describe three basic types of regular oriented matroids.

A oriented matroid is graphic if it can be represented by the $\{0, \pm 1\}$-valued vertex-edge incidence matrix of a directed graph, where loops and multiple edges are allowed. Any $\{0, \pm 1\}$-valued matrix which whose rows span the nullspace of a network matrix is called a dual network matrix. Dual network matrices are also TUM, and an oriented matroid is cographic is it is representable by a dual network matrix. The third class consists of all the all the orientations of one special regular matroid R_{10}. Every orientation of R_{10} can be represented by the matrix $[I \mid B]$ where B is obtained by negating a subset of the columns of the following matrix.

$$
\left[\begin{array}{ccccc}
+ & 0 & 0 & + & - \tag{1}\\
- & + & 0 & 0 & + \\
+ & - & + & 0 & 0 \\
0 & + & - & + & 0 \\
0 & 0 & + & - & +
\end{array}\right]
$$

Here " + " and " - " respectively denote +1 and -1 .
Let M_{1}, M_{2} be regular oriented matroids. If $E\left(M_{1}\right)$ and $E\left(M_{2}\right)$ are disjoint, then the 1-sum $M_{1} \oplus_{1} M_{2}$ is just the direct sum of M_{1} and M_{2}. The signed cocircuits of $M_{1} \oplus_{1} M_{2}$ are the signed subsets of $E\left(M_{1}\right) \cup E\left(M_{2}\right)$ which are signed cocircuits of either M_{1} or M_{2}. If $M_{1} \cap M_{2}=\{e\}$ and e is neither a loop nor a coloop in each M_{i}, then the 2-sum $M_{1} \oplus_{2} M_{2}$ has element set $E\left(M_{1}\right) \Delta E\left(M_{2}\right)$, where " Δ " is the symmetric difference operator. A signed cocircuit is a signed subset of $E\left(M_{1} \oplus_{2} M_{2}\right)$ that is either a signed cocircuit of M_{1} or M_{2}, or is a signed set of the form

$$
\begin{equation*}
D=\left(D_{1}^{+} \Delta D_{2}^{+}, D_{1}^{-} \Delta D_{2}^{-}\right) \tag{2}
\end{equation*}
$$

where each $\left(D_{i}^{+}, D_{i}^{-}\right)$is a signed cocircuit of M_{i}, and $e \in\left(D_{1}^{+} \cap D_{2}^{+}\right) \cup\left(D_{1}^{-} \cap D_{2}^{-}\right)$. If $M_{1} \cap M_{2}=B$ and $B=\left(B^{+}, B^{-}\right)$is a signed cocircuit of cardinality 3 in each M_{i}, then the 3-sum $M_{1} \oplus_{3} M_{2}$ has element set $E\left(M_{1}\right) \Delta E\left(M_{2}\right)$. A signed cocircuit is a signed subset of $E\left(M_{1} \oplus_{3} M_{2}\right)$ that is either a signed cocircuit of M_{1} or M_{2}, or a signed subset of the form (2) where each $\left(D_{i}^{+}, D_{i}^{-}\right)$is a signed cocircuit of M_{i}, with $D_{1} \cap D_{2}=\emptyset$ and $\left(B^{+}, B^{-}\right)$equals one of the following ordered pairs:

$$
\begin{aligned}
& \left(\left(D_{1}^{+} \cap B^{+}\right) \cup\left(D_{2}^{+} \cap B^{+}\right),\left(D_{1}^{-} \cap B^{-}\right) \cup\left(D_{2}^{-} \cap B^{-}\right)\right) \\
& \left(\left(D_{1}^{-} \cap B^{+}\right) \cup\left(D_{2}^{-} \cap B^{+}\right),\left(D_{1}^{+} \cap B^{-}\right) \cup\left(D_{2}^{+} \cap B^{-}\right)\right) .
\end{aligned}
$$

The oriented version of Seymour's decomposition theorem [13] and can be derived from [5, Theorem 6.6].
Theorem 5. Every regular oriented matroid M can be constructed by means of repeated application of k-sums, $k=1,2,3$, starting with oriented matroids, each of which is isomorphic to a minor of M and each of which is either graphic, cographic, or an orientation of R_{10}.

We note that Schriver [12] states an equivalent version of Theorem 5 in terms of TUMs, that requires a second representation of R_{10} in (1) due to his implicit selection of a basis.

Here is the main tool of this paper, which we employ in two subsequent applications.
ThEOREM 6. Let $k \geq 2$ be an integer and let \mathcal{M} be a set of regular oriented matroids that is closed under minors. If every graphic and cographic member of \mathcal{M} has a $k-N Z F$, then every matroid in M has a $k-N Z F$.

Proof. Let $M \in \mathcal{M}$. We proceed by induction on $|E(M)|$. If M is an orientation of R_{10}, then M has a 2-NZF since R_{10} is a disjoint union of circuits, and each circuit is the support of a $\{0, \pm 1\}$-flow in M. If M is graphic or cographic, then we are done by assumption. Otherwise, by Theorem $5, M$ has two proper minors M_{1}, $M_{2} \in \mathcal{M}$. such that $M=M_{1} \oplus_{i} M_{2}$, for some $i=1,2,3$. By induction, each M_{i} has a k-NZF. Thus by Proposition 4, both minors have a Γ^{*}-flow where Γ is any fixed group of order k. By Corollary 3, we may assume that these Γ^{*}-flows coincide on $M_{1} \cap M_{2}$. Hence the union of these functions is a well defined Γ^{*}-flow on M and we are done by another application of Proposition 4.

3. Tutte's flow Conjectures and Hadwiger's Conjecture

In this section we will present a conjecture that unifies two of Tutte's Flow Conjectures and Hadwiger's Conjecture on graph colorings.
Conjecture $7(\mathrm{H}(\mathrm{k})[4])$. If a simple graph is not k-colorable, then it must have a K_{k+1}-minor.
While $\mathrm{H}(1)$ and $\mathrm{H}(2)$ are trivial, Hadwiger proved his conjecture for $k=3$ and pointed out that Klaus Wagner proved that $\mathrm{H}(4)$ is equivalent to the Four Color Theorem [18, 2, 10]. Robertson, Seymour and Thomas [11] reduced $\mathrm{H}(5)$ to the Four Color Theorem. The conjecture remains open for $k \geq 6$.

Tutte [15] pointed out that the Four Color Theorem is equivalent to the statement that every planar graph admits an 4-NZ-flow. Generalizing this to arbitrary graphs he conjectured that
Conjecture 8 (Tutte's Flow Conjecture [15]). There is a finite number $k \in \mathbb{N}$ such that every bridgeless graph admits a k-NZ-flow.
and moreover that
Conjecture 9 (Tutte's Five Flow Conjecture [15]). Every bridgeless graph admits a 5-NZ-flow.
Note that the latter is best possible as the Petersen graph does not admit a 4-NZ-flow. Conjecture 8 has been proven independently by Kilpatrick [7] and Jaeger [6] with $k=8$ and improved to $k=6$ by Seymour [14].

Conjecture 9 has a sibling which is a more direct generalization of the Four Color Theorem.
Conjecture 10 (Tutte's Four Flow Conjecture [16, 17]). Every graph without a Petersen-minor admits a 4-NZ-flow.

In $[16,17]$ Tutte cited Hadwiger's conjecture as a motivating theme and pointed out that while "Hadwiger's conjecture asserts that the only irreducible chain-group which is graphic is the coboundary group of the complete 5 -graph"

Conjecture 10 means that
"the only irreducible chain-group which is cographic is the cycle group of the Petersen graph."
The first statement refers to the case where the rows of a totally unimodular matrix A consist of a basis of signed characteristic vectors of cycles of a digraph.

Combining these we derive the following formulation in terms of regular matroids. First let us call any integer combination of the rows of A a coflow. Clearly, by duality resp. orthogonality, flows and coflows yield the same concept in regular matroids. Note that the existence of a k-NZ-coflow in a graph is equivalent to k-colorability [16].

Conjecture 11 (Tutte's Four Flow Conjecture, matroid version). A regular matroid that does not admit a 4-NZ-flow has either a minor isomorphic to the cographic matroid of the K_{5} or a minor isomorphic to the graphic matroid of the Petersen graph.

Equivalently, we have
Conjecture 12 (Hadwigers's Conjecture for regular matroids and $k=4$). A regular matroid that is not 4-colorable, i.e. that does not admit a NZ-4-coflow, has a K_{5} or a Petersen-dual as a minor.

Some progress concerning this Conjecture was made by Lai, Li and Poon using the Four Color Theorem
Theorem 13 ([8]). A regular matroid that is not 4-colorable has a K_{5} or a K_{5}-dual as a minor.
Tutte's Five Flow Conjecture now suggests the following matroid version of Hadwiger's conjecture:
Conjecture 14 (Hadwigers's Conjecture for regular matroids and $k \geq 5$). If a regular matroid is not k colorable for $k \geq 5$, then it must have a K_{k+1}-minor.
Theorem 15. (1) Conjecture 11 is equivalent to Conjecture 10.
(2) Conjecture 14 for $k=5$ is equivalent to Conjecture 9.
(3) Conjecture 14 for $k \geq 6$ is equivalent to Conjecture 7.

Proof. (1) By Weiske's Theorem [4] a graphic matroid has no K_{5}^{*}-minor. Hence Conjecture 11 clearly implies Conjecture 10. The other implication is proven by induction on $|E(M)|$. Consider a regular $\operatorname{matroid} M$, that is not 4 -colorable, i.e. that does not admit a NZ-4-coflow. Clearly, M cannot be isomorphic to R_{10}. If M is graphic, it must have a K_{5}-minor by the Four Color Theorem $[2,10]$ and an observation of Klaus Wagner [18]. If M is cographic it must have a Petersen-dual-minor by Conjecture 10. Otherwise, by Theorem $5, M$ has two proper minors $M_{1}, M_{2} \in \mathcal{M}$. such that $M=M_{1} \oplus_{i} M_{2}$, for some $i=1,2,3$ and at least one of them is not 4 -colorable by Theorem 6 . Using induction we find either a Petersen-dual-minor or a K_{5}-minor in one of the M_{i} and hence also in M. Thus, Conjecture 10 implies Conjecture 11.
(2) We proceed as in the first case using $H(5)$ for graphs [11] instead of the Four Color Theorem.
(3) We proceed similar to the first case, with only a slight difference in the base case. If M is graphic, it must have a K_{k+1}-minor by Conjecture 7. M cannot be cographic by Seymour's 6 -flow-theorem [14].

Remark 16. James Oxley pointed that Theorem 15 could also be proven using splitting formulas for the Tutte polynomial (see e.g. [1]), Seymour's decomposition and the fact that the flow number as well as the chromatic number are determined by the smallest non-negative integer non-zero of certain evaluations of the Tutte polynomial.

References

1. Artur Andrzejak, Splitting formulas for tutte polynomials, Journal of Combinatorial Theory, Series B 70 (1997), no. 2, 346 - 366.
2. Kenneth I. Appel and Wolfgang Haken, Every planar map is four colorable, Bull. Amer. Math. Soc. 82 (1976), no. 5, 711-712.
3. D.K Arrowsmith and F Jaeger, On the enumeration of chains in regular chain-groups, Journal of Combinatorial Theory, Series B 32 (1982), no. 1, 75-89.
4. Hugo Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 88 (1943), 133-142.
5. Winfried Hochstättler and Robert Nickel, The flow lattice of oriented matroids, Contributions to Discrete Mathematics 2 (2007), no. 1, 68-86.
6. F. Jaeger, Flows and generalized coloring theorems in graphs, Journal of Combinatorial Theory, Series B 26 (1979), no. 2, 205-216.
7. Peter Allan Kilpatrick, Tutte's first colour-cycle conjecture., Master's thesis, University of Cape Town, 1975.
8. Hong-Jian Lai, Xiangwen Li, and Hoifung Poon, Nowhere zero 4-flow in regular matroids, J. Graph Theory 49 (2005), no. 3, 196-204.
9. James G. Oxley, Matroid theory, The Clarendon Press Oxford University Press, New York, 1992.
10. Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas, The Four-Colour theorem, Journal of Combinatorial Theory, Series B 70 (1997), no. 1, 2-44.
11. Neil Robertson, Paul Seymour, and Robin Thomas, Hadwiger's conjecture for k_{6}-free graphs, Combinatorica 13 (1993), 279-361.
12. Alexander Schrijver, Theory of linear and integer programming, Wiley, June 1998.
13. P. D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980), no. 3, 305-359. MR 579077 (82j:05046)
14. , Nowhere-zero 6-flows, J. Combin. Theory Ser. B 30 (1981), no. 2, 130-135. MR MR615308 (82j:05079)
15. W.T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954), 80-91.
16. \qquad On the algebraic theory of graph colorings, Journal of Combinatorial Theory 1 (1966), no. 1, $15-50$.
17. \quad, A geometrical version of the four color problem, Combinatorial Math. and Its Applications (R. C. Bose and T. A. Dowling, eds.), Chapel Hill, NC: University of North Carolina Press, 1967.
18. K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Mathematische Annalen 114 (1937), no. 1, 570-590.
19. Neil White, Combinatorial geometries, Cambridge University Press, September 1987.
