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Abstract. An n × n matrix A is said to be silver if, for i = 1, 2, . . . , n, each symbol in
{1, 2, . . . , 2n − 1} appears either in the ith row or the ith column of A. The 38th International
Mathematical Olympiad asked whether a silver matrix exists with n = 1997. More generally, a
silver cube is a triple (Kd

n, I, c) where I is a maximum independent set in a Cartesian power of
the complete graph Kn, and c : V (Kd

n) → {1, 2, . . . , d(n − 1) + 1} is a vertex colouring where,
for v ∈ I, the closed neighbourhood N [v] sees every colour. Silver cubes are related to codes,
dominating sets, and those with n a prime power are also related to finite geometry. We present
here algebraic constructions, small examples, and a product construction. The nonexistence of
silver cubes for d = 2 and some values of n, is proved using bounds from coding theory.
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1. Introduction

An n × n matrix A is said to be silver if, for every i = 1, 2, . . . , n, each symbol in
{1, 2, . . . , 2n− 1} appears either in the ith row or the ith column of A. A problem of the
38th International Mathematical Olympiad in 1997 introduced this definition and asked
to prove that no silver matrix of order 1997 exists. In [7] the motivation behind this
problem as well as a solution is presented: a silver matrix of order n exists if and only if
n = 1 or n is even.

The Cartesian product of two graphs G and H , denoted by G�H , is the graph with
vertex set V (G) × V (H) in which two vertices (x, y) and (x′, y′) are adjacent if and only
if x = x′ and yy′ ∈ E(H), or y = y′ and xx′ ∈ E(G). An n× n matrix A can be thought
of as a labeling of the vertices of Kn � Kn, where Kn is the complete graph of order n.
If V (Kn) = {1, 2, . . . , n}, then I = {(i, i) | i = 1, 2, . . . , n} corresponds to the diagonal
cells of A. Thus, a silver matrix is a (proper) (2n− 1)-colouring of Kn �Kn such that for
every x ∈ I, every colour appears either on x or on a neighbour of x.
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Definition 1.1 Any maximum independent set of a graph is called a diagonal of that
graph. Let c be a proper (r + 1)-colouring of an r-regular graph G. A vertex x in G is
said to be rainbow with respect to c if every colour appears in the closed neighbourhood

N [x] = N(x) ∪ {x}. Given a diagonal I of G, the colouring c is said to be silver with

respect to I if every x ∈ I is rainbow with respect to c. We say G is silver if it admits a
silver colouring with respect to some diagonal. If all vertices of G are rainbow, then c is
called a totally silver colouring of G and G is said to be totally silver.

With our definition, silver matrices are closely related to defining sets of graph colour-
ings (cf. Section 6). This helps justify our definition.

The Cartesian power Gd of a graph G is the graph recursively defined by G1 = G, and
Gd = Gd−1

�G for d > 1. The graph Kd
n is called a cube of side n and dimension d or an

(n, d)-cube for short. A silver colouring of an (n, d)-cube (with respect to some diagonal)
is called a silver (n, d)-cube. In this paper we study silver (n, d)-cubes. These design-like
objects exist for only certain pairs (n, d). Although we know of no existing literature
(for d > 2), silver (n, d)-cubes are attractive, challenging to construct, and appear to be
connected with classical combinatorics, including coding theory, projective geometry and
dominating sets in graphs.

We summarize here the main results of this paper.

(i) If the (m, d)-cube and the (n, d)-cube are silver, then the (mn, d)-cube is silver.
(ii) For every n = 2r3s5t7u the (n, 3)-cube is silver.

(iii) If q is a prime power and t > 1, then the (q, qt)-cube is silver and the (q, qt−1
q−1

)-cube is
totally silver.

(iv) If p is a prime, then the (pr, ps)-cube is silver for every r, s > 0.
(v) If d = 2t − 1 or d = 2t for some t, then the (2, d)-cube is silver. Moreover if d is odd,

then every silver (2, d)-cube is totally silver and these exist if and only if d = 2t − 1
for some t. If k > 1 then no silver (2, 4k + 2)-cube exists.

Claims (i) and (ii) are proved in Section 3. Claims (iii) and (iv) are proved in Sections 4.
Claim (v) is proved in Section 5.

2. Notation and motivation

We often identify the vertices of Kd
n with words of length d from either the alphabet

S = {0, 1, . . . , n − 1}, or when n is a prime power, with d-dimensional vectors over an
n-element field Fn. In symbols, V (Kd

n) = Sd or V (Kd
n) = F

d
n. We use bold face characters

to emphasize that a variable is a word or a vector. The Hamming distance of two words
is the number of coordinates in which they differ. Two vertices of Kd

n are adjacent if and
only if they are at Hamming distance 1. Note that for every k ∈ S, the set

Ik = {x = x1 . . . xd ∈ Sd | x1 + · · ·+ xd = k (mod n)}

is a diagonal of Kd
n. We call I0 the back-circulant diagonal of Kd

n. This terminology is
motivated by a bijective correspondence between diagonals of K3

n and Latin squares of
order n. Every diagonal of Kd

n has cardinality nd−1.
We use the following in Section 5.

Proposition 2.1 For any silver (n, d)-cube with respect to a diagonal I, the number of

times each colour appears on I is congruent to nd−1 modulo d.
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Proof. Let c : V (Kd
n) → {0, 1, . . . , d(n − 1)} be a silver colouring with respect to I. Let

i ∈ {0, 1, . . . , d(n−1)} be a colour. Every v ∈ I with c(v) 6= i has a unique neighbour x /∈ I
with c(x) = i. On the other hand every vertex x of Kd

n not in I with c(x) = i has exactly d
neighbours in I. Therefore the vertices of I which have a colour other than i are partitioned
into sets of size d according to their neighbours which have colour i. This implies that d
divides |{v ∈ I | c(v) 6= i}| = nd−1 − |{v ∈ I | c(v) = i}|.

Once a diagonal I is specified, one can reduce the problem of finding a silver colouring
of an r-regular graph G to an ordinary vertex colouring problem as follows. Let H be the
graph obtained from G by joining every two vertices which have a common neighbour
in I. Then by the definition of a silver colouring, G has a silver colouring with respect
to I if and only if χ(H) = r + 1, where χ(H) denotes the chromatic number of H . On
the other hand since I is an independent set in G and the neighbourhood of every x ∈ I
in H is an r-clique, we have χ(H) = r + 1 if and only if χ(H − I) 6 r + 1. We call the
graph H − I the silver reduction of G with respect to I and denote it by SR(G, I). This
proves the following.

Proposition 2.2 Let I be a diagonal of an r-regular graph G. Then G has a silver colour-

ing with respect to I if and only if SR(G, I) is (r + 1)-colourable.

This reduction is critical in accelerating computer searches for silver cubes. It is also
used in Section 5 to prove the nonexistence of certain silver cubes. A similar reduction
can be carried out for totally silver colourings: The square of a graph G, denoted by
G(2), is the graph obtained from G by adding a new edge joining each pair of vertices at
distance 2. The following is immediate from the definitions.

Proposition 2.3 An r-regular graph G is totally silver if and only if χ(G(2)) = r + 1.

This proposition shows a relation between our problem and the so-called hypercube colour-
ing problems, namely colouring the graphs Q

(2)
d and Q

(3)
d . These problems, introduced in

the study of scalability of optical networks [11,13], are also of interest in coding theory.

Any proper colouring ofKn is a silver (n, 1)-cube. Silver (n, 2)-cubes are silver matrices,
which are studied in [7]. In this paper we study silver cubes of dimension at least 3.

The totally silver colouring problem is also related to domination in graphs. A set of
vertices in a graph is a dominating set if every vertex outside the set has a neighbour
in the set. The domatic number problem [4, §8.3] is that of partitioning the vertices of a
graph into the maximum number of disjoint dominating sets. An easy upper bound on
the domatic number of a graph G is δ(G) + 1 where δ(G) is the minimum degree of G. A
graph G with domatic number δ(G) + 1 is said to be domatically full.

Proposition 2.4 A regular graph has a totally silver colouring if and only if it is domat-

ically full.

Proof. If c is a totally silver colouring of G, then each colour class c−1(i) is a dominating
set since every vertex with colour j 6= i, must be adjacent to a vertex with colour i by
definition. Conversely, if V (G) = S0 ∪ . . .∪Sr is a partition of V (G) into dominating sets
where r = δ(G), then every vertex in Si is adjacent to at least one vertex in each Sj with
j 6= i. Therefore if we define c(x) = i for all x ∈ Si, all the colours 0, 1, . . . , r appear in
the closed neighbourhood of every vertex. Thus c is a totally silver colouring of G.
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3. A product construction

For any dimension d, the set of side lengths for which silver d-cubes exist is multiplicative.

Theorem 3.1 If the (m, d)-cube and the (n, d)-cube are silver, then the (mn, d)-cube is

silver.

Before presenting the general proof, we illustrate the special case m = 2, d = 3. That
is we use the silver (2, 3)-cube of Figure 3.1 to double the side of any silver (n, 3)-cube.

1 2

3 4

4 3

2 1

Fig. 3.1. The unique silver (2, 3)-cube. A diagonal is indicated by shading.

Let A : V (K3
n) → {1, 2, . . . , 3n − 2} be a silver colouring of K3

n with respect to a
diagonal I. We aim to produce a silver colouringD of K3

2n. For i = 0, 1, 2, 3, let Ai+1 be the
colouring of K3

n obtained from A by adding ni to each colour k, where 2n−1 6 k 6 3n−2.
Let Ci+1 be a proper colouring of K3

n with the colours {ni+2n−1, . . . , ni+3n−2}. Each
of the eight blocks in Figure 3.2 represents an n× n× n subcube of the cube of side 2n.
Let D be the colouring of K3

2n in which each subcube is coloured according to its label in
Figure 3.2. We claim that D is a silver colouring.

A

C

C

A

C

A C

A

2
3

4 3

1
4

1 2

Fig. 3.2. Template for the doubling of a silver 3-cube.

Let Ji be the set of vertices in the subcube coloured by Ai which correspond to the
diagonal I of A. We claim that D is silver with respect to the diagonal J1 ∪ J2 ∪ J3 ∪ J4.
Let x ∈ Ji for some i = 1, 2, 3, 4. Since A is silver, the colours 1, 2, . . . , 2n − 2 and the
colours n(i − 1) + 2n − 1, . . . , n(i − 1) + 3n − 2 all appear in the closed neighbourhood
of x in the subcube coloured by Ai. On the other hand the neighbourhood of x in the
subcube coloured by Cj is an n-clique for j 6= i and is empty for j = i. Since Cj is a proper
colouring of K3

n, for every j 6= i, the colours n(j − 1) + 2n− 1, . . . , n(j − 1) + 3n− 2 all
appear in the neighbourhood of x in Cj. Therefore all the colours 1, 2, . . . , 6n− 2 appear
in N [x].

The silver (4, 3)-cube and (6, 3)-cube presented in Figures 3.4 and 3.5 are obtained by
applying this doubling construction to the silver 3-cubes of sides 2 and 3 presented in
Figures 3.1 and 3.3.

Every diagonal I of K3
n is equivalent to a Latin square L of order n (specifically, Lij = k

if and only if (i, j, k) ∈ I). For n = 1, 2, 3, all Latin squares of order n are equivalent (up to
isomorphism ofK3

n). For n = 4, 5 there are exactly two such equivalence classes. This raises
the question of the existence of silver cubes with prespecified diagonals. For n = 4, we
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1 2 3

4 5 1

7 1 6

6 7 1

3 1 2

1 4 5

5 1 4

1 6 7

2 3 1

Fig. 3.3. A silver (3, 3)-cube with respect to the (shaded) back-circulant diagonal.

1 2 5 6

3 4 6 5

7 8 1 2

8 7 9 10

4 3 6 5

2 1 5 6

8 7 10 9

7 8 2 1

9 10 1 2

10 9 7 8

1 2 3 4

5 6 4 3

10 9 8 7

9 10 2 1

6 5 4 3

2 1 3 4

Fig. 3.4. A (4, 3)-cube which is silver with respect to two inequivalent diagonals. One is shaded,
the other is circled.

1 2 3 8 9 10

4 5 1 9 10 8

7 1 6 10 8 9

11 12 13 1 2 3

12 13 11 4 14 1

13 11 12 16 1 15

6 7 1 9 10 8

3 1 2 10 8 9

1 4 5 8 9 10

12 13 11 15 16 1

13 11 12 3 1 2

11 12 13 1 4 14

5 1 4 10 8 9

1 6 7 8 9 10

2 3 1 9 10 8

13 11 12 14 1 4

11 12 13 1 15 16

12 13 11 2 3 1

14 15 16 1 2 3

15 16 14 4 11 1

16 14 15 13 1 12

1 2 3 5 6 7

4 8 1 6 7 5

10 1 9 7 5 6

15 16 14 12 13 1

16 14 15 3 1 2

14 15 16 1 4 11

9 10 1 6 7 5

3 1 2 7 5 6

1 4 8 5 6 7

16 14 15 11 1 4

14 15 16 1 12 13

15 16 14 2 3 1

8 1 4 7 5 6

1 9 10 5 6 7

2 3 1 6 7 5

Fig. 3.5. A silver (6, 3)-cube obtained by doubling a silver (3, 3)-cube.

see that the colouring of K3
4 shown in Figure 3.4 is silver with respect to two inequivalent

diagonals, one indicated by a gray shade and the other by circles. In Figures 3.6 and 3.7
we present two silver (5, 3)-cubes with respect to the two inequivalent diagonals of K3

5 .
These silver cubes were found with the aid of Proposition 2.2 and by using graph colouring
programs of [2].

A silver (7, 3)-cube with respect to a back-circulant diagonal was found by Ventullo
and Khodkar [10] during the revision of this paper. These examples and Theorem 3.1
imply the following.

Corollary 3.2 The (n, 3)-cube is silver for every positive side length n having no prime

factor greater than 7.

We do not know whether a silver (11, 3)-cube exists.

Conjecture 3.3 The (n, 3)-cube is silver for every side length n > 1, and with respect to

any diagonal of K3
n.

The following proof of Theorem 3.1 is a straightforward generalization of the doubling
construction discussed above. We partition the vertices of G = Kd

mn into md blocks of size



6 M. Ghebleh, L. Goddyn, E. Mahmoodian, M. Verdian-Rizi

1 2 3 4 5

6 1 10 11 7

7 10 1 13 2

8 7 13 12 9

9 11 6 8 13

10 3 2 7 4

12 9 5 10 8

8 6 4 3 12

1 2 11 4 13

2 5 13 6 11

11 5 13 1 6

9 11 12 2 3

13 3 7 9 8

2 12 4 3 10

7 4 1 12 9

12 4 8 10 1

10 5 6 13 12

1 2 9 5 3

6 8 5 11 4

4 3 7 1 2

13 6 11 8 9

2 7 8 1 4

11 1 10 6 13

5 10 2 13 7

3 12 4 9 5

Fig. 3.6. A silver (5, 3)-cube with respect to the back-circulant diagonal I0.

1 2 3 4 5

6 11 4 9 3

7 10 12 5 6

8 1 2 13 10

9 8 13 12 7

10 11 4 7 12

2 13 1 8 6

11 3 9 12 1

5 8 7 3 13

8 6 3 5 11

11 9 8 2 10

5 12 7 4 13

6 11 1 8 9

10 4 5 7 2

2 13 12 3 1

12 5 13 9 3

10 7 9 11 8

13 12 11 10 5

1 3 8 6 4

4 11 10 1 2

13 1 6 8 2

3 5 13 10 11

4 2 8 13 7

2 6 12 11 9

7 9 2 6 4

Fig. 3.7. A silver (5, 3)-cube with respect to a diagonal inequivalent to I0.

nd indexed by the vertices of Kd
m and then colour the blocks according to the given silver

cubes.

Proof of Theorem 3.1. We assume here that the vertex set of a complete graph Kt is
{0, 1, . . . , t− 1}. Let G = Kd

mn. For every v = v1v2 · · · vd ∈ V (Kd
m) we let

T
v

= {x1x2 · · ·xd ∈ V (G) | nvi 6 xi < n(vi + 1) for i = 1, 2, . . . , d}.

Then {T
v

| v ∈ V (Kd
m)} is a partition of V (G) and the induced subgraph G[T

v
] is

isomorphic to Kd
n for all v. For every v ∈ V (Kd

m)} we fix the isomorphism ϕ
v

: T
v
→

V (Kd
n) given by ϕ

v
(x) = x − nv (here we regard x and v to be d-vectors of nonnegative

integers). We define the projection ϕ : V (G) → V (Kd
n) by ϕ(x) = ϕ

v
(x) where v is the

unique vertex of Kd
m such that x ∈ T

v
. We also define the index, idx(x) = v where x ∈ T

v
.

Let A : V (Kd
n) → {1, 2, . . . , d(n − 1) + 1} and B : V (Kd

m) → {0, 1, . . . , d(m − 1)} be
silver colourings. Let I and J be respective diagonals of A and B. For every v ∈ V (Kd

m)
we define two colourings A

v
and C

v
of Kd

n. For each v, either A
v

or C
v

will be used to
colour the block T

v
of G. The colouring C

v
is any proper colouring of Kd

n with colours
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from the set {nB(v) + (d− 1)(n− 1) + i | 1 6 i 6 n}. For every w ∈ Kd
n we define

A
v
(w) =

{

A(w) if A(w) 6 (d− 1)(n− 1)

nB(v) + A(w) if A(w) > (d− 1)(n− 1).

We now define a colouring D : V (G) → {1, 2, . . . , d(nm− 1) + 1}. Given x ∈ V (G) with
idx(x) = v, let

D(x) =

{

A
v
(ϕ(x) ) if v ∈ J

C
v
(ϕ(x) ) if v 6∈ J.

(3.1)

We claim that D is a silver colouring of G with respect to the diagonal

K =
⋃

v∈J

ϕ−1
v

(I).

To prove the claim, let x ∈ K, v = idx(x), and let N [v] be the closed neighbourhood
of v in Kd

m. Then v ∈ J and ϕ
v
(x) ∈ I. For every v′ ∈ N [v] let X

v
′ = NG[x] ∩ T

v
′. By

the definition we have

D(X
v
′) = {nB(v′) + (d− 1)(n− 1) + i | 1 6 i 6 n}

for v′ 6= v, and

D(X
v
) = {1, 2, . . . , (d− 1)(n− 1)} ∪ {nB(v) + (d− 1)(n− 1) + i | 1 6 i 6 n}.

Now since v ∈ J , we have {B(v′) | v′ ∈ N [v]} = {0, 1, . . . , d(m− 1)}, thus

D(NG[x]) =
⋃

v
′∈N [v]

D(X
v
′) = {1, 2, . . . , d(mn− 1) + 1}.

Therefore x is rainbow with respect to D.

Remark 3.4 The diagonal K defined in the above proof is the (generalized) Kronecker
product of I and J . That is, x ∈ K if and only if, as vectors, x = w +nv for some w ∈ I
and some v ∈ J . Therefore K is not necessarily equivalent to a back-circulant even if
both I and J are back-circulants.

Remark 3.5 The above proof remains valid if just before (3.1), for each v ∈ J we select
an automorphism σ

v
of Kd

n and modify both A
v

and its diagonal through the action of
σ

v
. In this way we can obtain colourings D which are silver with respect to inequivalent

diagonals of Kd
mn.

4. Desarguesian silver cubes

In this section we consider the question: for which pairs (n, d) is Kd
n totally silver? We first

give a necessary condition, then we show that this necessary condition is sufficient when n
is a prime power by constructing a totally silver colouring. The construction uses perfect
linear codes with suitable parameters. Finally, we use these totally silver colourings to
construct some other silver cubes.
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Proposition 4.1 If G is r-regular, then in every totally silver colouring of G, each colour

appears exactly
|V (G)|
r+1

times. In particular, if a totally silver (n, d)-cube exists, then nd is

divisible by d(n− 1) + 1.

Proof. Let c be a totally silver colouring of G and let i be a colour. We count in two ways
the pairs (v,v′) where v ∈ V (G), v′ ∈ N [v] and c(v′) = i. Each v ∈ V (G) contributes
one to the count, whereas each vertex v′ ∈ c−1(i) contributes r+1 to the count. Therefore
|V (G)| = (r + 1) |c−1(i)|.

Theorem 4.2 Let q be a prime power. Then Kd
q is totally silver if and only if d = qs−1

q−1

for some positive integer s.

Proof. Let q = pt where p is a prime and t a positive integer. Suppose Kd
q has a totally

silver colouring. By Proposition 4.1, d(pt−1)+1 divides ptd, so d = pk−1
pt−1

for some positive
integer k, t 6 k 6 td. Since d is an integer we have, by an elementary argument, that t
divides k. Therefore d = qs−1

q−1
for some positive integer s.

For the converse, we note that for d = qs−1
q−1

, there exists a perfect linear code of length

d with minimum distance 3, namely the (d, d− s) Hamming code over Fq [6, p. 191].
A totally silver colouring of Kd

q is defined by cosets of such a code. Since each coset
is a code of distance at least 3, the closed neighbourhood of each vertex intersects each
coset in at most (hence exactly) one vertex. Therefore this colouring is totally silver.

Theorems 3.1 and 4.2 give the following.

Corollary 4.3 Let q be a prime power and let s > 0, t > 1 be integers. Then a silver

(qs, qt−1
q−1

)-cube exists.

Starting with the construction of the proof of Theorem 4.2, we may produce silver
cubes of “affine” dimension. These cubes are not totally silver.

Theorem 4.4 Let q be a prime power and s > 1. Then there exists a silver (q, qs)-cube
with respect to the back-circulant diagonal I0, such that all vertices in I0 receive the same

colour.

Proof. Let F = Fq be a field of order q. Let d = qs−1
q−1

. By Theorem 4.2, the graph H = Kd
q

has a totally silver colouring c : V (H) → {1, 2, . . . , qs}. Again we have identified V (H)
with the vector space F d.

Let G = Kqs

q where V (G) = F qs

. Since qs = (q − 1)d + 1, we may partition the
coordinates of vectors v ∈ V (G) according to the pattern

v = (v1, v2, . . . , vqs) = (x1,x2, . . . ,xq−1, b)

where b ∈ F and each xi ∈ V (H). We define two linear functions on V (G), ω : V (G) → F
and u : V (G) → V (H) by

ω(v) = v1 + v2 + · · ·+ vqs

u(v) = α1x1 + α2x2 + · · · + αq−1xq−1.

Here {α1, . . . , αq−1} is an arbitrary fixed enumeration of F ∗ = F \ {0}.
We aim to show that the function

A : V (G) → {∞} ∪ ({1, 2, . . . , qs} × F ∗)
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A(v) =

{

∞ if ω(v) = 0

[ c(u(v)) , ω(v) ] if ω(v) 6= 0

is a silver colouring of G with respect to the back-circulant diagonal I0 = {v ∈ V (G) |
ω(v) = 0}. Let v ∈ V (G) \ I0 and v′ ∈ V (G) be two vertices of G which differ in either
one or two coordinates. Suppose, for contradiction, that A(v) = A(v′). We immediately
deduce v′ ∈ V (G) \ I0, so

ω(v) = ω(v′) and c(u(v)) = c(u(v′)).

Now u(v) and u(v′) are vertices of H which are at distance at most 2 in H . As c is
a totally silver colouring of H , the second equation implies u(v) = u(v′). We define
w = (w1, w2, . . . , wqs) = v−v′. The vector w has one or two nonzero entries, and satisfies

ω(w) = 0 and u(w) = (0, 0, . . . , 0).

The first equation implies that w has exactly two nonzero entries, wk, wℓ, which satisfy

wk + wℓ = 0. (4.1)

The second equation implies that 1 6 k, ℓ 6 qs − 1, and that k − ℓ is an integer multiple
of d. In particular, there exist field elements αi, αj such that

αiwk + αjwℓ = 0.

Comparing with (4.1), we conclude that αi = αj. Therefore k = ℓ, a contradiction. We
conclude that A is a silver colouring with respect to I0.

Applying Theorem 3.1 gives the following.

Corollary 4.5 Let p be a prime and s, t > 0. Then a silver (ps, pt)-cube exists.

5. Hypercubes and binary codes

Silver (2, d)-cubes are of special interest since Kd
2 is the hypercube Qd. Here we find

some nonexistence results, a relationship to general binary codes, and we propose some
conjectures. It is proved in [11] (see also [5, Eq. (2)]) that χ(Q

(2)
d ) = d+ 1 when d + 1 is

a power of 2. So by Proposition 2.3, the hypercube Qd is totally silver when d + 1 is a
power of 2. Zhou [12, Cor. 2.6] extends this result by showing that every Cayley graph
of degree 2t − 1 and having a transitive Abelian group of automorphisms is totally silver.
From Theorems 4.2 and 4.4 we have the following.

Corollary 5.1 For all t > 0, the hypercube Q2t is silver and the hypercube Q2t+1−1 is

totally silver.

Note that since Qd is bipartite, it has only two diagonals, namely its partite sets. The
set of all vertices with even (resp. odd) Hamming weight is called the even (resp. odd)
diagonal and denoted by I0 (resp. I1).

In this section we present some nonexistence results for silver hypercubes.

Lemma 5.2 If d is odd, then every silver colouring of Qd is totally silver.
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Proof. Let c : V (Qd) → {0, 1, . . . , d} be a silver colouring of Qd with respect to the
diagonal I, and let w 6∈ I. We may assume c(w) = 0. We aim to show w is rainbow with
respect to c.

Let G be the complete graph on the vertex set {1, 2, . . . , d}. We define the colourings
ψ0 : V (G) → {0, 1, . . . , d} and ψ1 : E(G) → {0, 1, . . . , d} as follows. For every i ∈ V (G),
let wi be the vertex of Qd obtained from w by flipping the ith coordinate and define
ψ0(i) = c(wi). Note for every i ∈ V (G) we have wi ∈ I. For each edge e = {i, j} of G let
wij be the vertex of Qd obtained from w by flipping the ith and the jth coordinates and
define ψ1(e) = c(wij). It remains to show ψ0 is a proper vertex colouring of G. We prove
this in the following steps:

– For every i, we have ψ0(i) 6= 0 since wi is adjacent to w.
– For every e = {i, j} ∈ E(G), w and wij are both adjacent to the rainbow vertex wi.

Thus ψ1(e) = c(wij) 6= c(w) = 0.
– Let e = {i, j} and e′ = {i, k} be adjacent edges of G. Since wij and wik are both

adjacent to the rainbow vertex wi, we have ψ1(e) = c(wij) 6= c(wik) = ψ1(e
′). Therefore

ψ1 is a proper edge d-colouring of G.
– For every i ∈ V (G) and e = {i, j} ∈ E(G), since wi and wij are adjacent in Qd we

have ψ0(i) 6= ψ1(e). Now since ψ1 is a proper edge colouring of G, ψ0(i) is the unique
element of {1, 2, . . . , d} which is not in {ψ1(e) | e is adjacent to i}.

– Since d is odd, every colour class ψ−1
1 (k), k ∈ {1, 2, . . . , d}, is a matching of size d−1

2

in G. The unique vertex of G which is unsaturated in this matching must receive colour
k in ψ0. Therefore ψ0 is a proper vertex colouring of G.

We can now give a characterization of silver hypercubes of odd dimension.

Theorem 5.3 If d is odd then Qd is silver if and only if d = 2t − 1 for some t > 1.

Proof. By Corollary 5.1 if d = 2t − 1 for some t > 1, then Qd is totally silver. On the
other hand if d is odd and Qd is silver, then Qd is totally silver by Lemma 5.2. Now by
Proposition 4.1, (d+ 1)|2d, thus d+ 1 is a power of 2.

Silver hypercubes of even dimension are more difficult to characterize. Although we do
not have a complete characterization, we can obtain nonexistence results using bounds
from coding theory. Let Gd = SR(Qd, I1), as defined in Section 2. Note that V (Gd) = I0 is
the set of words in {0, 1}d having even Hamming weight. Two vertices of Gd are adjacent
if they have Hamming distance 2. Any two elements of an independent set I of Gd have
Hamming distance at least 4. By suppressing a parity-check bit, we obtain from I a
corresponding binary code of length d − 1 and distance at least 3. This correspondence
is bijective, therefore the maximum size of an independent set in Gd equals A(d − 1, 3).
Here A(d− 1, 3) is a standard

¯
notation for the maximum size of a general binary code of

length d− 1 and distance 3.
By Proposition 2.2, a silver colouring of Qd with respect to the diagonal I1 corresponds

to a partition of the vertices of Gd into d + 1 independent sets, and this corresponds to
a partition of {0, 1}d−1 into binary codes of size at most A(d− 1, 3). We have proved the
following.

Proposition 5.4 If Qd is silver then A(d− 1, 3) >
2d−1

d+1
.

The following result is attributed to R. J. McEliece in [6, p. 545, Problem (22)].
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Theorem 5.5 If d = 4k + 2 for some k > 1, then A(d− 1, 3) 6
2d−1

d+2
.

Corollary 5.6 If d = 4k + 2 for some k > 1, then Qd is not silver.

In [9] it is shown that A(11, 3) = 144. Since 144 < 211

13
, Proposition 5.4 gives the

following.

Corollary 5.7 The hypercube Q12 is not silver.

In light of the above, we propose the following.

Conjecture 5.8 The hypercube Qd is silver if and only if d = 2t − 1 or d = 2t for

some t > 0.

Conjecture 5.9 If d is not a power of 2, then A(d− 1, 3) 6
2d−1

d+1
.

Conjecture 5.9 is stronger than Conjecture 5.8 by way of Corollary 5.1, Theorem 5.3
and Proposition 5.4. Conjecture 5.9 is affirmed in case d is odd [1, Proposition 3.1], and
in the case d ≡ 2 modulo 4, by Theorem 5.5. Since A(11, 3) = 144, this conjecture also

holds for d = 12. Hamming codes over F2 are perfect, so A(d − 1, 3) = 2d−1

d
when d is a

power of 2. Therefore it remains to settle Conjectures 5.9 and 5.8 for d = 4k where k > 5
and k is not a power of 2.

6. Defining sets in graph colouring

Let c be a proper k-colouring of a graph G and let S ⊆ V (G). If c is the only extension
of c|S to a proper k-colouring of G, then S is a defining set of c. The minimum size of a
defining set among all k-colourings of G is denoted by def(G, k).

The study of def(G, k) is nontrivial only for χ(G) 6 k 6 ∆(G) + 1, since def(G, k) is
not defined for k < χ(G), and since def(G, k) = |V (G)| when k > ∆(G) + 1. The case
k = χ(G) is studied in [8]. A more general survey of defining sets in combinatorics appears
in [3].

We show here a relationship between def(G,∆(G)+1) where G = Kd
n and the existence

of silver (n, d)-cubes.

Lemma 6.1 [7] Let S be a defining set of an (r+1)-colouring c of an r-regular graph G.

Then the complement of S is an independent set in G.

Theorem 6.2 A silver cube of side n and dimension d exists if and only if

def(Kd
n, d(n− 1) + 1) = nd − nd−1.

Proof. The case d = 2 of this argument appears in [7]. Let c be a silver colouring with
respect to a diagonal I of Kd

n. Then the set S of non-diagonal vertices is a defining set of
c. Conversely, let c be a proper (d(n − 1) + 1)-colouring of Kd

n which admits a defining
set S of size nd − nd−1. By the above lemma, V (Kd

n) \ S is an independent set of Kd
n.

This independent set has cardinality nd−1, so V (Kd
n) \ S is a diagonal of Kd

n. For every
x ∈ V (Kd

n) \ S, we have |c(N(x))| = d(n − 1). Therefore every x 6∈ S is rainbow with
respect to c.

Theorem 6.2 and Lemma 6.1 serve to further justify our choice of the definition of
“diagonal” that we use in this paper.

Acknowledgements. We thank Mahdad Khatirinejad for referring us to Theorem 5.5.



12 M. Ghebleh, L. Goddyn, E. Mahmoodian, M. Verdian-Rizi

References
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