Edge Disjoint Cycles Through Specified Vertices

Luis Goddyn*
Ladislav Stacho ${ }^{\dagger}$
Department of Mathematics
Simon Fraser University, Burnaby, BC, Canada
goddyn@math.sfu.ca, lstacho@math.sfu.ca

February 16, 2005

Abstract

We give a sufficient condition for a simple graph G to have k pairwise edge-disjoint cycles, each of which contains a prescribed set W of vertices. The condition is that the induced subgraph $G[W]$ be $2 k$-connected, and that for any two vertices at distance two in $G[W]$, at least one of the two has degree at least $|V(G)| / 2+2(k-1)$ in G. This is a common generalization of special cases previously obtained by Bollobás/Brightwell (where $k=1$) and Li (where $W=V(G))$.

A key lemma is of independent interest. Let G be the complement of a bipartite graph with partite sets X, Y. If G is $2 k$ connected, then G contains k Hamilton cycles which are pairwise edge-disjoint except for edges in $G[Y]$.

Keywords: Hamilton cycle, Hamilton circuit, connectivity, prescribed vertices, Ore condition, Fan condition, packing cycles, long cycle.

1 Introduction

In this paper we give a sufficient condition for a simple graph to have k pairwise edge-disjoint cycles, where every cycle contains a prespecified set of vertices. We state the main result.

Theorem 1 Let $G=(V(G), E(G))$ be a finite undirected simple graph of order n, let $W \subseteq$ $V(G),|W| \geq 3$, and let k be a positive integer. Suppose that $G[W]$ is $2 k$-connected, and that

$$
\max \left\{d_{G}(u), d_{G}(v)\right\} \geq n / 2+2(k-1)
$$

for every $u, v \in W$ such that $\operatorname{dist}_{G[W]}(u, v)=2$. Then G contains k pairwise edge-disjoint cycles C_{1}, \ldots, C_{k} such that $W \subseteq V\left(C_{i}\right), 1 \leq i \leq k$.
(Here, $d_{G}(v)$ is the degree of v in $G, G[W]$ is the subgraph induced by W, and $\operatorname{dist}_{G}(u, v)$ is the distance from u to v in G.)

The degree condition on W is in the spirit of Fan [2]. This Fan-type hypothesis gives a slightly stronger result than the corresponding Ore-type condition (that $d_{G}(u)+d_{G}(v) \geq n+4(k-1)$

[^0]for $u, v \in W, u v \notin E$). In [3], this degree condition was weakened (for sufficiently large n) to the best possible bound $d_{G}(u)+d_{G}(v) \geq n+2(k-1)$.

Theorem 1 is a common generalization of previous results concerning the two special cases $k=1$ and $W=V$. The case $k=1$ is proved, in essence, by Bollobás and Brightwell [1]. Their result is stated with the Ore-type degree hypothesis, but does not require 2-connectivity. The special case $W=V$ is presented by Li [6] in 2000 as a slight sharpening of Li and Chen [7]. Some of our techniques are borrowed from [3, 6]. For further results on cycles in graphs we refer the reader to $[4,5]$.

The proof of Theorem 1 proceeds in two steps. First we prove the following lemma, which we regard to be of equal importance to the main theorem.

Lemma 2 Let $G=(X \cup Y, E)$ be a $2 k$-connected graph such that X and Y are disjoint cliques in G. Then G contains k Hamilton cycles C_{1}, \ldots, C_{k} such that $e \in E\left(C_{i}\right) \cap E\left(C_{j}\right)$ implies $e \in E(G[Y])$, for $1 \leq i<j \leq k$. Moreover if $|Y| \geq k+1$, then each C_{i} contains an edge in $G[Y]$.

The special case $|Y|=1$ of Lemma 2 is (essentially) the well known decomposition of $K_{2 k+1}$ into Hamilton cycles. Our proof of Lemma 2 is inspired by Li's argument in [6]. However, Li requires the additional hypothesis $|Y| \geq 2 k$. Dropping Li's hypothesis results in significant complications. The proof of Lemma 2 is presented in Section 3. The second step (Section 4) is to derive Theorem 1 from Lemma 2.

2 Notation and Auxiliary Results

All graphs $G=(V(G), E(G))$ are simple graphs. Let $x, y \in V(G)$ and let $X, Y \subseteq V(G)$. Then $\operatorname{dist}_{G}(x, y)$ is the distance from x to y in G. We denote by $N_{G}(X, Y)$ the set of vertices in Y which are adjacent in G to at least one vertex in X. We may write $N_{G}(x, Y)$ instead of $N_{G}(\{x\}, Y)$, and $N_{G}(x)$ instead of $N_{G}(x, V(G))$. We denote by $d_{G}(X, Y), d_{G}(x, Y)$ and $d_{G}(x)$ the respective cardinalities $\left|N_{G}(X, Y)\right|,\left|N_{G}(x, Y)\right|$ and $\left|N_{G}(x)\right|$. The set of edges in G with one end in X and one end in Y is denoted $E_{G}(X, Y)$. We write $e_{G}(X, Y)$ for $\left|E_{G}(X, Y)\right|$. A u, v-path is a path whose endpoints are vertices u and v. A cycle $C \subseteq G$ goes through W if $W \subseteq V(C)$.

Let $Q \subseteq V(G)$. A vertex pair $\{a, b\} \subseteq V(G)-Q$ is Q-linked in G if there exist edges $e_{1}=a q_{1}, e_{2}=b q_{2}$ in G such that q_{1}, q_{2} are distinct vertices in Q. A collection of subgraphs in G is edge-disjoint outside of Q if every edge of G which belongs to at least two of the subgraphs has both its endpoints in Q.

In Figure 2, we depict Walecki's famous decomposition of $K_{2 k+1}$ into Hamilton cycles, as described by Lucas [8].

Proposition 3 For $\ell \geq 2 k+1$, the graph K_{ℓ} contains k pairwise edge-disjoint Hamilton cycles.
By deleting vertex $2 k$ from Walecki's construction, we obtain a decomposition of $K_{2 k}$ into k Hamilton paths. Let $m \leq\lfloor k / 2\rfloor$, and consider the m Hamilton paths whose endpoints are the vertex pairs $\{1,2\},\{3,4\}, \ldots,\{2 m-1,2 m\}$. We observe that each of these Hamilton paths contains an edge joining 0 to a vertex in the set $\{k+1, k+3, k+5, \ldots, k+2 m-1\}$. By relabeling vertices appropriately, the following result follows easily.

Proposition 4 Let H be a complete graph of order n. Let $u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{k}, v_{k}$ be distinct vertices of H, where $k \leq n / 2$. Let $S \subseteq V(H)$ have cardinality $\geq m+1$, where $-1 \leq m \leq n / 4$, and

Figure 1: Walecki's decomposition: Rotate the depicted Hamilton cycle k times.
such that $u_{j}, v_{j} \notin S$ for $j \leq m$. Then H has pairwise edge-disjoint Hamilton paths P_{1}, \ldots, P_{k}, where P_{i} has endpoints $u_{i}, v_{i}, 1 \leq i \leq k$, and where P_{j} contains an edge with both endpoints in $S, 1 \leq j \leq m$.

Let Q, R, X be a partition of $V(G)$ so that X and $Q \cup R$ are both cliques in G. There are several places in this paper where we need to construct a Hamilton cycle in G starting with a Hamilton path P in $G-Q$. We give two constructions. Let $\{u, v\}$ be the endpoints of P.

Extension 1 Suppose $\{u, v\}$ is Q-linked in G. Then we may extend P to a Hamilton cycle of G by adding a Hamilton u, v-path in $G[Q \cup\{u, v\}]$.

Extension 2 Suppose u, v have a common neighbour $q \in Q$, and that there exists $e=a b \in$ $E(P)$ where $a, b \in R$. Then we may extend $P-e$ to a Hamilton cycle of G by adding the path u, q, v and adding an a, b-Hamilton path in $G[Q-\{q\} \cup\{a, b\}]$. This construction makes sense even if $Q=\{q\}$.

Let $P_{1}, P_{2}, \ldots, P_{k}$ be pairwise edge-disjoint Hamilton paths in $G-Q$ such that all $2 k$ endpoints of these paths are distinct. If we can apply one of the above extensions to each path P_{i}, then the resulting cycles C_{1}, \ldots, C_{k} will be edge-disjoint outside of $Q \cup R$.

Lemma 5 Let G be a graph with vertex partition $V(G)=X \cup Q \cup R$. Suppose that each of $X \cup R$ and $Q \cup R$ is a clique in G, and that $d_{G}(x, Q) \geq 1$ for $x \in X$. Suppose further that $X \cup R$ can be partitioned into k pairs of which at most $|R|-1$ are not Q-linked in G. Then G contains k Hamilton cycles which are edge-disjoint outside of $Q \cup R$. Moreover, if $|Q \cup R| \geq 2$, then each of the Hamilton cycles contains an edge of $G[Q \cup R]$.

Proof. If $|Q|=1$, then $G=K_{2 k+1}$. Moreover, assumptions of the lemma imply that $|R| \geq k+1$. Now we use Walecki's decomposition with $\{0,1, \ldots, k\} \subseteq R$ to obtain the required cycles.

We assume $|Q| \geq 2$. Suppose that $|R| \leq\left\lfloor\frac{k}{2}\right\rfloor=\left\lfloor\frac{|X \cup R|}{4}\right\rfloor$. We label the hypothesized pairs with $\left\{u_{i}, v_{i}\right\}, 1 \leq i \leq k$, in such a way that $\left\{u_{j}, v_{j}\right\}$ is not Q-linked if and only if $1 \leq j \leq m$, for some $m \leq|R|-1$. Since $Q \cup R$ is a clique and $d_{G}(x, Q) \geq 1$ for $x \in X$, it follows that, for $1 \leq j \leq m$ we have $\left\{u_{j}, v_{j}\right\} \subseteq X$ and u_{j}, v_{j} have a common neighbour in Q. We apply Proposition 4 with $H=G[X \cup R]$ and $S=R$ to obtain edge-disjoint Hamilton paths P_{1}, \ldots, P_{k} in $G[X \cup R]$ where each P_{i} is a u_{i}, v_{i}-path and where each of $P_{1}, P_{2}, \ldots, P_{m}$ has an edge in $G[R]$. Since $Q \cup R$ is a clique, we may apply Extension 2 to P_{1}, \ldots, P_{m} and apply Extension 1

Extension 1

Extension 2

Figure 2: Using Extensions 1 and 2 to convert a u, v-path (shown in bold) into a Hamilton cycle of $G[X \cup Q \cup R]$. The vertices u and v may belong to either X or R.
to P_{m+1}, \ldots, P_{k} to obtain k Hamilton cycles in G which are edge-disjoint outside of Q. See Figure 2. Each of these Hamilton cycles contains an edge of $G[Q \cup R]$, as required.

We now assume $|R| \geq\left\lceil\frac{k}{2}\right\rceil$. We partition $X \cup R$ into k pairs $\left\{u_{i}, v_{i}\right\}$, such that $u_{i} \in R$, $1 \leq i \leq k$. By Proposition 4 (with $S=\emptyset$), the subgraph $G[X \cup R]$ contains k pairwise edgedisjoint Hamilton paths $P_{i}, 1 \leq i \leq k$, where each P_{i} is a u_{i}, v_{i}-path. Since $Q \cup R$ is a clique, $d_{G}(x, Q) \geq 1$ for $x \in X$, and since $|Q| \geq 2$, each pair $\left\{u_{i}, v_{i}\right\}$ is Q-linked. Now we may use Extension 1 to extend each P_{i} to a Hamilton cycle in G. The resulting Hamilton cycles are edge-disjoint outside of $Q \cup R$. Moreover, each cycle has an edge in $G[Q \cup R]$, as required.

3 Proof of Lemma 2

The basic idea used in the proof of Lemma 2 was introduced by Li [6] when he proved a weaker form of the lemma. Although our proof has details which are somewhat technical, the basic idea is not hard to describe. We first rearrange some edges of $G=(X \cup Y, E)$ using an operation called edge flipping. After performing a sequence of flips, we arrive at a new graph $G_{s, t}$ to which we may apply Lemma 5, finding k Hamilton cycles which are edge-disjoint outside of Y. Finally, the flipped edges are restored one by one, while modifying the Hamilton cycles appropriately. In the end, we obtain k Hamilton cycles in G which are edge-disjoint outside of Y, as desired.

Let $q, x, r \in V(G)$ be distinct vertices such that $q x \in E(G)$ and xr $\notin E(G)$. We define a new graph $G^{\prime}=G-q x+x r$. We say that G^{\prime} has been obtained from G by flipping the ordered triple $\langle q, x, r\rangle$. We denote this operation by $G \stackrel{q x r}{\longrightarrow} G^{\prime}$. Suppose now that $X \subseteq V(G)-\{q, r\}$. We may perform the series of flips $G \stackrel{q x_{1} r}{\longrightarrow} G_{1} \xrightarrow{q x_{2} r} \cdots \stackrel{q x_{p} r}{\longrightarrow} G_{p}$ for any enumeration $x_{1}, x_{2}, \ldots, x_{p}$ of the set

$$
\begin{equation*}
X_{q r}=\{x \in X: q x \in E(G), x r \notin E(G)\} . \tag{1}
\end{equation*}
$$

The resulting graph G_{p} is independent of the ordering $x_{1}, x_{2}, \ldots, x_{p}$. Therefore, the multiflip operation $G \xrightarrow{q X r} G_{p}$ is well defined for the ordered triple $\langle q, X, r\rangle$. We note that the result of a multiflip operation may leave the graph unchanged.

Let X, Q and R be disjoint subsets of $V(G)$. Let $\vec{Q}=\left(q_{1}, q_{2}, \ldots q_{s}\right)$ and $\vec{R}=\left(r_{1}, r_{2}, \ldots, r_{t}\right)$ be orderings (enumerations) of Q and R, respectively. The $\vec{Q} X \vec{R}$-flip sequence of G is the
following sequence of multiflips, which is determined by the ordered triple $\langle\vec{Q}, X, \vec{R}\rangle$.

$$
\begin{aligned}
& G \stackrel{q_{1} X r_{1}}{\longmapsto} G_{1,1} \stackrel{q_{1} X r_{2}}{\longmapsto} G_{1,2} \stackrel{q_{1} X r_{3}}{\longmapsto} \cdots \stackrel{q_{1} X r_{t}}{\longmapsto} G_{1, t} \\
& \xrightarrow{q_{2} X r_{1}} G_{2,1} \xrightarrow{q_{2} X r_{2}} G_{2,2} \xrightarrow{q_{2} X r_{3}} \cdots \xrightarrow{q_{2} X r_{t}} G_{2, t} \\
& \vdots \\
& \xrightarrow{q_{s} X r_{1}} G_{s, 1} \xrightarrow{q_{s} X r_{2}} G_{s, 2} \xrightarrow{q_{s} X r_{3}} \cdots \xrightarrow{q_{s} X r_{t}} G_{s, t} .
\end{aligned}
$$

A graph $G_{i, j}$ in this sequence may be denoted by $G_{i, j}[\vec{Q} X \vec{R}]$ when the context is not clear.
Let $G=(X \cup Y, E)$ be a graph of order at least $2 k+1$, where $G[X]$ and $G[Y]$ are disjoint cliques, and where $1 \leq|X|<2 k$. We select a subset R of Y so that $|X \cup R|=2 k$. We then select an ordering \vec{R} of R and an ordering \vec{Q} of $Q=Y-R$. Let $s=|Q|$, and let $t=|R|$. It is possible to make these selections in such a way that the graph $G_{s, t}[\vec{Q} X \vec{R}]$ has a special linking property. A variation of the following result (where the connectivity condition is replaced by strong degree conditions) appears as Proposition 2 of [6].

Lemma 6 Let $G=(X \cup Y, E)$ be a $2 k$-connected graph of order at least $2 k+2$, where $G[X]$ and $G[Y]$ are disjoint cliques, and where $1 \leq|X|<2 k$. Then there exist a subset $R \subseteq Y$ having size $t=2 k-|X|$, an ordering \vec{R} of R, and an ordering \vec{Q} of $Q=Y-R$ such that the set $X \cup R$ can be partitioned into k pairs of which at most $t-1$ are not Q-linked in $G_{s, t}[\vec{Q} X \vec{R}]$, where $s=|Q|$.

Proof. We first prove the lemma for $k=1$. Suppose that $X=\{x\}$. By the 2-connectivity of G, there exist two vertices $a, b \in N_{G}(x, Y)$. We select $R=\{a\}$ and an arbitrary ordering \vec{Q} of Q. We have $G_{s, t}[\vec{Q} X \vec{R}]=G$. Since $|Q| \geq 2$, and since $G[Y]$ is a clique, there is a vertex in $Q-\{b\}$ which is adjacent to a. Therefore $X \cup R=\{x, a\}$ is a Q-linked pair in $G_{s, t}$.

We assume $k \geq 2$. Suppose by way of contradiction that the lemma is false. Let k be the smallest integer such that there exists a $2 k$-connected counterexample G. We shall further suppose that G has as many edges as possible.

Claim 1 No vertex $x \in X$ satisfies $2 k+1 \leq d_{G}(x) \leq|V(G)|-2$.
Suppose by way of contradiction that $x \in X$ satisfies $2 k+1 \leq d_{G}(x) \leq|V(G)|-2$. Then x is not adjacent to some $y \in Y$. The graph $G^{\prime}=G+x y$ together with the sets X and Y satisfy the hypothesis of the lemma. By the maximality of $|E(G)|$, there exist ordered sets \vec{R}, \vec{Q}, defining a $\vec{Q} X \vec{R}$-flip sequence on G^{\prime} such that $X \cup R$ can be partitioned into k pairs $\left\{u_{i}, v_{i}\right\}(i=1,2, \ldots, k)$ of which at most $t-1$ are not Q-linked in $G_{s, t}^{\prime}[\vec{Q} X \vec{R}]$. Consider now the graph $G_{s, t}=G_{s, t}[\vec{Q} X \vec{R}]$ and the same partition $\left\{u_{i}, v_{i}\right\}(i=1,2, \ldots, k)$. Evidently $G_{s, t}=G_{s, t}^{\prime}-x y^{\prime}$ for some vertex $y^{\prime} \in Q \cup R$. Without loss of generality, we suppose that $x=u_{1}$. For $i=2,3, \ldots, k$, the pair $\left\{u_{i}, v_{i}\right\}$ is Q-linked in $G_{s, t}$ if and only if it is Q-linked in $G_{s, t}^{\prime}$. If $\left\{u_{1}, v_{1}\right\}$ is not Q-linked in $G_{s, t}^{\prime}$, then we have proved the claim. Therefore we assume that $\left\{u_{1}, v_{1}\right\}$ is Q-linked in $G_{s, t}^{\prime}$. We show that $\left\{u_{1}, v_{1}\right\}$ is also Q-linked in $G_{s, t}$. Since $d_{G_{s, t}^{\prime}}\left(u_{1}\right)=d_{G^{\prime}}\left(u_{1}\right) \geq 2 k+2$, it follows that $d_{G_{s, t}^{\prime}}\left(u_{1}, Q\right) \geq 3$. Therefore $d_{G_{s, t}}\left(u_{1}, Q\right) \geq 2$, so $\left\{u_{1}, v_{1}\right\}$ is a Q-linked pair in $G_{s, t}$. Therefore G is not a counterexample, proving Claim 1.

Claim 2 Every vertex $x \in X$ satisfies $d_{G}(x)=2 k$.

Suppose by way of contradiction that $d_{G}(x) \neq 2 k$ for some $x \in X$. By Claim 1 and since G is $2 k$-connected, we have $d_{G}(x)=|V(G)|-1$. Suppose $1 \leq|X| \leq 2$. Then we define $G_{s, t}=G_{s, t}[\vec{Q} X \vec{R}]$, where \vec{Q}, \vec{R} are selected arbitrarily subject to $Q \cup R=Y, Q \cap R=\emptyset$, and $|R|=t$. Since $|Q| \geq 2$, and $Q \subseteq N_{G_{s, t}}(x, Q)$, and $d_{G_{s, t}}\left(x^{\prime}, Q\right) \geq 1$ for $x^{\prime} \in X-\{x\}$, any partition of $X \cup R$ into k pairs constitutes $k Q$-linked pairs in $G_{s, t}$, a contradiction.

We assume $|X| \geq 3$. Let $x^{\prime} \in X-\{x\}$. Consider the graph $G^{\prime}=G-\left\{x, x^{\prime}\right\}$ and the partition $\left(X^{\prime}, Y\right)$ of $V\left(G^{\prime}\right)$, where $X^{\prime}=X-\left\{x, x^{\prime}\right\}$. Then G^{\prime} is a $2(k-1)$-connected graph of order at least $2(k-1)+2$, in which $G^{\prime}\left[X^{\prime}\right]$ and $G^{\prime}[Y]$ are cliques, and where $1 \leq\left|X^{\prime}\right|<2(k-1)$. By choice of G, there exist ordered sets \vec{Q}, \vec{R} and a partition of $X^{\prime} \cup R$ into $k-1$ pairs $\left\{u_{i}, v_{i}\right\}$ $(1 \leq i \leq k-1)$ of which at most $t^{\prime}-1$ are not Q-linked in $G_{s, t^{\prime}}^{\prime}\left[\vec{Q} X^{\prime} \vec{R}\right]$. (Here we have $t^{\prime}=2(k-1)-\left|X^{\prime}\right|=t$.) Consider the graph $G_{s, t}=G_{s, t}[\vec{Q} X \vec{R}]$, and the partition of $X \cup R$ given by $\left\{u_{1}, v_{1}\right\},\left\{u_{2}, v_{2}\right\}, \ldots,\left\{u_{k-1}, v_{k-1}\right\},\left\{x, x^{\prime}\right\}$. Obviously, for $i=1,2, \ldots, k-1$, the pair $\left\{u_{i}, v_{i}\right\}$ is Q-linked in $G_{s, t}$ if and only if it is Q-linked in $G_{s, t}^{\prime}$. We have that $d_{G_{s, t}}\left(x^{\prime}\right)=d_{G}\left(x^{\prime}\right) \geq 2 k>$ $\left|X \cup R-\left\{x^{\prime}\right\}\right|$, so $d_{G_{s, t}}\left(x^{\prime}, Q\right) \geq 1$. Since $Q \subseteq N_{G_{s, t}}(x)$ and $|Q| \geq 2$, the pair $\left\{x, x^{\prime}\right\}$ is Q-linked in $G_{s, t}$, a contradiction. This proves Claim 2.

Let us label the vertices in Y with $r_{1}, r_{2}, \ldots, r_{t}, q_{1}, q_{2}, \ldots, q_{s}$ in such a way that

$$
d_{G}\left(r_{1}, X\right) \geq d_{G}\left(r_{2}, X\right) \geq \cdots \geq d_{G}\left(r_{t}, X\right) \geq d_{G}\left(q_{1}, X\right) \geq d_{G}\left(q_{2}, X\right) \geq \cdots \geq d_{G}\left(q_{s}, X\right)
$$

Let $\vec{R}=r_{1}, r_{2}, \ldots, r_{t}$ and $\vec{Q}=q_{1}, q_{2}, \ldots, q_{s}$ be orderings of the sets $R=\left\{r_{1}, r_{2}, \ldots, r_{t}\right\}$ and $Q=Y-R$. We aim to show that the graph $G_{s, t}=G_{s, t}[\vec{Q} X \vec{R}]$ satisfies the conclusion of Lemma 6 for some partition of $X \cup R$ into pairs.

Since $|X \cup R|=2 k$, it follows from Claim 2 and the nature of the flipping procedure that $X \cup R$ is a clique in $G_{s, t}$ and that

$$
\begin{equation*}
d_{G_{s, t}}(x, Q)=1 \text { for all } x \in X \tag{2}
\end{equation*}
$$

Let $S=\left\{\left\{u_{1}, v_{1}\right\},\left\{u_{2}, v_{2}\right\}, \ldots,\left\{u_{k}, v_{k}\right\}\right\}$ be a partition of $X \cup R$ into k pairs, such that the number, m, of pairs in S which are not Q-linked in $G_{s, t}$ is minimized. We assume that $\left\{u_{j}, v_{j}\right\}$ is not Q-linked if and only if $1 \leq j \leq m$. Since G is a counterexample, we have $1 \leq t \leq m$, so $\left\{u_{1}, v_{1}\right\}$ is not Q-linked. Since $Q \cup R$ is a clique, $|Q| \geq 2$, and by (2), we have $u_{1}, v_{1} \in X$ and u_{1}, v_{1} have a common neighbour, say $q_{i_{0}}$, in Q. For $2 \leq i \leq k$, none of the ways of re-pairing the four vertices $u_{1}, v_{1}, u_{i}, v_{i}$ can result in more Q-linked pairs than S has. We apply this fact three times. First it follows that no pair in S is a subset of R. We may assume that $u_{i} \in X$, $1 \leq i \leq k$. Second, by (2) (and an appropriate relabeling of vertices if needed) we may further assume $N_{G_{s, t}}\left(u_{i}, Q\right)=\left\{q_{i_{0}}\right\}$ for $1 \leq i \leq k$. Third, we find that for $1 \leq j \leq m$, we have $v_{j} \in X$ and $N_{G_{s, t}}\left(v_{j}, Q\right)=\left\{q_{i_{0}}\right\}$.

Let $X^{\prime}=N_{G_{s, t}}\left(q_{i_{0}}, X\right)$. We have just shown that $\left\{u_{1}, \ldots, u_{k}\right\} \cup\left\{v_{1}, \ldots, v_{m}\right\} \subseteq X^{\prime}$. Therefore

$$
\begin{equation*}
\left|X^{\prime}\right| \geq k+m \geq k+t \tag{3}
\end{equation*}
$$

Observing that $d_{G}\left(q_{i_{0}}, X\right) \geq d_{G_{s, t}}\left(q_{i_{0}}, X\right)=\left|X^{\prime}\right|$, we have by the choice of \vec{R} and \vec{Q} that

$$
\begin{equation*}
d_{G}(y, X) \geq k+t, \quad \text { for } y \in R \cup\left\{q_{1}, q_{2}, \ldots, q_{i_{0}}\right\} \tag{4}
\end{equation*}
$$

Let $Q^{\prime}=\left\{q_{i} \in Q: N_{G}\left(q_{i}, X^{\prime}\right) \neq \emptyset\right\}$. We now show that

$$
\begin{equation*}
\left\{q_{i_{0}}\right\} \subseteq Q^{\prime} \subseteq\left\{q_{1}, q_{2}, \ldots, q_{i_{0}}\right\} \tag{5}
\end{equation*}
$$

Indeed, suppose that $q_{i} \in Q^{\prime}$ for some $i>i_{0}$. Then there exists $x \in N_{G}\left(q_{i}, X^{\prime}\right)$. In the $\vec{Q} X \vec{R}$-flip sequence of G, flips of the form $\left\langle q_{i_{0}}, x, r\right\rangle$ (where $r \in R$) are considered before flips of the form $\left\langle q_{i}, x, r\right\rangle$. Therefore $q_{i_{0}} x \in E\left(G_{s, t}\right)$ implies $q_{i} x \in E\left(G_{s, t}\right)$, which contradicts (2) and proves (5).

Claim 3 We have $i_{0}=s$.
In view of (5), it suffices to prove $Q^{\prime}=Q$. Suppose by way of contradiction that $Q-Q^{\prime} \neq \emptyset$. Then $\left(X-X^{\prime}\right) \cup R \cup Q^{\prime}$ is a vertex cut in G separating the nonempty sets X^{\prime} and $Q-Q^{\prime}$. By connectivity of G and by (3), we have $2 k \leq|X \cup R|-\left|X^{\prime}\right|+\left|Q^{\prime}\right| \leq 2 k-(k+t)+\left|Q^{\prime}\right|$, so

$$
\left|Q^{\prime}\right| \geq k+t \geq 2+t
$$

By (4), (5) and the above inequality we have

$$
e_{G}(X, Y) \geq e_{G}\left(X^{\prime}, Q^{\prime} \cup R\right) \geq(k+t)((2+t)+t)>2 k(t+1) .
$$

On the other hand, using (2) and the fact $X \cup R$ is a clique in $G_{s, t}$, we get

$$
e_{G}(X, Y)=e_{G_{s, t}}(X, Y)=|X|(t+1)<2 k(t+1) .
$$

This contradiction proves Claim 3.
By counting $E_{G}(X, Y)$ in two ways we have, by choice of \vec{Q} and \vec{R}, that

$$
\begin{equation*}
|X|(t+1) \geq|Y| d_{G}\left(q_{s}, X\right) \tag{6}
\end{equation*}
$$

By (3) and Claim 3 we have $d_{G}\left(q_{s}, X\right) \geq k+t>1+t$. Therefore $|X|>|Y|$. Alternatively, G is $2 k$-connected, so $d_{G}\left(q_{s}, X\right) \geq 2 k-(|Y|-1)$. Therefore (6) implies

$$
\begin{gathered}
(2 k-t)(t+1) \geq(t+s)(2 k-s-t+1) \\
(s-1)(s-2 k+2 t) \geq 0
\end{gathered}
$$

By the hypothesis, $s-1>0$ so the second factor is non-negative. That is $s+t \geq 2 k-t$, which we may write as $|Y| \geq|X|$. This contradicts $|X|>|Y|$ and proves Lemma 6.

We now proceed to prove Lemma 2. Let G be a $2 k$-connected simple graph with $V(G)=$ $X \cup Y$ where X and Y are disjoint cliques in G. We say that G is happy if G contains k Hamilton cycles which are edge-disjoint outside of Y, and that either $|Y| \leq k$ or each of these Hamilton cycles contains an edge in $G[Y]$.

If G has order at most $2 k+1$, then by connectivity of G, we have $G=K_{2 k+1}$, and G is happy by Proposition 3 (If $|Y| \geq k+1$, then we relabel vertices so that $\{0,1, \ldots, k\} \subseteq Y$).

We assume G has order at least $2 k+2$. Suppose that $Y=\{y\}$. By connectivity we have $|N(y, X)| \geq 2 k$. We use Proposition 4 with $H=G-y, S=\emptyset$, and k arbitrary pairs in $N(y, X)$, to find k Hamilton paths in $G-y$. These paths extend easily to k edge-disjoint Hamilton cycles in G, so G is happy.

Thus, we assume $|Y| \geq 2$. Suppose $|X| \geq 2 k$. Let $X^{\prime}=\left\{u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{\sigma}, v_{\sigma}\right\}$ be a maximal subset of X such that each pair $\left\{u_{i}, v_{i}\right\}$ is Y-linked. If $\sigma<k$, then $\left|X-X^{\prime}\right| \geq 2$, and the graph $G^{\prime}=G-X^{\prime}$ satisfies either $d_{G^{\prime}}\left(X-X^{\prime}, Y\right) \leq 1$ or $d_{G^{\prime}}\left(Y, X-X^{\prime}\right) \leq 1$. Therefore G has a cut of size at most $\left|X^{\prime}\right|+1<2 k$, a contradiction. Therefore $\sigma \geq k$. We apply Proposition 4
with $H=G[X], S=\emptyset$, and pairs $\left\{u_{i}, v_{i}\right\}, 1 \leq i \leq k$, and then apply Extension 1 (with $Q=Y$) to the resulting paths to obtain k Hamilton cycles in G which are edge-disjoint outside of Y. The cycles produced by Extension 1 always have an edge in $G[Y]$. Therefore G is happy if $|X| \geq 2 k$.

We now assume that $1 \leq|X|<2 k,|V(G)| \geq 2 k+2$, and thus $|Y| \geq 3$. By Lemma 6 there exists a partition $Y=Q \cup R$ and orderings \vec{Q}, \vec{R} such that $X \cup R$ can be partitioned into k pairs of which at most $|R|-1$ are not Q-linked in $G_{s, t}=G_{s, t}[\vec{Q} X \vec{R}]$, where $s=|Q|, t=|R|$. Since G has minimum degree at least $2 k=|X \cup R|$, we have that $X \cup R$ is a clique in $G_{s, t}$, and for $x \in X$ we have $d_{G_{s, t}}(x, Q) \geq 1$. Therefore by Lemma 5 , the graph $G_{s, t}$ is happy.

It remains to show that if $G^{\prime} \xrightarrow{q X r} G^{\prime \prime}$ is in the $\vec{Q} X \vec{R}$-flip sequence of G, and $G^{\prime \prime}$ is happy, then G^{\prime} is happy. We assume that $q \in Q$, and $r \in R$ are fixed and that $X_{q r} \subseteq X$ is as in (1). We have

$$
E\left(G^{\prime}\right)-E\left(G^{\prime \prime}\right)=\left\{q x \mid x \in X_{q r}\right\} \quad \text { and } \quad E\left(G^{\prime \prime}\right)-E\left(G^{\prime}\right)=\left\{x r \mid x \in X_{q r}\right\}
$$

Since $Q \cup R$ is a clique in both G^{\prime} and $G^{\prime \prime}$, we have that, for $b \in V\left(G^{\prime}\right)-\{r\}$,

$$
\begin{equation*}
b q \in E\left(G^{\prime \prime}\right) \quad \text { implies that } \quad b q, b r \in E\left(G^{\prime}\right) \cap E\left(G^{\prime \prime}\right) . \tag{7}
\end{equation*}
$$

Assume that $G^{\prime \prime}$ is happy with Hamilton cycles C_{1}, \ldots, C_{k}. Each C_{i} is the union of two r, q paths, so there is a set $\mathcal{P}=\left\{P_{1}, \ldots, P_{2 k}\right\}$ of r, q-paths in $G^{\prime \prime}$ which are edge-disjoint outside of Y, and a 2-to-1 function $\tau: \mathcal{P} \rightarrow\left\{C_{1}, \ldots, C_{k}\right\}$ such that $C_{k}=\bigcup \tau^{-1}\left(C_{k}\right)$. (We do not further specify the function τ here, since we will soon be relabeling the paths in \mathcal{P}.)

For $1 \leq i \leq 2 k$, let a_{i} be the neighbour of r in P_{i} and let b_{i} be the neighbour of q in P_{i}. We define an auxiliary directed graph H with $V(H)=\left\{P_{i} \in \mathcal{P} \mid 1 \leq i \leq 2 k\right.$ and $\left.a_{i} \in X\right\}$, and $\left\langle P_{i}, P_{j}\right\rangle \in E(H)$ if and only if $b_{i}=a_{j}$. Since the paths are edge-disjoint outside of Y, at most one path in \mathcal{P} can use any edge in the set $\left\{q a_{j}, q b_{j}, r a_{j}, r b_{j} \mid 1 \leq j \leq 2 k\right.$ and $\left.b_{j} \in X\right\}$. Therefore each vertex of H has in-degree and out-degree at most one. Thus each (weak) component of H is a directed path or cycle.

Let $I \subseteq\{1, \ldots, 2 k\}$ be the set of indices i such that $a_{i} \in X_{q r}$. Let $\mathcal{P}_{I}=\left\{P_{i} \in \mathcal{P} \mid i \in I\right\}$, and consider the subgraph $P=\bigcup_{i=1}^{2 k} P_{i} \subseteq G^{\prime \prime}$. Then $E(P)-E\left(G^{\prime}\right)=\left\{a_{i} r \mid i \in I\right\}$, and every edge in this set is the first edge of exactly one path in \mathcal{P}_{I}. This correspondence is bijective. For $i \in I$, we have $q a_{i} \in E\left(G^{\prime}\right)-E\left(G^{\prime \prime}\right)$, so the vertex $P_{i} \in V(H)$ has in-degree zero in H. Let H_{i} be the weak component of H such that $P_{i} \in V\left(H_{i}\right)$. Then H_{i} is a directed path in H, whose initial vertex is P_{i}. We have shown that the edge $a_{i} r \in E\left(P_{i}\right)$ is the only edge in the set $\bigcup\left\{E\left(P_{j}\right) \mid P_{j} \in V\left(H_{i}\right)\right\}$ which does not belong to $E\left(G^{\prime}\right)$. Our plan is to modify the paths in $V\left(H_{i}\right)$ so as to eliminate the edge $a_{i} r$ from this set. After we have performed this modification for each $i \in I$, we shall have a new family of r, q-paths whose edges all belong to G^{\prime}. We note that if $I=\emptyset$, then $P \subseteq G^{\prime}$, so G^{\prime} is happy and there is nothing to prove.

After relabeling paths in \mathcal{P}, we may assume that $1 \in I$ and H_{1} is the directed path $P_{1}, P_{2}, \ldots, P_{\ell}$. We have that $a_{1} \in X_{q r}$ and $b_{j}=a_{j+1} \in X-X_{q r}, j=1, \ldots, \ell-1$. Since P_{ℓ} has out-degree zero in H, and since $q b_{\ell} \in E\left(P_{\ell}\right) \subseteq E\left(G^{\prime \prime}\right)$, we have by (7), that

$$
\begin{equation*}
b_{\ell} \in Y \quad \text { or } \quad b_{\ell} r \in E\left(G^{\prime}\right)-E(P) . \tag{8}
\end{equation*}
$$

For $j=1, \ldots, \ell$, we have $P_{j}=r a_{j} R_{j} b_{j} q$ where R_{j} is an a_{j}, b_{j}-path in both $G^{\prime \prime}$ and G^{\prime}. The subgraph $\bigcup_{j=1}^{\ell} P_{j}$ is illustrated in Figure 3 (a). For $j=1, \ldots, \ell$, let $P_{j}^{\prime}=r b_{j} R_{j}^{\prime} a_{j} q$ where R_{j}^{\prime} is

Figure 3: Diagram (a) shows $\cup_{j=1}^{\ell} P_{j}$, and (b) shows $\cup_{j=1}^{\ell} P_{j}^{\prime}$. The paths P_{1} and P_{1}^{\prime} are in bold. The subpaths R_{j} and R_{j}^{\prime} are indicated as dashed lines, $1 \leq j \leq \ell$.
the reverse of the path R_{j}. The graph $\bigcup_{j=1}^{\ell} P_{j}^{\prime}$ is illustrated in Figure 3 (b). We have

$$
\begin{equation*}
E\left(\bigcup_{j=1}^{\ell} P_{j}^{\prime}\right)=E\left(\bigcup_{j=1}^{\ell} P_{j}\right) \cup\left\{r b_{\ell}, a_{1} q\right\}-\left\{r a_{1}, b_{\ell} q\right\} \tag{9}
\end{equation*}
$$

Since $a_{1} \in X_{q r}$ and by (8), we have that $\bigcup_{j=1}^{\ell} P_{j}^{\prime} \subseteq G^{\prime}$. Since $q a_{1} \notin E\left(G^{\prime \prime}\right)$, we have that $a_{1} \neq b_{i}$ for $1 \leq i \leq \ell$. It follows that the paths $P_{1}^{\prime}, \ldots, P_{\ell}^{\prime}$ are edge-disjoint outside of Y.

For each $i \in I$ and each $P_{j} \in V\left(H_{i}\right)$ we define P_{j}^{\prime} as we did in the case $i=1$. We define $P_{m}^{\prime}=P_{m}$ for every $P_{m} \in \mathcal{P}-\bigcup_{i \in I} V\left(H_{i}\right)$. For $h=1, \ldots, k$, we define $C_{h}^{\prime}=P_{j}^{\prime} \cup P_{m}^{\prime}$, where $\tau^{-1}\left(C_{h}\right)=\left\{P_{j}, P_{m}\right\}$. (The function τ is defined near (7).) Since $V\left(P_{j}^{\prime}\right)=V\left(P_{j}\right)(j=1, \ldots, 2 k)$, each C_{h}^{\prime} is a Hamilton cycle in G^{\prime}. Because the paths $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$ are edge-disjoint outside of Y, the same is true for the cycles $C_{1}^{\prime}, \ldots, C_{k}^{\prime}$. To conclude that G^{\prime} is happy, it suffices to show that if C_{h} contains an edge in $G^{\prime \prime}[Y]$, then C_{h}^{\prime} contains an edge in $G^{\prime}[Y]\left(=G^{\prime \prime}[Y]\right)$. Referring Figure 3, we see that every edge $e \in E\left(C_{h}\right)-E\left(C_{h}^{\prime}\right)$ has either has some vertex $a_{j} \in X$ as an endpoint, or has b_{ℓ} as an endpoint. If $b_{\ell} \in X$, then e is not a edge of $G^{\prime \prime}[Y]$. If $b_{\ell} \in Y$, then $b_{\ell} q$ is an edge of C_{h}^{\prime} belonging to $G^{\prime}[Y]$. Therefore G^{\prime} is happy, and Lemma 2 is proved.

4 Proof of Theorem 1

Suppose by way of contradiction that there exists a simple undirected graph G, a subset $W \subseteq$ $V(G)$, and an integer k such that the triple $\langle G, W, k\rangle$ satisfies the hypothesis, but not the conclusion of Theorem 1. We may assume that $E(G[W])$ is maximal. That is, for each pair of non-adjacent vertices $u, v \in W$, the graph $G+u v$ either has k pairwise edge-disjoint cycles through W, or the triple $\langle G+u v, W, k\rangle$ does not satisfy the hypothesis of Theorem 1. Let

$$
Y=\left\{v \in W \left\lvert\, d_{G}(v) \geq \frac{n}{2}+2(k-1)\right.\right\}
$$

Since $G[W]$ is $2 k$-connected, we have $|W| \geq 2 k+1$. By Proposition $3, G[W]$ is not complete, and hence $Y \neq \emptyset$ by the hypothesis.

Figure 4: Two ways to eliminate the edge $e=u v$ from $C_{1}=P+e$.

Claim 1 If G has k cycles through W which are edge-disjoint outside of Y, then
a) G has k pairwise edge-disjoint cycles through W.
b) If, moreover, for some $u v \in E(G[Y]) d_{G}(u), d_{G}(v) \geq \frac{n}{2}+2 k-1$, then $G-u v$ has k pairwise edge-disjoint cycles through W.

Proof of part a). Let C_{1}, \ldots, C_{k} be cycles through W in G which are edge-disjoint outside of Y, and such that

$$
p=\sum_{1 \leq i<j \leq k}\left|E\left(C_{i}\right) \cap E\left(C_{j}\right)\right|
$$

is as small as possible. Suppose by way of contradiction that $p>0$. Without loss of generality, there exists $u v \in E\left(C_{1}\right) \cap E\left(C_{2}\right) \subseteq E(G[Y])$. Let $P=C_{1}-u v$, and let

$$
G^{\prime}=\left(G-\bigcup_{i=1}^{k} E\left(C_{i}\right)\right)+E(P)
$$

By definition of Y, and since $u v \in E\left(C_{2}\right)$ we have

$$
\begin{equation*}
d_{G^{\prime}}(u)+d_{G^{\prime}}(v) \geq d_{G}(u)+d_{G}(v)-4(k-1)+2 \geq n+2 . \tag{10}
\end{equation*}
$$

It follows that either $d_{G^{\prime}}(u, V(P))+d_{G^{\prime}}(v, V(P)) \geq|V(P)|+2$ or $d_{G^{\prime}}(u, V(G)-V(P))+$ $d_{G^{\prime}}(v, V(G)-V(P)) \geq n-|V(P)|+1$. In the former case, there exist consecutive vertices x, y along the u, v-path P such that $u y, v x \in E\left(G^{\prime}\right) \subseteq E(G)$, and we define $D_{1}=C_{1}-\{u v, x y\}+$ $\{u y, v x\}$ (see Figure $4(\mathrm{a})$). In the latter case, there exists $z \in V(G)-V(P)$ such that $u z, v z \in$ $E(G)$, and we let $D_{1}=C_{1}-\{u v\}+\{u z, v z\}$ (see Figure $4(\mathrm{~b})$). In both cases, D_{1} is a cycle in G which goes through W. Let $D_{i}=C_{i}$ for $i=2, \ldots, k$. Now D_{1}, \ldots, D_{k} are cycles which satisfy the assumptions of the claim with $\sum_{i \neq j}\left|E\left(D_{i}\right) \cap E\left(D_{j}\right)\right|=p-1$, a contradiction. Therefore $p=0$ and C_{1}, \ldots, C_{k} are pairwise edge-disjoint cycles in G.

Proof of part b). Let $u v \in E(G[Y])$ so that $d_{G}(u), d_{G}(v) \geq \frac{n}{2}+2 k-1$. We may assume that all cycles are edge-disjoint by part a). Now, assume without loss of generality that $u v \in E\left(C_{1}\right)$. We can repeat the above procedure except that now we cannot use the fact that $u v \in E\left(C_{2}\right)$ to provide the term " +2 " in (10). Instead we rely on the slightly stronger lower bound on $d_{G}(u)$ and $d_{G}(v)$ to recover inequality (10). Thus, we can modify C_{1} so that it will not contain the edge $u v$.

Claim 2 The graph $G[Y]$ is complete.

Figure 5: Constructing the Hamilton cycle C_{j} of $G[W]$ from the cycles D_{j} (in bold), and $C_{i, j}$, $1 \leq i \leq \omega$.

Suppose that $x y \notin E(G)$ for some $x, y \in Y$. Let $G^{\prime}=G+x y$. If $u, v \in W$ satisfy $\operatorname{dist}_{G^{\prime}[W]}(u, v)=$ 2 and $\operatorname{dist}_{G[W]}(u, v) \neq 2$, then either u or v belongs to $\{x, y\} \subseteq Y$. Therefore G^{\prime} satisfies the hypothesis of Theorem 1. By the choice of G, the graph G^{\prime} has k pairwise edge-disjoint cycles through W. Using Claim 1b, these cycles can be modified so that they avoid the edge $x y$. This contradicts that G is a counterexample, and proves Claim 2.

Let $X=W-Y$. By Claim 2, Proposition 3, and the fact that G is a counterexample, $X \neq \emptyset$. Let $G_{i}=\left(X_{i}, E_{i}\right), 1 \leq i \leq \omega$, be the connected components of $G[X]$, for some $\omega \geq 1$. Let $Y_{i}=N_{G}\left(X_{i}, Y\right), 1 \leq i \leq \omega$. By the definition of Y, no pair of vertices of X is at distance two in $G[W]$. Consequently, G_{i} is complete and $Y_{i} \cap Y_{j}=\emptyset$ for $1 \leq i<j \leq \omega$. Let $Y_{0}=Y-\cup_{i=1}^{\omega} Y_{i}$. Then $W=X \cup Y_{0} \cup Y_{1} \cup \cdots \cup Y_{\omega}$.

Claim $3\left|Y_{i}\right| \geq 2 k$, for $i=1, \ldots, \omega$.
Suppose that $\left|Y_{i}\right|<2 k$ for some $1 \leq i \leq \omega$. Since $G[W]$ is $2 k$-connected, it follows that $\omega=1$ and $Y=Y_{1}$. Hence by Lemma 2, $G[W]$ has k Hamilton cycles which are edge-disjoint outside of Y, and if $|Y| \geq k+1$, then each of them contains an edge in $G[Y]$. This, together with Claim 1a, contradicts that G is a counterexample.

Claim 4 The graph $G[W]$ has k Hamilton cycles C_{1}, \ldots, C_{k} which are edge-disjoint outside of Y.
Let $i \in\{1, \ldots, \omega\}$. Since $G[W]$ is $2 k$-connected, and $G\left[X_{i}\right], G\left[Y_{i}\right]$ are complete, and $E_{G}\left(X_{i}, W-\right.$ $\left.X_{i}\right)=E_{G}\left(X_{i}, Y_{i}\right)$, the graph $G\left[X_{i} \cup Y_{i}\right]$ is $2 k$-connected. By Claim $3,\left|Y_{i}\right| \geq 2 k \geq k+1$, and by Lemma 2 the graph $G\left[X_{i} \cup Y_{i}\right]$ has k Hamilton cycles $C_{i, 1}, \ldots, C_{i, k}$ which are edge-disjoint outside of Y_{i}, and such that each $C_{i, j}(1 \leq j \leq k)$ contains an edge, say $u_{i, j} v_{i, j}$ in $G\left[Y_{i}\right]$.

Recall that $W=X \cup Y_{0} \cup Y_{1} \cup \cdots \cup Y_{\omega}$. For each $j \in\{1, \ldots, k\}$ we construct a Hamilton cycle C_{j} of $G[W]$ as follows. The complete graph $G\left[Y_{0} \cup_{i=1}^{\omega}\left\{u_{i, j}, v_{i, j}\right\}\right]$ is either the single edge $u_{1, j} v_{1, j}$, or it has a Hamilton cycle D_{j} passing through all the edges in $\left\{u_{i, j} v_{i, j} \mid 1 \leq i \leq \omega\right\}$. In the former case, we define $C_{j}=C_{1, j}$. In the latter case we obtain C_{j} from D_{j} by replacing each edge $u_{i, j} v_{i, j} \in E\left(D_{j}\right)$ by the path $C_{i, j}-u_{i, j} v_{i, j},(1 \leq i \leq \omega)$. See Figure 5. In either case, C_{j} is a Hamilton cycle of $G[W]$. Since the cycles $C_{i, j}$ are edge-disjoint outside of Y, the same is true for the cycles C_{1}, \ldots, C_{k}. This proves Claim 4.

Theorem 1 now follows from Claim 1a.

Remark 7 The cycles constructed in the proof of Theorem 1 use no edges in $E(G-W)$. This is reflected in the fact that a triple $\langle G, W, k\rangle$ satisfies the hypothesis of Theorem 1 if and only if $\langle G-E(G-W), W, k\rangle$ satisfies the hypothesis of Theorem 1.

Acknowledgment We would like to thank two anonymous referees for their unusually careful reading of this manuscript.

References

[1] Béla Bollobás, Graham Brightwell, Cycles through specified vertices, Combinatorica 13 (1993), 147-155.
[2] Genghua Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory Ser. B $\mathbf{3 7}$ (1984), 221-227.
[3] R. J. Faudree, C. C. Rousseau, R. H. Schelp, Edge-disjoint Hamiltonian cycles, Graph theory with applications to algorithms and computer science (Kalamazoo, Mich., 1984), Wiley-Intersci. Publ., (1985), 231-249.
[4] Roland J. Gould, Updating the Hamiltonian problem-a survey, J. Graph Theory 15 (1991), 121-157.
[5] Roland J. Gould, Advances on the Hamiltonian problem - a survey, Graphs Combin. 19 (2003), 7-52.
[6] Guojun Li, Edge disjoint Hamilton cycles in graphs, J. Graph Theory 35 (2000), 8-20.
[7] Guojun Li, Chuanping Chen, Disjoint Hamiltonian cycles in graphs, Australas. J. Combin. 19 (1999), 83-89.
[8] D. E. Lucas, Recreations mathematiques, Vol. II, Gauthiers Villars, Paris, 1892.

[^0]: *Research supported by the Natural Sciences and Engineering Research Council of Canada.
 ${ }^{\dagger}$ Research supported by the Natural Sciences and Engineering Research Council of Canada.

