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Abstract—
Fixed-Delay Pagoda Broadcasting (FDPB) is a practical

broadcasting scheme for video-on-demand proposed by
Pâris, and its prototype has been built. In order for any
broadcasting scheme to be truly practical, it is crucial that
the required bandwidth be minimized. Some heuristic is
used to compute the optimal numbers of subchannels used
by FDPB to minimize the required bandwidth, but it does
not always generate the optimal solution. In order to find
the truly optimal s, the only known algorithm requires to
try close to 0.5m different potential solutions for s, where
m is a parameter of FDPB which can be rather large. This
paper analyzes the combinatorial optimization problem
involved in detail and limits the search space for the
optimal s down to κ

√
m different values, whereκ ≈ 0.65.

This reduces the running time of a computer program to
compute the optimal value fors from a few hours down to
a few seconds whenm = 10, 000. This impressive reduction
is more than what the ratio 0.5m/κ

√
m would suggest,

because the computation time depends on the values ofs
tested. The technique used in this paper could be applied
to other similar problems.

Keywords: Multimedia, Video-on-demand, broadcasting,
push system, bandwidth optimization.

Index Terms— Multimedia, Video-on-demand, broad-
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I. INTRODUCTION

Recently, there has been much interest in the
broadcast-based delivery of popular videos, in order to
address the scalability issue in video-on-demand. To
the best of our knowledge, Hollmann and Holzscherer
first conceived the idea of segmenting a video and
broadcasting the “segments” at different frequencies [3],1

although [11] is commonly cited as the original source
of the idea. In this and several other video broadcasting

1We are thankful to Jan Korst of Philips Research Laboratory,
Belgium, for bringing this little-known work to our attention.

schemes, a video of durationD (sec) is divided inton
pages, P1, P2, . . . , Pn, of durationd = D/n each. (Some
authors use the term “segment”, instead of “page”, but
in our terminology, asegment consists of several con-
secutive pages.) There arec channels, C1, C2, . . . , Cc,
of bandwidthb (bits/sec) each that are used to broadcast
a video, whereb is the display rate of the video. In
general, the bandwidth of each channel may not be equal
to b, but FDPB we discuss in this paper uses channels
of bandwidthb. In our model, a channel consists of an
infinite sequence of consecutiveslots, each of duration
d, and slots of different channels are synchronized in the
sense that they start and end at the same time. Awindow
of sizew is a time interval of durationwd starting at a
slot boundary. The transmission of a page occupies one
slot in a channel.

Unaware of the almost identical earlier work of Holler-
mann et al.[3], P̂aris et al. proposedPagoda Broadcast-
ing (PB) [9] in 1998, and later P̂aris extended it to a
more elaborate version calledNew Pagoda Broadcasting
(NPB) [6]. In these schemes, the viewer who “tunes in”
at an arbitrary time must wait until the beginning of the
next slot inC1 (which broadcasts onlyP1 repeatedly),
before downloading pages from any channel. When the
first bit of P1 appears inC1, s/he starts viewingP1, while
downloading from the other channels at the same time.
It is known that a necessary condition for the viewer to
be able to display continuously is thatPi be broadcast
at least once in every window of sizewi = i [5].2

Therefore, ifn pages are assigned toc channels, then
it is necessary thatHn = 1+1/2+ · · ·+1/n ≤ c holds,
whereHn is known as thenth harmonic number [1].

The download/display policy specifies the download-
ing status of a segment, when the previous segment has
just been completely displayed.

2This is also a sufficient condition if each channel has bandwidth
≥ b.
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1) Fixed-delay policy: For eachi, all of segmentSi

must have been buffered in the viewer’s buffer,
by the time the previous segmentSi−1 has been
completely displayed.

2) Fixed start points policy: The viewer waits until
the next slot time, before s/he starts display. Down-
loading starts at the same time as the display.

As commented earlier, for the schemes based on the
fixed start points policy, it is necessary and sufficient to
broadcast pagei at least once in every window of size
wi, provided each channel has bandwidth≥ b. However,
for the schemes based on the fixed-delay policy, this
condition is necessary and sufficient regardless of the
channel bandwidth.

All the schemes we have mentioned above, including
PB and its variants, NPB and QHB (Quasi-Harmonic
Boradcasting), adopt the fixed start points policy. Re-
cently, Bar-Noy et al. have formulated a combinatorial
problem called thewindows scheduling problem [1]. It
is a mathematical framework for the schemes based on
the fixed start points policy. This problem is defined
by positive integersc, and w1, w2, . . . , where c is the
number of slotted channels and awindow of size wi

is associated with pagei. A valid schedule assigns
page i to slots such that it appears at least once in
every window ofwi slots (not necessarily in the same
channel). Maximizing the number of pages scheduled
in a channel when the window size is fixed atwi =
m + i − 1 is called theoptimal truncated-Harmonic
windows scheduling problem. Whenm = 1, it is called
the optimal Harmonic windows scheduling problem.

Fixed-Delay Pagoda Broadcasting (FDPB(m)) pro-
posed by P̂aris [7] is one of the several known schemes
that adopt the fixed-delay policy.3 The viewer initially
downloads formd (sec) from all channels before s/he
starts displaying the video, wherem is a positive integer.
In terms of the parameters we have introduced so far,
FDPB(m) has the following constraints: (a)wi = m +
i−1 for a given positive integer constantm, (b) for j =
1, 2, . . . , c, channelCj is divided into sj subchannels,
each subchannel consisting of everys th

j slot of the
channel, (c) each page must appear in one subchannel
with a fixed period, and (d) all pages allocated to
each subchannel and channel must be consecutive. Our
objective is to maximize the number of pages that can
be scheduled inc channels, by choosing the optimal
values for{sj}, which depend onm. The author of [7]
originally thought thats =

√
m was a good estimate

for the optimal s value, but later found
√

m + 1 or√
m+2 was sometimes optimal among the examples he

3FDPB is used in a prototype VOD system reported in [10].

tested. The paper [7] left open the problem of limiting
the search range. Recently, Bar-Noy et al. [2] considered
this problem and proposed a method whereby they could
find the optimal value by testingm/2 different values of
s.

We analyze this dependency in detail and show that the
optimal value ofsj is guaranteed to be one of roughly
0.65

√
mj possible values. wheremj is the minimum

required period of the first page to be assigned toCj.
We thus can avoid time-consuming exhaustive search for
the optimal{sj}.

Without loss of generality, in this paper we mainly
consider just one channel and try to find the optimal
value for the numbers of subchannels that maximizes the
total number of pages that can be packed in the channel.
The result is directly applicable to optimizingsj for each
channelCj, if there arec > 1 channels.

The rest of the paper is organized as follows. Section
II describes a useful tool, called theround-robin tree,
introduced in [2]. In Section III, we derive a formula
for the number of pages that can be scheduled intos
subchannels of a channel under the same constraints that
FDPB(m) adopts. We then establish a range fors in
terms ofm that needs to be searched, in order to find
the optimal value fors.

Finally, in Section IV, we summarize our contribu-
tions. We also propose a new method of subchanneling
such that a subchannel is divided into subsubchannels,
and show that this can schedule more pages into a
channel.

II. T ECHNICAL PRELIMINARIES

A. Round-robin tree

In Section III, we will be making use of theround-
robin tree [2]. Fig. 1 is an example of a 2-level round-
robin tree. A round-robin tree represents a schedule as

3 P4 P5 P6 P7 8P PP P P9 10 12112P P P1

Fig. 1. A round-robin tree representation of FDPB(9) with
s = 3 subchannels.

follows:
1) Initially the root gets a “turn”.
2) When a non-leaf node gets a turn, it passes the

turn to its “next” child node. The leftmost child
node gets a turn first and the order “next” means
the next sibling to the right, wrapping around back
to the leftmost child node.
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3) When a leaf gets a turn, its associated page is
scheduled and the turn goes back to the root.

Applying the above rules, it is seen that Fig. 1 repre-
sents the schedule,〈P1, P4, P8, P2, P5, P9, . . .〉. Note that
pagesP1, . . . , P3 have period 9, pagesP4, . . . , P7 have
period 12, and pagesP8, . . . , P12 have period 15. It is
easy to see that the period of a page is the product of the
degrees of all the ancestor nodes of the leaf with which
the page is associated.

Let us now examine the minimum cycle of a round-
robin schedule. If the root of the underlying round-
robin treeT hass children, letS1, · · · , Ss be the round-
robin schedules generated from thes subtrees, and let
c1, c2, · · · , cs denote their minimum cycles, respectively.
Then the minimum cycle of the round-robin schedule
represented byT is given bysLCM(c1, · · · , cs), where
LCM() stands for the least common multiple of the
arguments.[2] Thus, the minimum cycle of the schedule
represented by Fig 1 is computed by3×LCM(3, 4, 5) =
180.

B. Model

Except in Section IV, we consider only one channel
of bandwidthb, equal to the display rate. The viewer
initially downloads for md (sec), before s/he starts
displaying the video, whered is the slot time. In order
for the viewer to be able to view the video continuously,
pagei must be broadcast at least once in each window
of sizewi = m + i − 1 [8]. Thus the first page (i = 1)
is broadcast in everymth slot. This uses up1/m of the
bandwidth, and pages 2 tom can also be scheduled in
the same channel. However, there is some waste in this
assignment, because pagem, for example, needs to be
broadcast once in everywm = 2m− 1 time slots, not in
everym time slots.

To make it more efficient P̂aris in FDPB(m) divides
each channel intos “subchannels” for some integers.
For j = 1, 2, . . . , s, let subchannelj consist of everysth

slot.

Example 1: Let us supposem = 9 and chooses = 3.
Page 1 can be broadcast in everyw1 = 9 + 1 − 1 = 9th

slot. Sinces = 3, subchannel 1 consists of every 3rd slot,
and page 1 needs only 1/3 of it. Thus pages 2 and 3 can
also be broadcast in subchannel 1. These three pages will
each have period 9, i.e., each of them will appear in every
9 time slots. Page 4 (i = 4) needs to be broadcast at least
once in everyw4 = m + 4 − 1 = 12 time slots. Thus,
pages 4, 5, 6, and 7 fit in subchannel 2, and these four
pages will each have period 12. Similarly, page 8 (i = 8)
needs to be broadcast in everyw8 = m + 8 − 1 = 16
time slots, and hence pages 8 to 12 fit in subchannel

3. Thus these five pages will each have period 15. In
summary, by dividing a channel into three subchannels,
we can now pack 12, instead of 9, pages in a channel.
Fig. 1 shown earlier is a round-robin tree representation
for FDPB(9) with3 subchannels.

In order for page 1 to appear within every window of
sizew1 = m, it must appear in at least every⌊m/s⌋ slots
of a subchannel. This also implies that the firstn1 =
⌊m/s⌋ pages can be scheduled in the first subchannel
in such way that they all have the same period that is
no greater thanm. For k = 1, 2, . . . , s, let nk denote
the maximum number of pages that can be scheduled in
subchannelk. As we just saw above,n1 = ⌊m/s⌋. Now
that the firstn1 pages have been scheduled in subchannel
1, the next page, i.e., then1 +1st page must have period
at mostm+(n1+1)−1. We thus haven2 = ⌊(m+n1)/s⌋
We can generalize this to get the following formula for
nk:

nk = ⌊(m + n1 + n2 + · · · + nk−1)/s⌋ (1)

Let n(m, s) denote the total number of pages assigned
to thes subchannels, i.e.,

n(m, s) =
s

∑

k=1

nk. (2)

III. O PTIMIZATION FOR TRUNCATED HARMONIC

SCHEDULING

A. Problem

Fig. 2 plots n(100, s) by varying s in the range
1 ≤ s ≤ 100 (the rugged curve). It is seen thats = 10
maximizesn(100, s). In Fig. 3, n(m, s) is plotted for
many different values ofm, wherem = 1, 2, . . . , 130.
For each value ofm, a curve is drawn by varyings
within the range1 ≤ s ≤ m. This can be considered
as exhaustive search by which to find the optimals
that maximizesn(m, s). The light-gray curves in Fig. 3
correspond tom = 9, 21, 51 and 128. (The reason why
these four curves are highlighted will be explained later
in Section IV.) Note that the optimal value ofs that
maximizesn(m, s) grows withm. Our main interest in
this paper is to analyze the dependency of the optimal
value ofs on m in the hope of finding the optimal value
without resorting to exhaustive search.

As we observed in Fig. 1, the schedule that FDPB(m)
generates can be represented by a 2-level round-robin
tree [2]. The root of this tree has degrees and its s
subtrees have degrees,n1, n2, . . ., ns, respectively. We
first prove the correctness of FDPB(m) in our current
framework. In reference to Eq. (1), fork = 1, · · · , s, we
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Fig. 3. The numbers of pages scheduled in one channel. Each
curve corresponds to a different period for the first page, i.e.,
m = 1, 2, . . . , 130. The number of subchannelss is varied
from 1 to m.

definerk (0 ≤ rk ≤ s − 1) by

m +
k−1
∑

j=1

nj = snk + rk. (3)

Lemma 1: Supposenk is computed by Eq. (1) for
k = 1, 2, . . . , s and the nextnk consecutive pages are
broadcast on subchannelk, starting with page 1 on
subchannelk = 1. Then for anyi (1 ≤ i ≤ n(m, s)),
pagei has period at mostm + i − 1.

Proof: Let T be a 2-level round robin tree and let

T1, T2, . . . , Ts be the subtrees corresponding to thes
subchannels. For a givenk, let i =

∑k−1
j=1 nj + 1. Then

pagei is the leftmost leaf of subtreeTk. Recall from
Section II that all leaves ofTk have periodsnk. By
Eq. (3), we havem + i − 1 ≥ snk. Thus the lemma is
true for the leftmost leaf of subtreeTk for any k. Since
all other leaves of subtreeTk represent higher numbered
pages with the same period, the lemma is also true for
them.

In order to find the optimal value ofs that maxi-
mizesn(m, s) by differentiation, we try to approximate
n(m, s) by a function that doesn’t contain any floor func-
tion. Let r̄ denote the average of{rk | k = 1, 2, . . . , s}
in Eq. (3).

Lemma 2: The total number of pages that can be as-
signed to thes subchannels of a channel is approximated
by the following formula whens (< m) is large:

n(m, s) ≈ (m − r̄)

(

(1 +
1

s
)s − 1

)

. (4)

Proof: Let n0 = m and rewrite Eq. (3) as follows:

rk =
k−1
∑

j=0

nj − snk,

and hence

rk

s
(1+1/s)s−k = (1+1/s)s−k

k−1
∑

j=0

nj

s
−(1+1/s)s−knk.

Summing this fromk = 1 to s, we get
s

∑

k=1

rk

s
(1 + 1/s)s−k

=
s

∑

k=1

(1 + 1/s)s−k
k−1
∑

j=0

nj

s
−

s
∑

k=1

(1 + 1/s)s−knk.

We can rewrite the right hand side as follows:

s−1
∑

j=0

nj

s

s
∑

k=j+1

(1 + 1/s)s−k −
s

∑

k=1

(1 + 1/s)s−knk

=
s−1
∑

j=0

nj[(1 + 1/s)s−j − 1] −
s

∑

k=1

(1 + 1/s)s−knk

= m[(1 + 1/s)s − 1] − n(m, s).

We thus obtain

n(m, s) = m[(1+1/s)s−1]−
s

∑

k=1

rk

s
(1+1/s)s−k. (5)

We now estimaten(m, s) for larges. For sufficiently
large s, we assume that the remaindersr1, · · · , rs are
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Fig. 4. The horizontal axis represents the number of subchan-
nels (s) and the vertical axis representsn(1000, s).

uniformly distributed in the range[0, s−1]. Substituting
ri = r̄ into Eq. (5), we obtain Eq. (4).

Fig. 4 shows the maximum numbers of pages that can
be scheduled in one channel whenm = 1000 and the
number of subchannelss is varied from 20 to 180. The
smooth curve is an approximation using Eq. (4) with
r̄ = (s − 1)/2, i.e., half the possible range.

B. Solution

Lemma 3: When s is large, the normalized waiting
time is lower bounded approximately by

1

1 − r̄/m
× 1

e − 1
(6)

for somer̄ in the range0 ≤ r̄ < s − 1.

Proof: Since the initial waiting time ismd, by
Lemma2 the normalized waiting time is given by

md

n(m, s)d
≃ m

(1 + 1/s)s (m − r̄) − (m − r̄)

≥ 1

1 − r̄/m
× 1

e − 1
.

Corollary 4: For larges, the total number of pages
n(m, s) can be bounded as follows:

(m−s+1)

(

(1 +
1

s
)s − 1

)

≤ n(m, s) ≤ m

(

(1 +
1

s
)s − 1

)

Proof: Follows directly from Eq. (4) by setting
r̄ = s − 1 (for the lower bound) and̄r = 0 (for the
upper bound).

In order to find the optimal value ofs that maximizes
n(m, s), one need to evaluate Eq. (2) fors ranging2 ≤
s ≤ m/2 [2]. This is time-consuming whenm gets
large. In what follows, we show that the optimal solution

sopt can be found within a region containingO(
√

m)
possible values ofs. The following theorem shows how
sopt grows withm for largem. The following theorem
was conjectured in [7] and experimentally verified in [4].

Theorem 5: The optimal number of subchannelssopt

grows linearly with
√

m.

Proof: Let r̄ = a(s − 1) in Eq. (4), where the
range of parametera is 0 < a < 1. The optimal num-
ber of subchannelss satisfies the following differential
equation:

∂n(m, s)

∂s
= 0.

Therefore, we have

(1 + 1/s)s
[

ln(1 + 1/s) + s2(1/s−(s+1)/s2)
s+1

]

(m − a(s − 1))

−a ((1 + 1/s)s − 1) = 0. (7)

If s is sufficiently large, we can simplify the above
equation as follows:

em/2 + 23
24ea

s2
− (e − 1)a ≈ 0

By solving the above quadratic equation, using the
assumptions2 ≫ a, we obtain

sopt ≈
√

em

2a(e − 1)
. (8)

n(m, s) is not a smooth function ins, as we saw in
Fig. 4. In order to limit our search space for the optimal
s, we need to bound the parametera = a(m, s) which
is a function ofm ands. We want to determine

aup = Sup{a(m, s)}

and
alow = Inf {a(m, s)}.

Sincea < 1, we obviously haveaup < 1. The problem is
how to boundalow . Fig. 5 gives the computation results
for a(1000, s) for s in the range1 ≤ s ≤ 1000.

In order to findalow for given m, we want to inves-
tigate how the remainder changes in the optimal region,
i.e., in the vicinity of s =

√
m. Fig. 6 illustrates the

case wherem = 10, 000 and the number of subchannels
s = 100. Thex-axis represents the 100 subchannels, i.e.,
subchannelsk = 1 to k = 100. Each number in Fig. 6
is nk of Eq. (1) for somek, and its height representsrk

of Eq. (3). One striking feature in Fig. 6 is the presence
of quadratic curves, half a parabola near the origin and
another complete parabola in the middle of the graph.
Let us examine the cause of this phenomenon.
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Fig. 5. a vs. the number of subchannelss (m = 1000).

At the bottom of the left parabola,nk = 100, which
equals the number of channelss being used, appears,
wherek is some number that is not important for our
discussion. From the formula fornk in Eq. (1), this
means that

nk =

⌊

X

s

⌋

= s.

Let the corresponding remainderrk = R (R = 0 in
Fig. 6.) ThenX in the above equation can be expressed
asX = s2 + R.4 Let us now computenk+1, nk+2, etc.

nk+1 = ⌊(s2 + s + R)/s⌋ = s + 1, rk+1 = R.

nk+2 = ⌊(s2 + s + (s + 1) + R)/s⌋ = s + 2,

rk+2 = R + 1.

nk+3 = ⌊(s2 + s + (s + 1) + (s + 2) + R)/s⌋
= s + 3,

rk+3 = R + 1 + 2.

nk+4 = ⌊(s2 + s + (s + 1) + (s + 2) + (s + 3) + R)/s⌋
= s + 4,

rk+4 = R + 1 + 2 + 3.

We now see the trend and can compute

rk+j = R +
j(j − 1)

2
. (9)

If we started with nk > s, then rk+j would be a
larger function ofj. Obviously these remainders are the
smallest ifR = 0. This suggests that the “worst case”
which leads to the smallest estimate foralow occurs
aroundnk = s, where remainders grow slowly as we
saw above. Of course, it is possible thatrh = 0 for
someh elsewhere, butrh+1, rh+2, etc., quickly grow.

4For the parabola in the middle of Fig. 6,X = 2s
2

+ R
′.

The dotted line in Fig. 6 represents the difference
rk+1 − rk( mod s) for k = 1, 2, . . . , s (=100). The
lower horizontal line is the average of all the remainders
{rk | k = 1, 2, . . . , s}, while the upper horizontal line is
at height(s − 1)/2, which would be the average of the
remainders if they were randomly distributed between 0
ands − 1.

Lemma 6: In the optimal region the average remain-
der alow > 1

3 .

Proof: Fix the values near
√

m, and assume the
worst case, i.e.,rk has the formrk+j = cj2 for some
constantc. Thus each remainderrk takes one of then+1
values,

0, c, 22c, . . . , n2c,

wheren is the largest integer satisfyingn2c ≤ s − 1,
because any remainderrk ≤ s − 1. In other words, for
k = 1, 2, . . . , s, 1/(n+1) of those remainders have value
0, 1/(n+1) of those remainders have valuec, 1/(n+1)
of those remainders have value22c, etc. Then the average
value of all thes remainders is given by

1

n + 1

n
∑

j=0

cj2 = cn(2n + 1)/6 ≈ s − 1

3
,

assumingn is large. This implies thatalow ≥ 1/3.

We thus have the following theorem:

Theorem 7: [4] If m is large, the optimal number of
subchannelssopt that maximizesn(m, s) can be bounded
as follows:

√

em

2(e − 1)
≤ sopt ≤

√

3em

2(e − 1)
.

Proof: The lower bound is obtained by plugging
the upper bound ofaup = 1 into and the upper bound
is obtained by plugging the lower bound ofalow = 1/3
into Eq. (8).

The above theorem implies that the search space
can limited to a rather small range, allowing us to
avoid a near-exhaustive search. Note thate/2(e − 1) =
0.791,

√

e/2(e − 1) = 0.889, 3e/(e − 1) = 2.37, and
√

3e/(e − 1) = 1.54. Therefore, only
√

3e/2(e − 1)m−
√

e/2(e − 1)m = 0.65m different values ofs need be
tested to findsopt.

Fig. 7 below plots the optimal number of subchannels,
sopt, computed by exhaustive search, varyings from 1
to m to find sopt, for each periodm of the first page in
the range up to 10,000. It is observed that the majority of
the date points are within are area bounded by

√
m − 3
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and
√

2.37m + 6. Our lower bound of
√

0.791m given
by Theorem 7 could be tightened a little. Due to the
assumptions ≫ 1 made to derive Eq. (4), our bounds
are not valid for small values ofs.

By reducing the range of search froms ∈ [1,m/2]
to s ∈ [max{√m − 3, 1},

√
2.37m + 6], the execution

time of our search program for all values ofm between
1 and 10,000 went down rather drastically from several
hours to a few seconds.5 This range is roughly(

√
2.37−

1)
√

m ≈ 0.54
√

m.

The middle curve in Fig. 7 representss =
√

1.58m,
and it appears that this curve lies roughly in the middle of
the data points. We now plugs =

√
1.58m into Eq. (4),

and plot it in Fig. 8 below, which shows a rather good
fit (within 1% error). The bottom curve shows the actual
data, and the top curve shows the analytical estimate
based on the assumption thats =

√
1.58m is optimal.

The two curves are hardly distinguishable.

5We used a Java program running on a Pentium II CPU.

IV. D ISCUSSIONS

So far we concentrated just on one channel and tried
to pack as many pages in it as possible, by optimizing the
number of subchannels. Let us now consider the general
case, where we havec channels,C1, C2, . . . , Cc. Suppose
the maximum period of the initial page for channelC1

is m1. Then we havem2 = m + (i1 + 1) − 1 for first
page of channelC2, if pages 1 toi1 are packed into
channelC1. Thus by varying the parameterm in our
previous analysis, we can determine how many pages
can be packed into the second, third,. . . channels.

As commented earlier, the light-gray curves in Fig. 3
correspond tom = 9, 21, 51 and 128. The curve for
m1 = 9 reaches its peak 12 ats = 3, which implies that
12 pages can be packed intoC1 if the period of the first
page is 9 and three subchannels are used. Thus page 13
is the first page to be packed inC2, and therefore we
should look at the curve form2 = 9+13−1 = 21. This
curve has the peak value of 30, and thus 30 pages can
be packed intoC3, and so forth.

Hollermann and Holzscherer conceived a scheme sim-
ilar to FDPB(m), which we callHollermann-Holzscherer
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Broadcasting, HHB(m) [3]. The main difference be-
tween them is that FDPB(m) is based on the fixed-
delay policy, while HHB(m) is based on the fixed
start points policy. Any schedule for FDPB(m) is a
schedule for HHB(m) and vice versa. The waiting time
for FDPB(m) is alwaysmd, while theaverage waiting
time for HHB(m) is (m − 0.5)d, assuming Poisson
arrivals. Therefore, if the average waiting time is used

as the performance metric, HHB(m) slightly outperforms
FDPB(m). Another difference is that the slots in different
channels need not be synchronized in FDPB(m), while
the synchronization is essential for HHB(m).
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Fig. 9. Maximum number of pages scheduled in one channel
vs. the period of the first page: The top curve shows the case
where up to five groups were considered and best number
was chosen, and the bottom curve shows the case where no
grouping was used.

Recursive subchanneling:We now try recursive sub-
channeling. Namely, we first divide a channel intog
subchannels (or groups) of equal bandwidth as before,
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and then further divide each of theg subchannels into
a different number of subsubchannels. As Fig. 9 shows,
we are able to fit slightly more pages into a channel
for some values ofm. Recursive subchanneling becomes
more beneficial for larger values ofm.
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