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Abstract—
Fixed-Delay Pagoda Broadcasting (FDPB) is a practical

schemes, a video of duratiai (sec) is divided inton
pages, Py, P», ..., P,, of durationd = D/n each. (Some

broadcasting scheme for video-on-demand proposed by gythors use the term “segment”, instead of “page”, but

Paris, and its prototype has been built. In order for any
broadcasting scheme to be truly practical, it is crucial tha
the required bandwidth be minimized. Some heuristic is
used to compute the optimal nhumbers of subchannels used
by FDPB to minimize the required bandwidth, but it does
not always generate the optimal solution. In order to find
the truly optimal s, the only known algorithm requires to
try close to 0.5m different potential solutions for s, where
m is a parameter of FDPB which can be rather large. This
paper analyzes the combinatorial optimization problem
involved in detail and limits the search space for the
optimal s down to x+/m different values, wherex = 0.65.
This reduces the running time of a computer program to
compute the optimal value for s from a few hours down to
a few seconds whem: = 10, 000. This impressive reduction
is more than what the ratio 0.5m/k+/m would suggest,
because the computation time depends on the values of

in our terminology, asegment consists of several con-
secutive pages.) There arechannels, C1,Cy,...,C,,
of bandwidthb (bits/sec) each that are used to broadcast
a video, whereb is the display rate of the video. In
general, the bandwidth of each channel may not be equal
to b, but FDPB we discuss in this paper uses channels
of bandwidthb. In our model, a channel consists of an
infinite sequence of consecutigots, each of duration
d, and slots of different channels are synchronized in the
sense that they start and end at the same timsinéow
of sizew is a time interval of durationvd starting at a
slot boundary. The transmission of a page occupies one
slot in a channel.

Unaware of the almost identical earlier work of Holler-
mann et al.[3], Bris et al. proposedPagoda Broadcast-

tested. The technique used in this paper could be applied ing (PB) [9] in 1998, and later Ris extended it to a

to other similar problems.
Keywords: Multimedia, Video-on-demand, broadcasting,
push system, bandwidth optimization.

Index Terms— Multimedia, Video-on-demand, broad-

more elaborate version callétew Pagoda Broadcasting
(NPB) [6]. In these schemes, the viewer who “tunes in”
at an arbitrary time must wait until the beginning of the
next slot inCy (which broadcasts only?; repeatedly),

casting, push system, scheduling, bandwidth optimization before downloading pages from any channel. When the

. INTRODUCTION

Recently, there has been much interest

address the scalability issue in video-on-demand.

the best of our knowledge, Hollmann and Holzscherer,
first conceived the idea of segmenting a video an

in t
broadcast-based delivery of popular videos, in order

first bit of P, appears irCy, s/he starts viewing’; , while
downloading from the other channels at the same time.
It is known that a necessary condition for the viewer to

rpe able to display continuously is th& be broadcast

? least once in every window of size; i [5].2
0erefore, ifn pages are assigned tochannels, then
it Is necessary thatf,, =1+1/2+---+1/n < ¢ holds,
v(v]hereHn is known as the:*™ harmonic number [1].

broadcasting the “segments” at different frequencies [3], The download/display policy specifies the download-
although [11] is commonly cited as the original sourciag status of a segment, when the previous segment has
of the idea. In this and several other video broadcastijpgt been completely displayed.

We are thankful to Jan Korst of Philips Research Laboratory, 2This is also a sufficient condition if each channel has badtiwi

Belgium, for bringing this little-known work to our atteoti.

> b.



COCOONO05 2

1) Fixed-delay policy: For eachi, all of segmentS; tested. The paper [7] left open the problem of limiting
must have been buffered in the viewer's buffethe search range. Recently, Bar-Noy et al. [2] considered
by the time the previous segmefif_; has been this problem and proposed a method whereby they could
completely displayed. find the optimal value by testing:/2 different values of

2) Fixed start points policy: The viewer waits until s.
the next slot time, before s/he starts display. Down- We analyze this dependency in detail and show that the
loading starts at the same time as the display. optimal value ofs; is guaranteed to be one of roughly

As commented earlier, for the schemes based on thé5,/m; possible values. where; is the minimum
fixed start points policy, it is necessary and sufficient t@quired period of the first page to be assigned’to
broadcast page at least once in every window of sizeWe thus can avoid time-consuming exhaustive search for
w;, provided each channel has bandwidtth. However, the optimal{s;}.

for the schemes based on the fixed-delay policy, thisWithout loss of generality, in this paper we mainly
condition is necessary and sufficient regardless of thensider just one channel and try to find the optimal
channel bandwidth. value for the numbes of subchannels that maximizes the

All the schemes we have mentioned above, includirigtal number of pages that can be packed in the channel.

PB and its variants, NPB and QHB (Quasi-Harmoni€he result is directly applicable to optimizing for each
Boradcasting), adopt the fixed start points policy. R&éhannelC;, if there arec > 1 channels.

cently, Bar-Noy et al. have formulated a combinatorial The rest of the paper is organized as follows. Section
problem called thevindows scheduling problem [1]. It |l describes a useful tool, called theund-robin tree,

is a mathematical framework for the schemes based ipiroduced in [2]. In Section I, we derive a formula
the fixed start points policy. This problem is definefpr the number of pages that can be scheduled into
by positive integers:, and wy, ws, ..., Wherec is the subchannels of a channel under the same constraints that
number of slotted channels andwandow of size w; FDPB(n) adopts. We then establish a range foiin

is associated with page. A valid schedule assigns terms ofm that needs to be searched, in order to find
pagei to slots such that it appears at least once the optimal value for.

every window ofw; slots (not necessarily in the same Finally, in Section IV, we summarize our contribu-
channel). Maximizing the number of pages schedulé@ns. We also propose a new method of subchanneling
in a channel when the window size is fixed @f = such that a subchannel is divided into subsubchannels,
m + i — 1 is called theoptimal truncated-Harmonic and show that this can schedule more pages into a
windows scheduling problem. Whenm = 1, it is called channel.

the optimal Harmonic windows scheduling problem.

Fixed-Delay Pagoda Broadcasting (FDPB(n)) pro- :
posed by Rris [7] is one of the several known schemeé" Round-robin tree
that adopt the fixed-delay poliéyThe viewer initially N Section Ill, we will be making use of theound-
downloads formd (sec) from all channels before s/héobin tree [2]. Fig. 1 is an example of a 2-level round-
starts displaying the video, where is a positive integer. robin tree. A round-robin tree represents a schedule as
In terms of the parameters we have introduced so far,

FDPB(mn) has the following constraints: (a); = m +

[I. TECHNICAL PRELIMINARIES

1—1 for a given positive integer constant, (b) for j =
1,2,...,¢c, channelC; is divided into s; subchannels, \
each subchannel consisting of every" slot of the PRP PRROPP R P R P R

channel, (c) each page must appear in one subchannel

with a fixed period, and (d) all pages allocated tBig- 1. A round-robin tree representation of FDPB(9) with
each subchannel and channel must be consecutive. ®gr3 subchannels.

objective is to maximize the number of pages that ¢
be scheduled inc channels, by choosing the optima
values for{s;}, which depend omn. The author of [7]
originally thought thats = /m was a good estimate
for the optimal s value, but later found,/m + 1 or
v/m+ 2 was sometimes optimal among the examples he

n

ollows:

1) Initially the root gets a “turn”.

2) When a non-leaf node gets a turn, it passes the
turn to its “next” child node. The leftmost child
node gets a turn first and the order “next” means
the next sibling to the right, wrapping around back

3FDPB is used in a prototype VOD system reported in [10]. to the leftmost child node.
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3) When a leaf gets a turn, its associated page 3s Thus these five pages will each have period 15. In
scheduled and the turn goes back to the root. summary, by dividing a channel into three subchannels,

Applying the above rules, it is seen that Fig. 1 reprave can now pack 12, instead of 9, pages in a channel.
sents the scheduléP;, Py, Ps, P, Ps, Py, .. .). Note that Fig. 1 shown earlier is a round-robin tree representation
pagesP;, ..., P; have period 9, pageB;, ..., P, have for FDPB(9) with3 subchannels. u

period 12, and pagess, ..., Pio have period 15. It is - .
. . In order for page 1 to appear within every window of
easy to see that the period of a page is the product of the . .
IZew; = m, it must appear in at least evelny./s| slots

degrees of all the ancestor nodes of the leaf with Wh@? a subchannel. This also implies that the firgt —

the page is associated. . :
L(Et Ss now examine the minimum cycle of a roundLm/sJ pages can be scheduled in the first s_ubchann_el
robin schedule. If the root of the underlying rounds. such way that they all have the same period that is

. ) no greater tharm. For k = 1,2,...,s, let n; denote
robin treeT hass children, letSy, - - -, S5 be the round- great T k .
. the maximum number of pages that can be scheduled in
robin schedules generated from thesubtrees, and let :
subchannek. As we just saw abovey; = |m/s|. Now

€L, €2, Cs denote their minimum cycles, respectively ., .o firsth; pages have been scheduled in subchannel
Then the minimum cycle of the round-robin schedulf : ot .
, the next page, i.e., the, + 1" page must have period

represented by is given bysLCM (cy,-- -, cs), Where at mostm+ (ny +1)—1. We thus haves = | (m-+n1)/s]

LCM() stands for the least common multiple of thT/Ve can generalize this to get the following formula for
arguments.[2] Thus, the minimum cycle of the schedule g g g

represented by Fig 1 is computed®y LC M (3,4,5) = 1tk
180. ng=1|(m+n+na+---+ng_1)/s| 1)

Letn(m, s) denote the total number of pages assigned

B. Model to the s subchannels, i.e.,

Except in Section IV, we consider only one channel s
of bandwidthb, equal to the display rate. The viewer n(m,s) =3 ny. @)
initially downloads for md (sec), before s/he starts el

displaying the video, wheré is the slot time. In order
for the viewer to be able to view the video continuously, m
page: must be broadcast at least once in each window
of sizew; = m + i — 1 [8]. Thus the first pagei(= 1)

is broadcast in evenyh!” slot. This uses upg/m of the A. Problem

bandwidth, and pages 2 t@ can also be scheduled in Fig. 2 plots n(100,5) by varying s in the range
the same channel. However, there is some waste in tE\i% s < 100 (the rugged curve). It is seen that= 10
assignment, because page for example, needs to be. .
broadcast once in eveny,, = 2m — 1 time slots, not in
everym time slots.

To make it more efficient &is in FDPB(n) divides
each channel inta “subchannels” for some integet
Forj =1,2,...,s, let subchannel consist of every!”
slot.

OPTIMIZATION FOR TRUNCATED HARMONIC
SCHEDULING

maximizesn(100, s). In Fig. 3, n(m,s) is plotted for
many different values ofn, wherem = 1,2,...,130.

For each value ofn, a curve is drawn by varying
within the rangel < s < m. This can be considered
as exhaustive search by which to find the optimal
that maximizes:(m, s). The light-gray curves in Fig. 3
correspond tan = 9,21,51 and 128. (The reason why
Example 1: Let us supposen = 9 and chooses = 3. these four curves are highlighted will be explained later
Page 1 can be broadcast in evary=9+1—1= 9" in Section IV.) Note that the optimal value a&f that
slot. Sinces = 3, subchannel 1 consists of every 3rd slotnaximizesn(m, s) grows withm. Our main interest in
and page 1 needs only 1/3 of it. Thus pages 2 and 3 dhis paper is to analyze the dependency of the optimal
also be broadcast in subchannel 1. These three pages vélle ofs onm in the hope of finding the optimal value
each have period 9, i.e., each of them will appear in evemjthout resorting to exhaustive search.

9 time slots. Page 4 & 4) needs to be broadcast at least As we observed in Fig. 1, the schedule that FDRB(
once in everyws = m + 4 — 1 = 12 time slots. Thus, generates can be represented by a 2-level round-robin
pages 4, 5, 6, and 7 fit in subchannel 2, and these fdree [2]. The root of this tree has degreeand its s
pages will each have period 12. Similarly, page 8(8) subtrees have degrees,, no, ..., ns, respectively. We
needs to be broadcast in every = m +8 — 1 = 16 first prove the correctness of FDRB) in our current
time slots, and hence pages 8 to 12 fit in subchanfi’lmework. In reference to Eq. (1), fé&r=1,---,s, we
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Fig. 2. The rugged curve shows(100., s), when the number
of subchannels is varied from 1 tom = 100. The smooth
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Nunber of subchannels (s)

curve is an approximation using Eq. (4) withls = 0.5.

Number of pages packed into one channel (n(ms))
250
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Ty, Ts,...,Ts be the subtrees corresponding to the
subchannels For a give leti = Zk—1 nj + 1. Then
pagei is the leftmost leaf of subtre@k Recall from
Section Il that all leaves off, have periodsn;. By

Eq. (3), we haven + i — 1 > sng. Thus the lemma is
true for the leftmost leaf of subtreB, for any k. Since

all other leaves of subtreE, represent higher numbered
pages with the same period, the lemma is also true for

them. [ ]

In order to find the optimal value of that maxi-
mizesn(m, s) by differentiation, we try to approximate
n(m, s) by a function that doesn’t contain any floor func-
tion. Let 7 denote the average df | k = 1,2,...,s}
in Eqg. (3).

Lemma 2: The total number of pages that can be as-
signed to thes subchannels of a channel is approximated
by the following formula whers (< m) is large:

n(m,s) ~ (m —7) ((1 + %)S - 1) : 4)

Each curve represents an intial perlod m——
4 channel s used .
Proof: Letng = m and rewrite Eq. (3) as follows:
200 |
k—1
== rk:an—snk,
150 | : \ =0
=
and hence
100
Tk _ k
=(141/5)*F = (1+1/s)% Z —(141/s)*~
N
50 = 5
Summing this fromk = 1 to s, we get
0= ‘ : : : : : s
0 20 40 60 80 100 120 140 Tk s—k
Nunmber of subchannels (s) ];1 S (1 + 1/8)
Fig. 3. The numbers of pages scheduled in one channel. Each — Z(l +1/s)°7k Z Z 1+1/s)*

curve corresponds to a different period for the first page, i.
130. The number of subchanneisis varied

m=1,2,...,
from 1 tom.

definer, (0 <7, <s—1) by

k—1
m+an = SNk + k.
J=1

()

k=1
We can rewrite the nght hand side as follows:

s

Z"J Z (14 1/s)F =S (1+1/s)* *n
j=0 k=j+1 k=1

S— S

1
= gl 1) =1 = Y1+ 1)

7=0 k=1
m[(1+1/s)® — 1] —n(m,s).

Lemma 1. Supposen, is computed by Eq. (1) for We thus obtain
k=12,..
broadcast on subchanng| starting with page 1 on n(m,s) = m[(1+1/s)® Z_k (1+1/s)°°*. (5)

S

subchannek = 1. Then for any: (1 < i < n(m,s)),

pagei has period at most + ¢ — 1.

,s and the next; consecutive pages are

We now estimate:(m, s) for large s. For sufficiently

Proof: Let T be a 2-level round robin tree and letarge s, we assume that the remaindefs---,r, are
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sept Can be found within a region containin@(/m)
16607 ) .
. possible values of. The following theorem shows how
a0/ Sopt grows withm for largem. The following theorem
oy was conjectured in [7] and experimentally verified in [4].
1620 BN .
Wy Theorem 5. The optimal number of subchannels,
600 “/‘v‘”»\x grows linearly with,/m.
. \”M”x\ Proof: Let 7 = a(s — 1) in Eq. (4), where the
ST range of parametes is 0 < a < 1. The optimal num-
1560 - ber of subchannels satisfies the following differential
S equation:
20 40 60 80 100 120 140 160 180 an(m, s)
= 0.
0s

Fig. 4. The horizontal axis represents the number of subchanﬁ ¢ h
nels (s) and the vertical axis represent$1000, s). Therefore, we have

(141/9)° [In(1 +1/s) + =L (m — a(s - 1))

uniformly distributed in the rangf®, s— 1]. Substituting —a((1+1/s)°—1)=0. (7

ri=T into Eq. (5), we o_btam Eq. (4). " i osis sufficiently large, we can simplify the above
Fig. 4 shows the maximum numbers of pages that C@Huation as follows:

be scheduled in one channel when= 1000 and the

number of subchannelsis varied from 20 to 180. The em/2 4 Siea —(e—1)a~0
smooth curve is an approximation using Eq. (4) with 52 -
7= (s —1)/2, i.e, half the possible range. By solving the above quadratic equation, using the
assumptions? > a, we obtain
B. Solution e
Lemma 3: When s is large, the normalized waiting Sovt 1\ [ Sale = 1) 8
time is lower bounded approximately by

1 1 u

1—77/m><e—1

for somer in the ranged <7 < s — 1.

(6)

n(m, s) is not a smooth function i, as we saw in
Fig. 4. In order to limit our search space for the optimal
s, we need to bound the parameter= a(m, s) which

Proof:  Since the initial waiting time isnd, by s a function ofm ands. We want to determine
Lemmaz2 the normalized waiting time is given by
o . a"? = Sup{a(m, s)}

n(m,s)d (Lt 1/s) (m—F) — (m—7) and
1 y 1 ' a? = Inf{a(m,s)}.
1—7/m e—1

Sincea < 1, we obviously have"” < 1. The problem is
how to bounda®. Fig. 5 gives the computation results
Corollary 4: For larges, the total number of pagesfor a(1000, s) for s in the rangel < s < 1000.
n(m,s) can be bounded as follows: In order to finda'*® for given m, we want to inves-
1 1 igate how the remainder changes in the optimal region,
(m—s+1) <(1 +=)° — 1> <n(m,s) <m <(1 + =) = lj.e., in the vicinity of s = \/m. Fig. 6 illustrates the
s s case wheren = 10,000 and the number of subchannels
s = 100. Thez-axis represents the 100 subchannels, i.e.,
subchannelé = 1 to £ = 100. Each number in Fig. 6
is ny of Eqg. (1) for someék, and its height representg
In order to find the optimal value of that maximizes of Eq. (3). One striking feature in Fig. 6 is the presence
n(m, s), one need to evaluate Eq. (2) feranging2 < of quadratic curves, half a parabola near the origin and
s < m/2 [2]. This is time-consuming whem: gets another complete parabola in the middle of the graph.
large. In what follows, we show that the optimal solutiohet us examine the cause of this phenomenon.

Proof: Follows directly from Eq. 4) by setting
7 = s — 1 (for the lower bound) and" = 0 (for the
upper bound). |
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T T The dotted line in Fig. 6 represents the difference
re+1 — Tk( mods) for k = 1,2,...,s (=100). The
lower horizontal line is the average of all the remainders
{re | k=1,2,...,s}, while the upper horizontal line is
at height(s — 1)/2, which would be the average of the
remainders if they were randomly distributed between O

0.6

ands — 1.
N Lemma 6: In the optimal region the average remain-
1 deralov > 1.
o1f | Proof: Fix the values near,/m, and assume the
s worst case, i.e.ry has the formr,,; = cj* for some
O M0 OO M S0 0 T e S0 a0 constant. Thus each remaindey, takes one of the +1
Fig. 5. a vs. the number of subchannelgm = 1000). values, )

2
0,¢,2%,...,n"c,

. . . . 2 _
ALhe otom of h It prsboly — 100, wihch TS e s eger sabobgte <
equals the number of channelsbeing used, appears, y k= s 2 : :
: : : k=1,2,...,s 1/(n+1) of those remainders have value
where k is some number that is not important for OUE) 1 1) ‘of those remainders have valuel 1
discussion. From the formula for; in Eq. (1), this . /(n+1) . el/(n+1)
of those remainders have valgi&:, etc. Then the average

means that : o
{XJ value of all thes remainders is given by
ne=|—1|=S:.
i LS e = en(on+ 1) /6 ~ 2=
Let the corresponding remaindef, = R (R = 0 in nt 1 z%cj =cn(2n +1)/6 ~ 3
j:

Fig. 6.) ThenX in the above equation can be expressed
asX = s* + R.* Let us now computew, 1, nj 2, €IC.  assumingn is large. This implies that” > 1/3.

niar = [(8* + s+ R)/s| =s+1, rpa =R We thus have the following theorem:
Theorem 7: [4] If m is large, the optimal number of
— 2 —
Mtz = LS+t D+ R)fs] =542, subchannels,; that maximizes:(m, s) can be bounded
Ttz = R+ as follows:
ness = (24 s+ (s+1)+ (s+2)+ R)/s] _M < _dem
— 543, 2(e—1) 2(e—1)
T+ = R4+142.
Proof: The lower bound is obtained by plugging
nepa = |(2+s+(s+1)+(s+2)+(s+3)+R)/s| the upper bound of"” = 1 into and the upper bound
— 544, is obtained by plugging the lower bound @f* = 1/3
Thya = R+1+243. into Eq. (8). [ |
The above theorem implies that the search space
We now see the trend and can compute - .
can limited to a rather small range, allowing us to
et — R4 JG—1) ) avoid a near-exhaustive search. Note thét(e — 1) =
ki T 2 0.791, /e/2(e — 1) = 0.889, 3¢/(c — 1) = 2.37, and

If we started withn, > s, thenr,,; would be a v/3¢/(e —1) = 1.54. Therefore, only/3e/2(e — 1)m—
larger function ofj. Obviously these remainders are the/e¢/2(e — 1)m = 0.65m different values ofs need be
smallest if R = 0. This suggests that the “worst casetested to findsgy.

which leads to the smallest estimate fef” occurs _ _
aroundn; = s, where remainders grow slowly as we Fig. 7 below plots the optimal number of subchannels,

saw above. Of course, it is possible that = 0 for Sopt,» COmMputed by exhaustive search, varyingom 1

someh elsewhere, but, 1, 7,40, etc., quickly grow. 0 m 10 find s.p¢, for each periodn of the first page in
the range up to 10,000. It is observed that the majority of

“For the parabola in the middle of Fig. & = 25> + R’. the date points are within are area bounded, iy — 3
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160 .
121 184 . 218
114 142 +
126 o K
801 157 163 *+1+86 216 227 241 261
113 120 145 l7+7
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60 /162 225 :
111 119 172979 190 212
141 ¢ 167
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i 129 . 232 ¢+
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108 174 4 .
147 156 A L 244 259
20 107 117 .+ 463 164 +
106 . 123 ' 169 221
28 o 183 R L
105 .+ +
104+* 116 o 237 267
rg . 13336 : 176 : ‘
0 20 40 60 80 100
Fig. 6. Distribution of remaindergry}.
and+/2.37m + 6. Our lower bound of/0.791m given IV. DISCUSSIONS

by Theorem 7 could be tightened a little. Due to the 5o far we concentrated just on one channel and tried

assumptions > 1 made to derive Eq. (4), our boundsg pack as many pages in it as possible, by optimizing the

are not valid for small values of. number of subchannels. Let us now consider the general
By reducing the range of search frome [1,m/2] case, where we havechannelsC, Co, ..., C.. Suppose

to s € [max{y/m — 3,1},/2.37m + 6], the execution the maximum period of the initial page for chanr|

time of our search program for all valuesnf between is m;. Then we havens = m + (i; + 1) — 1 for first

1 and 10,000 went down rather drastically from severagge of channel,, if pages 1 toi; are packed into

hours to a few secondsThis range is roughlyy/2.37— channelC;. Thus by varying the parameter in our

1)y/m =~ 0.54\/m. previous analysis, we can determine how many pages

The middle curve in Fig. 7 represenis= v/1.58m, Co0 be packed into the second, third, channels.
and it appears that this curve lies roughly in the middle of As commented earlier, the light-gray curves in Fig. 3
the data points. We now plug= +/1.58m into Eq. (4), corrEspond ;Om - %, 2&’521 aid 12ﬁ2 ;I;he (‘i_urvehfor
and plot it in Fig. 8 below, which shows a rather good, — ) reac et? s pekadl_ at? :;’1 whic (;m;? 'ES :c at
fit (within 1% error). The bottom curve shows the actua2 pages can be packed intg if the period of the first

data, and the top curve shows the analytical estimagd® 1S 9 and three subchannels are used. Thus page 13

. . . IS the first page to be packed ith, and therefore we
based on the assumption that= v/1.58m is optimal. . = ,
The two curves are hardly distinguishable. should look at the curve fom; = 9+13—1 = 21. This

curve has the peak value of 30, and thus 30 pages can
be packed inta’s;, and so forth.

Hollermann and Holzscherer conceived a scheme sim-
SWe used a Java program running on a Pentium Il CPU. ilar to FDPB{n), which we callHollermann-Hol zscherer
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Fig. 7. The optimal number of subchannels,() vs. the period«{) of the first page. The actual optima are plotted as data
points.

as the performance metric, HHBJ] slightly outperforms
FDPB(mn). Another difference is that the slots in different

Number of scheduled pages . channels need not be synchronized in FDRB(while
L6000 | Actual ‘punber bt schonul s sages | the synchronization is essential for HHBY.
14000 t '
12000 , 1 No of pages schedul ed in one channel (n)
160 ‘ : : ‘ : : : ‘ :
10000 4 No of groups =5 —
140} No of groups =1 _
8000 | _
6000 | ] 120 1
4000 T ] 100 1
2000 | g0 |
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000C 60 |
Period of first paae (m
40 |
20 |
Fig. 8. Number of pages scheduled in one channel vs. t 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
period of the first page. 0 10 20 30 40 50 60 70 80 90 100

Period of initial padge (m

Fig. 9. Maximum number of pages scheduled in one channel

Broadcasting, HHB(m) [3]. The main difference be- Vs. the period of the first page: The top curve shows the case
tween them is that FDPBY) is based on the fixed- Where up to five groups were considered and best number
delay policy, while HHB{:) is based on the fixed was chosen, and the bottom curve shows the case where no

. . . grouping was used.
start points policy. Any schedule for FDPRB] is a
schedule for HHB{) and vice versa. The waiting time
for FDPB(n) is alwaysmd, while the average waiting Recursive subchanneling:We now try recursive sub-
time for HHB(n) is (m — 0.5)d, assuming Poissonchanneling. Namely, we first divide a channel injo
arrivals. Therefore, if the average waiting time is usexibchannels (or groups) of equal bandwidth as before,
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and then further divide each of thesubchannels into

a different number of subsubchannels. As Fig. 9 shows,
we are able to fit slightly more pages into a channel
for some values ofn. Recursive subchanneling becomes
more beneficial for larger values of.
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