Welcome to Simon Fraser University
You have reached this page because we have detected you have a browser that is not supported by our web site and its stylesheets. We are happy to bring you here a text version of the SFU site. It offers you all the site's links and info, but without the graphics.
You may be able to update your browser and take advantage of the full graphical website. This could be done FREE at one of the following links, depending on your computer and operating system.
Or you may simply continue with the text version.

*Windows:*
FireFox (Recommended) http://www.mozilla.com/en-US/firefox/
Opera http://www.opera.com/

*Macintosh OSX:*
FireFox (Recommended) http://www.mozilla.com/en-US/firefox/
Opera http://www.opera.com/

*Macintosh OS 8.5-9.22:*
The only currently supported browser that we know of is iCAB. This is a free browser to download and try, but there is a cost to purchase it.
http://www.icab.de/index.html
Close x
Searching... Please wait...

Ladislav Stacho

Associate Professor

PhD Mathematics · Slovak Academy of Sciences · 1997

tel  778.782.4816
fax  778.782.4947
lstacho@math.sfu.ca
office  SC K10522

Personal Website

Research Interests

In my research, I study problems that arise in graph theory and related areas, often motivated by applications in current network technologies such as high-speed networks, communication algorithms for these networks, and in algorithmic aspects of fault tolerance. These areas are currently enjoying a particularly high level of research activity.

I am interested in the existence of Hamilton cycles and paths in graphs. Such problems are of interest in interconnection networks and parallel architectures. In particular, my investigation is aimed at sufficient conditions for the existence of such cycles/paths, and at various modifications (pancyclicity, edge-disjoint cycles, …) of the basic problem.

Among problems arising in communication networks, I am interested in mobile networks and optical networks. My interest in theoretical cost models for mobile (ad-hoc) networks is motivated by the fact that most previous work is experimental with little qualitative analyses. The basic problem in optical networks is to design a routing schemes for given communication pattern. This is a challenging combinatorial problem and it utilizes different techniques from areas like algebraic combinatorics, graph coloring, etc. Further, I am interested in algorithmic aspects of fault tolerance on these models.

Another current area of interest is the phylogenetics--finding the genetic connections and relationships between species. The field has exploded in recent years with the realization that much of the DNA and protein structure is actually mathematical in nature. I am interested in problems linked to DNA parsimony, as well as in DNA/protein sequence analyses. The DNA parsimony is closely related to the well-known tree minor concept in graph theory. I am also interested in the computational aspects of these problems.