Welcome to Simon Fraser University
You have reached this page because we have detected you have a browser that is not supported by our web site and its stylesheets. We are happy to bring you here a text version of the SFU site. It offers you all the site's links and info, but without the graphics.
You may be able to update your browser and take advantage of the full graphical website. This could be done FREE at one of the following links, depending on your computer and operating system.
Or you may simply continue with the text version.

*Windows:*
FireFox (Recommended) http://www.mozilla.com/en-US/firefox/
Opera http://www.opera.com/

*Macintosh OSX:*
FireFox (Recommended) http://www.mozilla.com/en-US/firefox/
Opera http://www.opera.com/

*Macintosh OS 8.5-9.22:*
The only currently supported browser that we know of is iCAB. This is a free browser to download and try, but there is a cost to purchase it.
http://www.icab.de/index.html
Close x
Searching... Please wait...

George Bojadziev

Professor Emeritus

PhD Mathematics and Physics · University for Mechanical and Electrical Engineering Sofia · 1957

My research interest is focused on control strategies applied to population dynamics and robot manipulators. It is based on ordinary differential equations; phase-space study, Liapunov stability, bifurcation, control, and numerical simulation. In population dymamics ecological and bioeconomical systems are subjected to changes due to various causes which leads to undesirable large fluctuation of the size of the populations (consumers, resources). This may trigger in general two types of responses: 1) the populations may change their behavior abruptly in order to damper the fluctuations; 2) human influence from outside the system may be imposed to restrict the fluctuations of the populations. The control objective is finding behavioral policies that result in dampening large fluctuations of populations in bioeconomical systems. Robot manipulators can be modeled as kinetic chains of connected material links. The manipulator has to reach and capture targets in specified work space coordinating its links and avoiding collisions with stationary or moving objects. This requires the establishment of coordination strategies based on adaptive control laws.