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Abstract

Let H be a fixed graph. We show that any H-minor free graph of high enough
girth has a circular-chromatic number arbitrarily close to two. Equivalently, such
graphs have homomorphisms into a large odd circuit. In particular, graphs of high
girth and of bounded genus or bounded tree width are “nearly bipartite” in this sense.
For example, any planar graph of girth at least 16 admits a homomorphism onto a
pentagon. We also obtain tight bounds in a few specific cases of small forbidden

minors.
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1 Introduction

A homomorphism from a graph G into a graph H is a mapping f : V(G) — V(H) such that
wv € E(G) implies f(u)f(v) € E(H). If G admits a homomorphism to H we write G — H.
The girth of a graph G is the minimum length of a circuit in G. The odd girth of a graph
(G is the minimum length of an odd circuit in G. Both girth and odd girth can be viewed as
measures of “sparsity” in a graph. A minor of GG is any graph H obtained from G by contracting
and deleting edges. A graph is H-minor free if it has no minor isomorphic to H. The circular
chromatic number (sometimes called the “star chromatic number”) of a graph G, denoted by
Xc(G), is the infimum of the set of real numbers r for which there exists a map from V (G) to
the set of unit-length open arcs of a circle having circumference r, such that adjacent vertices
map to disjoint arcs. It turns out that if we replace ‘circle’ by ‘interval’ (and ‘circumference’ by
‘length’) the resulting parameter is precisely the usual chromatic number x(G); that the infimum
in this definition can be achieved (and hence is the minimum); and that x(G) = [x.(G)]; cf.
the excellent survey article of X. Zhu [25].

We investigate the connections between the properties of embeddability and sparsity of a
graph and its (circular) chromatic number. The first result of this flavour is probably due to
Grotzsch [9], who proved that every planar graph with no triangle can be 3-coloured. Some
years later, Kronk and White [13] showed that every toroidal graph of girth at least 6 can be
3-coloured, while Cook [5] proved that if G is a graph of genus v and the girth of GG is at least
max{9,6 + 2log,(v)} then G is 3-colourable. Thomassen [21] improved this bound for toroidal
graphs by showing that every toroidal graph of girth at least 5 can be 3-coloured. Let C; denote
a circuit of length £. A 3-colouring of a graph G is precisely a homomorphism to C5. Thus we

are lead to ask analogous questions about other odd circuits.

QUESTION 1.1 Does there exist an integer gg such that any planar graph with girth at least gg

admits a homomorphism to C5?

An example by Albertson and Moore [1] (see Figure 1) shows that if such an integer g exists,
then go > 8. Jaeger’s “circular flow conjecture” [11] would imply that go < 8 suffices for the
above question. It will follow from our results that answer is affirmative and that go < 16.

We shall generalize these results to graphs of higher genus and to graphs avoiding a fixed

minor. To this purpose we define two parameters.

DEFINITION 1.2 Let £ be any odd integer greater than one, v any positive integer and H any



Figure 1: Albertson-Moore graph

fized graph. We define g ({) as the infimum of integers g such that every graph G of genus at
most v and girth at least g is homomorphic to C,.

We further define g, (€) as the infimum of integers g such that every H-minor free graph G
of girth at least g is homomorphic to Cy.

Thus go(5) is the smallest value of gy which suffices for Question 1.1.
We shall show that both the above parameters are finite and we give some explicit bounds
on them in Sections 2, 3 and 4.

Let C; denote the class of all graphs G with G — ). It is easy to see that
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and that NCy is the class of bipartite graphs. Thus we view a graph in C; (£ > 1, £ odd) as
being “nearly bipartite” with £ being a measure of the “bipartiteness” of the graph. This notion

can be equivalently formulated in terms of circular chromatic numbers.

ProprosITION 1.3 For any graph G and integer k, the following are equivalent:



1. x.(G) <2+

o=

2. G— 02k+1

Thus a graph is “nearly bipartite” if its circular chromatic number is close to two.

The subject of this paper is the study of classes of graphs for which high girth implies low
circular chromatic number. Formally, we say that a class G of graphs is girth-bipartite if for any
€ > 0 there exists an integer g(¢) such that every graph in G having girth at least g(¢) satisfies
Xe(G) <24¢. (We use term “girth-bipartite” to distinguish from other variants of the intuitive

notion of “near bipartiteness” in the literature.) The main result of this paper is the following.
THEOREM 1.4 For every graph H, the class of H-minor free graphs is girth-bipartite.

In particular, no minor-closed class of graphs whose members have unbounded girth can have its
circular chromatic numbers bounded away from two. The condition that the graphs be H-minor
free cannot be omitted, since there exist graphs having arbitrary girth and chromatic number.

A special case of Theorem 1.4 concerns classes of graphs having bounded genus. In Theorem
3.2 we give a specific upper bound on the circular chromatic number of graphs having a given
girth and genus. The bound gg < 16 mentioned above for the planar graphs is a special case of
Theorem 3.2.

The special case of Theorem 1.4 where H is planar was proved in 1996 by Nesetfil and Zhu
[15, Corollary 2]. In fact they prove something stronger, replacing the girth condition with a
weaker hypothesis. The odd girth of a graph is the length of its shortest odd circuit (the odd
girth of a bipartite graph is infinite). Consider the following three properties of a graph G' and
integer k:

P1: G has girth at least k
P2: GG has a homomorphism into some graph having girth at least k

P3: G has odd girth at least k.
ProposiTION 1.5 For any graph G and any integer k, P1 implies P2, and P2 implies P3.

By considering 'y, and the Grétzsch graph with £ = 5, we see that P, does not imply P, and
Ps5 does not imply P,. Hence, analogously to the definition of “girth-bipartite”, we may define
two stronger properties of a class G of graphs by replacing P! by P2 (or P3) in the definition:
G is hom-girth-bipartite (odd-girth-bipartite) if for some function g(e) and all € > 0, every graph



in G satisfying P2 (P3) with k > g(¢) satisfies x.(G) < 2+ ¢. When H is planar, the H-minor
free graphs have bounded tree width [16]. Thus we may state the Nesetfil-Zhu result as follows.

THEOREM 1.6 Any class of graphs with bounded tree width is hom-girth-bipartite.

This gives rise to a possible common generalization of the two results.

QUESTION 1.7 Is it true that for every graph H, the class of H-minor free graphs is hom-girth-

bipartite?

We do not know the answer here even in the special case of graphs of bounded genus. The above
question has a negative answer if we replace “hom-girth-bipartite” with “odd-girth-bipartite”
for there are projective planar graphs [23] with arbitrary odd girth and chromatic number 4.
However, it is known [24] that the class of planar graphs is odd-girth-bipartite. Also it is proved
in [6] that for any orientable surface ¥ there exists an integer r = r(X) such that the set of

locally bipartite graphs embeddable on > with representativity at least r is odd-girth-bipartite.

The concepts “girth-bipartite” and “odd-girth-bipartite” are easily dualized in the matroid
sense. A circulation in a directed graph is a real-valued function on its arcs satisfying the usual

flow-conservation law. The circular flow number of a graph G = (V, E) is defined by
¢.(G) = inf{r € R : G has an orientation G and a circulation f: E(G) — [1,r — 1]}.

For finite 2-edge connected graphs the infimum is attained at a rational number since for such
graphs [8]

— mi |5(X)]
PG =R R

where the minimum is over all strong orientations of . (Here §7(X) denotes the set of arcs
in G with tails in X and heads in V — X, and §(X) = 6¥(X) + 6+ (V — X).) Analogously to
chromatic numbers, the usual flow number of a graph G [8] is given by [¢.(G)]. The cogirth
(resp. odd-cogirth) of GG is the minimum size of a (odd-size) nonempty edge cut of G. By planar
duality, our answer to Question 1.1 is equivalent to the statement: any planar graph of cogirth
at least 16 has circular flow number at most g

A class of graphs G is cogirth-even (odd-cogirth-even) if for some function A(¢) and all € > 0,
every graph in G with cogirth (odd-cogirth) at least A(¢) satisfies ¢.(G) < 2+¢. In general, flow
numbers behave better than chromatic numbers. For example, all bridgeless graphs G satisfy
2 < ¢.(G) < 6, and all graphs of cogirth at least four have 2 < ¢.(G) < 4 [18, p.297]. Jaeger

has proposed the following “circular flow conjecture” [11]:



CONJECTURE 1.8 The class of all graphs is cogirth-even.

In fact, he proposes that A(1/k) = 4k suffices for integers & > 1. By planar duality, this would
imply that ¢o(5) = /\(%) = 8 suffices in Question 1.1. However, it is possible that a stronger

statement holds.
QUESTION 1.9 [Is the class of all graphs odd-cogirth-even?

Zhang [24] has shown that any class of graphs of bounded genus is odd-cogirth-even, but little

else is known about this problem.

2 Proof of Theorem 1.4

Our results rely on the simple observation that deleting a long induced path in a graph does not
affect its circular chromatic number. That is, deleting the internal points of such a path from a

graph will not change its circular chromatic number.

LEMMA 2.1 Let P be an induced path of length p in a graph G, let U be the set of internal vertices
of P, and let { be any odd integer with £ < p+ 1. Then G — Cy if and only if (G —U) — C;

Proor. The “only if” direction is trivial. Conversely, suppose that ¢’ is a homomorphism from
G — U into Cy. Let z,y € V(G) be the end-vertices of P. Since £ is odd and p > £ — 1, it is
straightforward to check that, regardless of the values of ¢'(z) and ¢'(y), ¢’ can be extended to

a homomorphism from G into Cy. O

A graph G is p-path degenerate if there is a sequence G = Go, Gy, ..., Gy of 2-connected
subgraphs where G is bipartite, and where each G; (i > 0) is obtained by deleting from G;_;
the internal vertices of an induced path of length at least p. By repeatedly applying Lemma 2.1

and observing that bipartite graphs have circular chromatic number 2, we obtain the following.

COROLLARY 2.2 If G is p-path degenerate, then there is a homomorphism from G into any odd

circuit having length at most p+ 1, whence x.(G) < 2+ L%
2

Next, we show that every graph avoiding any fixed minor and having “high enough” girth is

p-path degenerate. For this, we rely on an observation of Thomassen [20, p. 115].

LEMMA 2.3 For any graph H there exists an integer k such that every H-minor free graph with

minimum degree at least 3 has girth at most k.



DEFINITION 2.4 Let ky denote the least integer k satisfying Lemma 2.3.

LEMMA 2.5 For any graph H and integer p, every H-minor free graph with girth at least (p —
kg + 1 is p-path degenerate.

ProOF. Let G be an H-minor free graph having girth at least (p — 1)k + 1. We claim that G is
p-path degenerate. We may assume that GG is 2-connected since G is p-path degenerate if each of
its 2-connected blocks is. If G is a circuit, then this circuit has length at least (p—1)kr+1 > p+1
and thus G is p-path degenerate. Henceforth we assume that GG is a 2-connected graph different
from an edge or a circuit, and so there is a unique graph G’ with minimum degree at least 3
which is homeomorphic to G. In other words, G can be obtained from G’ by replacing each
edge e € E(G') with a path P(e) having length at least one. As G’ has no H-minor, G has a
circuit C” of length at most kg. The circuit C' in G corresponding to C’ has length at least
(p—1)km+1so C contains an induced path P(eg) having length at least p, for some ey € E(C”).
Deleting the internal vertices of P(eg) from G leaves a smaller H-minor free graph with girth at

least (p — 1)kg + 1. By induction we have that GG is p-path degenerate. O

ProOOF OF THEOREM 1.4. The result follows immediately from Corollary 2.2 and Lemma

2.5. O

Indeed we have that every H-minor free graph GG with girth at least (p — 1)k + 1 has a
homomorphism onto any odd circuit of length ¢ < p+ 1, and thus x.(G) < 2+ L% An upper
2
bound for x.(G), is obtained by choosing p as large as possible in Lemma 2.5. Thus:

COROLLARY 2.6 For any H-minor free graph G of girth g
G — Cy  for any odd integer £ < % +2.

Determining kp is difficult in general, however, in the following, we provide an upper bound on
it when H = K;.
Mader [14] (see [22, p. 333] for an English language version) proved that:

LEMMA 2.7 For each positive integer t there exists an integer d(t) such that every simple graph

with minimum degree at least d(t) contains K; as a minor.

Later, Kostochka [12] showed that any simple graph with average degree at least 2¢ has a K-
minor where 1 > .064¢//log,t. This implies d(t) = 66¢/log, ¢ suffices in Lemma 2.7 for ¢t > 3.
Finally, Thomason [19] proved that the constant 66 may be lowered to 5.36 if ¢ is large.



LemMA 2.8 If H = Ky, t > 3, then kg < 4cit\/logyt, where ¢ = 66.

Proor. Consider a graph G with minimum degree at least 3 and girth at least 4¢1¢+/log,t. By
Thomassen’s proof of Lemma 2.3, G contains as a minor a simple subgraph I whose minimum
degree 6(F) is at least c¢qty/log,t. Hence by the remark following Lemma 2.7, there exists a

Kiminor in G. O

For any simple graph H of order ¢, the above lemma yields an upper bound for kf depending
only on ¢ and on the girth of G. Thus, by replacing this bound into the formula in Corollary 2.6,
we get the following bound for the smallest girth which ensures that any H-minor free graph

admits a homomorphism to Cy:

COROLLARY 2.9 Let H be a fized graph of order t and let £ > 1 be an odd integer. Then,

g, (0) < 264(0—2)ty/logyt + 1.

Finding better upper bounds on g,, (¢) for specific forbidden minors H is the topic of Section 4.
It is worth noticing that a result analougous to Lemma 2.7 holds true [3] when K} is contained
as a topological minor, i.e., a subgraph isomorphic to a subdivision of K. All results in this

paper may be stated in this setting, including our main theorem:

THEOREM 2.10 For every graph H, the class of graphs which do not contain H as a topological

minor is girth-bipartite.

3 Graphs of bounded genus

The (orientable) genus of a graph G is the mimimum number of “handles” which must be added
to a sphere in order to obtain a surface into which G has an embedding. Thus planar graphs
have genus zero. We refer the reader to [22] for further details on graph embeddings. All graphs
of genus at most v are H-minor free for any graph H having genus greater than ~. Thus any
class of graphs of bounded genus is girth-bipartite. In this section we specialize the bounds of

the previous section to graphs having bounded genus.

DEFINITION 3.1 Let k. denote the least integer such that all graphs with genus at most v with

minimum degree at least 3 have girth at most k..

For example, it is well known that kg = 5 and k1 = 7. By exactly the same argument as

the proof of Lemma 2.5, any graph of genus at most v and girth at least (p — 1)k, + 1 is p-path

10



degenerate. Thus any graph of genus at most v satisfies the inequalities of Theorem 2.6 with

kp replaced by k.. The goal of this section is to derive the following upper bound on k..

THEOREM 3.2 For any v > 0, we have
by <4+ [2logy(y +3/2)]. 1)
COROLLARY 3.3 For any graph G of girth g and genus at most v,

1. G = Cy for any odd integer £ < 2+ m’.

2. g4(0) < (€= 2)(4 4 [2logz (v +3/2)[) + 1.

In particular, any planar graph with girth at least 16 has a homomorphism into a pentagon,
which answers Question 1.1.

We note here that the dependence on genus arises only through Euler’s characteristic formula.
Thus a similar formula holds regarding the unoriented genus of G: if G embeds on N.,, the sphere
with 4/ crosscaps, then conclusion of Corollary 3.3 holds upon substituting 24’ for ~.

A (g,k)-cage is a graph having minimum degree at least £ and girth at least g with the
fewest possible number of vertices. There is a well-known lower bound (see [2]) for the number

n(g, k) of vertices in a (g, k)-cage. In particular,

2.29/2 _ 2 if g is even
3.206-1/2 if g is odd

n(g,3) > { } >2.20/2 . 2)

LeMMA 3.4 If G is a graph having minimum degree at least 3, girth g > 6 and genus 7, then

V> 14 [g;g6n<g,3>w. (3)

Proor. Let GG be a graph with n vertices, e edges, girth g, genus v and minimum degree at
least 3. If g = 6, then G is not planar and we are done, so we may assume g > 7. Suppose
G has r regions when embedded onto S,. We follow Cook’s argument in [4] which uses Euler’s
formula and the inequalities gr < 2e < 3n to derive

chl -1

ST, %6
On the other hand we have by definition of a cage, n > n(g,3). The two inequalities imply (3).
O

Proor ofF THEOREM 3.2. Let GG be a graph having minimum degree at least 3 and genus

v. Let h(vy) be the function expressed in the right hand side of (1). Our goal is to show that

11



the girth ¢ of G is smaller than or equal to h(y). We have h(0) = 5, h(1) = 7 which are well
known upper bounds for planar and toroidal graphs. We may assume that G has genus v > 2
and apply Lemma 3.4. From (2) and (3) we have

6

7214 5(1- D ) (@

If 7 < g < 11, then we verify the corollary numerically by checking that g < h(y) when the right
hand side of (4) is substituted for v. If ¢ > 12, then we have from (4)

12

4(7+g)24+(29/2+29/2—2) 29/2 _ 1) 4 6 > 29/2

and the result follows by taking logarithms. |

The upper bound (1) compares quite well to the best upper bound to k. that can be possibly
be derived from (3) and the first inequality in (2). In fact, the two bounds are equal for v < 7,
they differ by at most one when v < 11, and they never differ by more than two. The exact
value of k., appears to be very difficult to determine.

The best upper bound to g,(£) in terms of the girth and genus of GG appears to be extremely

hard to determine, even for planar graphs.

4 Bounds for specific forbidden minors H

The bound defined in the previous sections can be improved in case specific minors are forbidden.
This problem has been considered by Hell and Zhu [10] for the class of series-parallel graphs.
They proved that any series-parallel graph G of girth at least 2| (3% — 1)/2] is homomorphic to
C'35_1. Since each 2-connected component of a Ky-minor free graph is a series-parallel graph,
the same bound holds for the class of K4-minor free graphs, i.e., g,, (0) < MTH.

It was pointed out by Gerards [7] that the subdivisions of K4 play an important role in

homomorphisms to odd circuits. An odd-K,; and an odd-K? are shown in Fig. 4, where the

word “odd” inside a face means that the length of that face is odd.

In fact, he proved [7] that:

THEOREM 4.1 Let G be a nonbipartite graph. If G contains neither an odd-K, nor an odd-K2

then G admits a homomorphism onto its shortest odd circuit.

Clearly, an odd-K2 contains as a K2 as a minor (where K2 is a K3 with all edges doubled).
On the other hand, K2 -minor free graphs may contain an odd-K4-minor, and hence, constitute

a non trivial class where to consider homomorphisms to odd circuit.

12
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Figure 2: a) Odd-K4, b) Odd-K?

By dualizing the characterization of Seymour [17] of K;s-minor free graphs, we may state

the following;:

THEOREM 4.2 Let G be a 2-connected K3-minor free graph. Then either G does not contain a

Ky-minor or G is a subdivision of a K.

By the above theorem and Gerards’ theorem, we expect that odd-K4’s are obstructions
to finding homomorphisms onto odd circuits. The next lemma confirms this. We denote by
x1, %9, %3, T4 the vertices of degree three in the K4 subdivision and we call arms the paths

[;, z;] joining different pairs z;, z;, 1 < 1,7 < 4.

LEMMA 4.3 Let G be an odd-K4 of girth 3k. If all arms have length k then G is not homomorphic

to Cgk+1.

Proor. Let V(Cqry1) =40,1,...,2k}. Suppose there exists a homomorphism ¢ from G onto
Cak+1. We may assume without loss of generality that z; receives colour 0, namely ¢(z;) = 0.
Now, we distinguish two cases: either both the vertices x5 and z3 receive an even colour or they
both receive an odd colour. In the first case, since the lengths of the paths between z; and z,
and, z; and z3 respectively, are odd and equal to k, it follows that the ¢(z3) and ¢(z3) must be
at least k£ 4+ 1. This implies that the circuit [z1, z2] U [z2, 23] U [z3, 1] cannot be mapped onto

Cok1.

13



Similarly, if the labels of z; and z3 are both odd, they must have value smaller than or
equal to k which again implies that the circuit [z, 3] U[z2, 23] U[23, 1] cannot be mapped onto

Cogy1- O

Now we show that any odd- K4, regardless from the length of its arms, of girth at least 3k can
be mapped onto Cyx_1. To prove this, we introduce the operation of folding, i.e., identification

of two nonadjacent vertices having a common neighbour.
LEMMA 4.4 Let G be an odd-K4 of girth > 3k. Then G is homomorphic to Cap_;.

Proor. It is enough to prove the thesis when GG has girth 3k. First of all observe that at least
one of the arms of K4 has length smaller than or equal to &, since otherwise the girth of G would
be greater than 3%.

We may assume without loss of generality that the arm [z, 23] has length [ < k. If [ is even
then we fold the arm [z1, 23] [/2 times. If [ is odd then we fold the arm (/ — 1)/2 times, thus
obtaining an arm of length 1. Then, we fold this remaining edge with the first edge of the arm
[21,24]

In each case, the resulting graph has girth at least 2k — 1 and contains neither an odd-K4
nor an odd-K?. Hence, by Theorem 4.1, it is homomorphic to its shortest odd circuit, which

has length at least 2k — 1, and hence also to Cyx_1. O

It follows easily from Theorems 4.2, 4.1 and Lemma 4.4 that:

THEOREM 4.5 Let £ > 1 be an odd integer. Then,

oo 0 3(£2+ 1).

IN

Note that if I is a minor of H then the bound for F-minor free graphs is at most the bound
obtained for H-minor free graphs. It follows that if H is a minor of K4 or a minor of K2 and G
is an H-minor free graph, then G is homomorphic to Cgi41 provided that the girth of GG is at
least 3(k+1).

Observe also that if H is a minor of both K4 and K% and G is H-minor free then G is

homomorphic to Cyxy1 provided that the girth of G is at least 2k + 1, by Gerards’ theorem.

14
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