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Abstract

There have been a number of results and conjectures regarding the
cone, the lattice and the integer cone generated by the (real-valued char-
acteristic functions of) circuits in a binary matroid. In all three cases, one
easily formulates necessary conditions for a weight vector to belong to the
set in question. Families of matroids for which such necessary conditions
are sufficient have been determined by Seymour; Lovasz, Sebd and Ser-
ess; Alspach, Fu, Goddyn and Zhang, respectively. However, circuits of
matroids are far from being well understood. Perhaps the most daunting
(and important) problem of this type is to determine whether the circuits
of a matroid form a Hilbert basis. That is, for which matroids does the
integer cone coincide with those vectors which belong to both the cone
and the lattice? Additionally, all of the above questions have been asked
with regard to perfect matchings in graphs.

We present a survey of this topic for circuits in matroids, and also
for perfect matchings in graphs. There are some striking similarities,
especially with regard to the role that Petersen’s graph plays in both of
these subjects. A possible explanation is that much of the theory of perfect
matchings is captured by the circuits of certain 1-element extensions of
graphic matroids called grafts. For example, a possible extension to the
class of grafts of the following result would imply the Four-color theorem:
The circuits of a graph form a Hilbert basis if and only if the graph has
no Petersen minor.

1 Introduction and Notations

A fruitful setting for studying a combinatorially defined collection of subsets of
a ground set F is to consider the corresponding collection of real-valued charac-
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teristic functions. This observation underlies much of the theory of polyhedral
combinatorics and integer programming. Our aim is to compare the collection
of circuits in a matroid with the collection of perfect matchings in a graph by
considering properties of their characteristic functions.

For S C E we denote by x° the {0, 1}-characteristic vector of S in @”. For
any collection S of such subsets of £/, we define the linear hull, cone, lattice and
integer cone of S as follows.

Lin. Hull (S) = {Z asx® :as € Q}
Ses
Cone(S) = {E asy’ tas € Q>0}
Ses
Lat(S) := {Z asx® ias €1}
Ses
Int.Cone(S) := {E asx® ias € 750}
Ses

We have the following four containments.

C Cone(S)

Int.Cone (S) C Lat(S)

C Lin.Hull(S).
C

Throughout this paper S shall be either the collection C = C(M) of circuits in a
matroid M = (F, C) on the ground set E, or the collection of perfect matchings
(1-factors) M = M(G) in a graph G = (V, E).

It can be argued that the integer cone is the most interesting of the four sets
defined above. A vector p belongs to Int.Cone (S) if and only if there is a list
of subsets in S such that each e € E belongs to precisely p(e) members of the
the list. Such a list is often called a cover of the weighted set (E,p). If p is
the constant unit vector 1, then a cover of (E,p) is a decomposition of E into
subsets from S. A cover of (E,2) is often called a double cover of E.

When S = C, we are in the area of circuit covers and circuit decompositions,
where numerous papers [1, 2, 4, 5, 10, 11, 12, 14, 17, 19, 21, 24, 27, 28, 29,
41, 49, 50, 53, 55] have been written, especially for graphic matroids. Many of
these papers are concerned with circuit covers which have additional conditions
on parameters such as the number of circuits in the cover, or the total length
of the circuits. Here, we are concerned only with the existence of circuit covers
of fixed vectors p.

Where S = M, we are studying perfect matching covers of graphs. The case
p = 1 is concerned with 7-factorizations of graphs, where we have the classical
Four-color Theorem and the stronger 4-flow conjecture of Tutte [51]. For p = 2
we have perfect matching double covers with unsolved conjectures of Fulkerson

[15] and Seymour [45].



Although combinatorially less interesting, the cone and the lattice of S are
generally easier to determine than the integer cone. For example, the both the
cone and the lattice generated by (characteristic vectors of) perfect matchings in
a graph have been well characterized [8, 32], whereas it is NP-hard to determine
whether 1 belongs to the integer cone of perfect matchings of a cubic graph [20].
The study of the cone and the lattice is further motivated by the formula

Int.Cone(S) C Cone (S)N Lat (S) ()

which provides necessary conditions for a vector p to belong to the integer cone
of S.
Understandably, it is of special interest to know when equality holds in (1).

DEFINITION 1.1 A set of vectors S for which equality holds in (1) is called a
Hilbert basis.

This concept is closely related to total dual integrality, and has been studied
by various authors [16, 6, 35, 36]. In our setting, the Hilbert basis problem is
to determine classes of matroids and graphs for which C and M form Hilbert
bases. This problem will be addressed in Sections 3 and 6, respectively.

It must be emphasised that the cone and the lattice of S are worthy of
independent study. For example, the characterizations of both the cone [8] and
the lattice [32] of perfect matchings are landmarks in graph theory. Both the
cone and the lattice of circuits in a graph have simpler descriptions [41] than
those of perfect matchings. However, they easily become intractable for more
general classes of matroids. For example, determining whether a vector belongs
to the cone of circuits in a cographic matroid is NP-complete [30].

Those who work with either circuits or perfect matchings agree that Pe-
tersen’s graph plays an anomalous role. (This is particularly evident when
considering the Hilbert basis problem.) This observation suggests that these
two areas may be related. In fact, connections between circuits and perfect
matchings in graphs are already well established. For example, the Chinese
Postman problem [9] is closely related to both matchings and Euler tours. As
another example, the Four-color theorem is equivalent to the statement that
any bridgeless planar graph is the union of two subgraphs, each of which is the
edge-disjoint union of circuits. One can not say, however, that such connections
satisfactorily explain the predominating role of Petersen’s graph.

In Section 7, we describe another connection between circuits and perfect
matchings, which is expressed via certain l-element extensions of graphic ma-
troids called grafts. It is through the integer cone of circuits in grafts that we
see a possible explanation of the role of Petersen’s graph in the theory of circuits
and perfect matchings.

We shall assume basic familiarity with graphs and matroids as in [3] and
[52]. Thus a bridge or coloop of a matroid M = (F, C) is any element contained
in no circuit. Two non-bridge elements are in series or coparallel if no circuit



contains exactly one of them. Recall that “coparallel” is an equivalence relation
on E. A bond or cocircuit is a minimal subset of E intersecting all bases of
M. The dual, M* of M has ground set E and its circuits are the bonds of
M. If G = (V,F) is a graph then M(G) denotes the matroid on F(G) whose
circuits are the polygons in G. For binary matroids (including graphs) a cycle
is any (element-) disjoint union of circuits in M, including the empty cycle.
Thus a cycle in a graph is the edge set of any subgraph whose vertices all have
even degree. A matroid is binary if it is isomorphic to a set of vectors with
linear dependence over GF(2) or, equivalently, if it has no UZ-minor (that is,
no minor isomorphic to U2, the uniform matroid of rank 2 on 4 elements). The
cycles of a binary matroid under the symmetric difference operator A form a
vector space of dimension |E|—rank(M) in GF(2)F called the cycle space of M.
Dually, parallel elements, loops and cocycles in M are are defined to be coparallel
elements, coloops and cycles in M™*, respectably. A cocycle is sometimes called
a cut.

Where convenient, we identify a subset of E with its characteristic vector,
a graph G with its matroid M(G), and a subset of edges of a graph with the
subgraph it induces.

2 The Cone and Lattice of Circuits

Although there is no known non-trivial characterization of Cone (C), Lat (C),
and Int.Cone (C) for general matroids, the linear hull of circuits has an easy
description. Any vector in Lin.Hull (C) must clearly be zero on bridges and
constant on coparallel classes. In fact, these two conditions characterize the
linear hull.

PrROPOSITION 2.1 For any matroid M = (E,C), Lin.Hull (C) = {p € QF :
p(e) =0 for any bridge e, and p(f) = p(g) for f,g coparallel }.

ProoFr. Let [e] denote the set of elements which are coparallel with e. Tt
is enough to show that, for any element e in a bridgeless matroid, y[fl €
Lin.Hull (C). We use the following observation of Seymour, [42, (3.2)].

OBSERVATION 2.2 If M is bridgeless then 1 € Cone (C).

(Here 1 = x” is the vector of ones.) As M is bridgeless, so is M\[e], hence
X7, xP\lel € Cone (C). Subtracting, we have !¢l € Lin. Hull (C). O

We now examine the cone of circuits. Since no circuit in a matroid meets a
bond in exactly one element, any weight vector p € Cone (C) must be balanced.
That is, no element in M has more than half the total weight of any bond
containing it. Seymour [42] has characterized those matroids for which the cone
of circuits is precisely the set of non-negative balanced vectors.



THEOREM 2.3 For any matroid M = (E,C), Cone(C) C {p € QF, : p(e) <
p(B\e) for all e € B, for all bonds B}, with equality if and only if M has no
minor isomorphic to any of U7, M*(Ks), F¥, or Rig. O

(As usual, p(S) denotes ), p(e) for any S C E.) A matroid for which equality
holds in Theorem 2.3 is said to have the Sums of Circuits Property. In particular,
all graphs have the Sums of Circuits Property [41]. It follows from Theorem
2.3 (and is not difficult to show directly) that the Sums of Circuits Property is
preserved under taking minors. To see that each of the four obstructing minors
(see [42] or [46] for their definitions) do not have this property consider the
following four weight vectors p € QZ,.

UZ: p(eo) = 2 for some fixed eg € E and p(e) = 1 for the remaining 3 elements.

M*(K5): p(e) = 1 for all edges e in some fixed subgraph of K5 isomorphic to
K> 3 and p(e) = 2 for the remaining 4 edges.

Fr: p(e) = 1 for all elements e in some fixed 4-circuit and p(e) = 2 for the
remaining 3 elements.

Rio: p(e) = 3 for all elements e in some fixed 3-subset of elements not contained
in any 4-circuit, and p(e) = 1 for the remaining 7 elements.

One easily checks that each of these vectors is balanced. To show that they
are not in Cone (C) we use Farkas’ Lemma. That is, we describe a weight
vector s € QF which has positive inner product with p, but for which each
circuit in the matroid has non-positive weight. For U7 we take s(eq) = 2 and
s(e) = —1 for the remaining 3 elements. In each of the other three examples we
take s(e) = —1if p(e) = 1 and s(e) = 1 otherwise.

Tt appears unlikely that there is a good description of Cone(C), even for
cographic matroids, as it is known [30] that the membership problem for the
cone of bonds in K, is NP-hard. Some work [7] has been done toward finding
facets of this cone.

Likewise, the lattice of circuits appears to be difficult to characterize for gen-
eral matroids. Indeed it is not easy to imagine non-trivial necessary conditions
for a vector to belong to Lat (C). The situation is better, although not yet
settled, for binary matroids.

In a binary matroid M, any circuit intersects any bond in an even number
of elements. Thus for a weight vector to belong to Lat (C), it is necessary that
p be eulerian, that i1s, p must be integer-valued and each bond in M must have
even total weight. This condition turns out to be sufficient for an important
class of binary matroids.

PRrROPOSITION 2.4 For any binary matroid M = (E, C), Lat(C) C Lin.Hull(C)
N{p € Z¥ : p(B) is even for all bonds B}, with equality if M has no F3-minor.



ProOOF. Assume that M has no F7-minor and that it contains neither bridges
nor two elements in series. Let p be an integer weight vector such that each
bond has even weight. The set F' of edges having odd weight belongs to the
cycle space of M since F' is orthogonal to every bond (over GF(2)). Tt suffices
to show that 2y1® € Lat(C) for any e € E, since this would imply that
the even-valued vector p + x¥ — and hence p — belongs to Lat (C). To this
end, we need only find two circuits Cy, Cq such that Cy N Cy = {e}, whereby
2yl = xO1 4 xC2 — xC18C2  The existence of Cy, Cs follows, for graphs, from
Menger’s theorem and, in general, from a theorem of Seymour [43] which states
that all binary matroids with no F'7-minor have the Integer Maz-Flow Min-Cut
Property. O

A matroid for which equality holds in Proposition 2.4 is said to have the
Lattice of Circuits Property. In particular, all graphic and cographic matroids,
and indeed all regular matroids have the Lattice of Circuits Property, as do
all matroids with the Sums of Circuits Property. Unlike the Sums of Circuits
Property, the class of matroids with the Lattice of Circuits Property is not is not
closed under taking minors (although it is closed under element-contraction).
For example, although F7 does not have the Lattice of Circuits Property, exactly
one of the two 1-element extensions of F} does.

Very recently, Lovasz, Sebd and Seress [33] have characterized the class of
binary matroids with the Lattice of Circuits Property. We shall state their result
without proof. We need a definition. In [42] Seymour defines, for £ = 1,2,3,
the k-sum of two binary matroids My, M3 to be the matroid on F(M;)AFE(Ms)
whose circuits are all subsets of the form C;ACy where C; € C(M;), i = 1, 2.
In particular, k = 1if E(M1)N E(M3) = 0; k = 2 if E(M,) N E(M>) consists of
a single element which is not a loop in each M;; and k = 3 if E(M;) N E(My3)
is a circuit of cardinality 3 in each M;.

DEFINITION 2.5 Any matroid which can be obtained from copies of the Fano
plane F; via 1-, 2- and 3-sums shall be called a Fano-cycle.

THEOREM 2.6 [33] A binary matroid M has the Lattice of Circuits Property if
and only if the dual matroid M* contains no Fano-cycle as a submatroid. O

EXAMPLE 2.7 The affine geometry AG(2,3) is a Fano-cycle of cardinality 8,
since it is the 3-sum of two Fano planes. As AG(2,3) is self dual, Theorem 2.6
asserts that AG(2,3)" =2 AG(2,3) does not have the Lattice of Circuits Property.
Indeed this follows directly from the fact all circuits in AG(2,3) have cardinality
four.

In general, the lattice of circuits in a binary matroid can be arbitrarily
“sparse”.

EXAMPLE 2.8 The binary projective geometry of dimension m, PG(2,m), is the
binary matroid represented by the 2™+ —1 non-zero binary (m+ 1)-tuples. For



example, PG(2,2) = F7. For0 < k < m, a k-flat is any submatroid of PG(2,m)
which is isomorphic to PG(2,k). The cocircuits of PG(2,m) are precisely the
complements of its (m — 1)-flats, and thus have cardinality 2™. It follows that
any vector in latlice of cocircuits of PG(2,m) (that is, Lat(C(PG(2,m)*)) has
total weight divisible by 2™. In fact, p € Lat (C(PG(2,m)*) if and only if p(S)
is divisible by 2%, for every k-flat S of PG(2,m), 0 < k < m [33].

3 Hilbert Bases of Circuits

The circuit cover problem is to determine whether a given weight vector belongs
to the integer cone of circuits of a given matroid. We are interested in finding
classes of matroids for which this the circuit cover problem can be solved. Having
seen that the cone and the lattice of circuits are often characterizable, we are
naturally led to the Hilbert basis problem for circuits (recall Definition 1.1).
That is, we would like to determine those matroids M for which (M, p) has a
circuit cover for all p € Cone (C) N Lat (C).
The circuits of a matroid do not always form a Hilbert basis.

ExXAMPLE 3.1 Let Pyg denote Petersen’s graph and let p1y denote the weight
vector which takes the value 2 on some fized 1-factor of Pig, and 1 on the
complementary 2-factor. One easily checks that pi1g s balanced and eulerian,
and hence belongs to Cone (C) N Lat (C), by Theorems 2.3 and 2.4. However,
p1o & Int.Cone (C) since p1g — x¢ & Cone (C), for all C € C.

Every matroid for which we know that C does not form a Hilbert basis contains
Petersen’s graph as a minor. On this flimsy evidence one might propose the
following.

CONJECTURE 3.2 If a matroid contains no Pig-minor then C forms a Hulbert
basis.

As we shall see, progress has been made toward this conjecture, but mostly
for graphs and other binary matroids. We direct the reader’s attention to the
strikingly similar Conjecture 6.6 regarding perfect matchings in graphs.

A basic problem with dealing with Conjecture 3.2 is that we do not know
Cone (C) for general matroids. Thus it makes sense restrict our attention to
matroids for which this cone has a nice description, namely, the matroids with
the Sums of Circuits Property. Recall from Theorems 2.3 and 2.4 that, for such
matroids, the cone (lattice) of circuits is precisely the set of balanced (eulerian)
weight vectors. In 1979, Seymour verified Conjecture 3.2 for planar graphs by
showing that every balanced, eulerian edge-weighted planar graph has a cir-
cuit cover. In 1981, Seymour [42] characterized the matroids with the Sums of
Circuits Property and, in the same paper, proposed that Conjecture 3.2 holds
for such matroids. Recently, Alspach, Goddyn and Zhang [1], shed Seymour’s



planarity restriction, and verified Conjecture 3.2 for the class of graphic ma-
troids. Using this result, and Seymour’s matroid decomposition theorems, Fu
and Goddyn [14] have since shown that the conjecture holds for all matroids
with the Sums of Circuits Property. We state this result in an alternate form.

We say that a matroid has the Circuit Cover Property if the integer cone
of circuits is precisely the set of balanced and eulerian weight vectors. Thus,
any matroid with the Sums of Circuits Property has the Circuit Cover Property
exactly when its circuits form a Hilbert basis.

THEOREM 3.3 A matroid has the Circuit Cover Property if and only if it has
no minor isomorphic to any of U?, M*(Ks), F3, Rig, M(P1o). O

Perhaps the most relevant aspect of Theorem 3.3 is that planarity restrictions
on graphs have been dropped. The literature abounds with graph properties
which are known to hold for planar graphs, and which are conjectured to hold
for wider classes of graphs. Such problems include classical “nuts” such as the
circutt double cover conjecture and Tutte’s Nowhere-zero flow conjectures. Thus
it is of interest whenever a planarity restriction can be dropped (or relaxed) from
the hypothesis of a known theorem. For example, Theorem 3.3 has already
been used to extend results involving Even Circuit Decompositions [55] and
Compatible Circuit Decompositions of Eulerian graphs [54] from the class of
planar graphs to the class of graphs with no Ks-minor. We refer the interested
reader to [1] for more applications Theorem 3.3.

Little is known about the integer cone of circuits in non-binary matroids.
As observed by Sebd [36], the circuits of uniform matroids U* do indeed form a
Hilbert basis. This follows from the fact that the circuits of U are precisely the
bases of U¥*! (when k < n), and from the following consequence of Edmonds’
matroid intersection theorem.

THEOREM 3.4 The bases of any matroid form a Hilbert basis. O

4 Range-Restricted Circuit Covers

Perhaps we are asking too much of matroids when we require their circuits
to form Hilbert bases. One way to weaken the Hilbert-basis property is to
ask whether some restricted subset of Cone (C) N Lat (C) is contained within
Int.Cone (C). Our intention is to determine the point at which non-Hilbert
matroids such a M(Pyg) cease to behave anomalously. In this way we obtain a
more sensitive test of “how bad” such anomalous matroids really are.

A notorious problem of this type is the circuit double cover conjecture.

CoNJECTURE 4.1 [48, 41] For any bridgeless graph, 2 € Int.Cone (C).

Of course, the “bridgeless” condition is only there to assure the membership
of 2 in the cone of circuits. We refer the interested reader to [24, 17, 18, 50,



29, 4, 5]. The circuit double cover conjecture is perhaps the most interesting of
the uniform circuit cover problems, where the weight vector p is required to be
constant on F. For integers greater than 2, the uniform circuit cover problem is
has been completely solved for a large class of binary matroids, which includes
all graphs.

PrOPOSITION 4.2 For any binary matroid with no F}-minor and for any inte-
gerr # 2, r € Int.Cone (C) if and only if v € Cone (C) N Lat (C).

ProoF. The “only if” direction 1is trivial.

Conversely, suppose that 7 is odd. For r to be in the lattice of circuits of M, it
is necessary that all cocircuits in M have even cardinality. That is, M is eulerian,
and thus F(M) is the disjoint union of circuits. That is, 1 € Int.Cone (C) and
so r € Int.Cone (C). Note that, for odd r, the statement of the theorem holds
for all binary matroids.

For even r, we note that r € Cone (C) if and only if the matroid M is
bridgeless. Using matroid decompositions, Jamshy and Tarsi [27] showed that
r € Int.Cone(C) for any bridgeless binary matroid with no F7-minor if and
only if the same holds for any bridgeless graph. It suffices to prove that 4,6 €
Int.Cone (C) for any bridgeless graph, since every larger even integer is in the
integer cone generated by {4,6}. Indeed, Jaeger [23] proved the case r = 4
and Fan [11] proved the case r = 6. Both of these results are consequences of
Seymour’s 6-flow theorem for bridgeless graphs [44]. O

Incidently, Jamshy and Tarsi [27] also show that if the circuit double cover
conjecture is true, then 2 € Int.Coone (C) for any bridgeless binary matroid
with no F-minor.

Little is known about uniform circuit covers of general matroids. The obvious
necessary conditions are that the matroid be bridgeless and that the vector in
question belong to the lattice of circuits. Indeed one might boldly propose the
following on the basis of not knowing of a counterexample.

CONJECTURE 4.3 For any bridgeless matroid and any r > 0, r € Int.Cone (C)
if and only if r € Lat (C).

We generalize to non-uniform circuit covers by allowing the range of the
weight vector to take two or more fixed values. Our general aim is to classify
those ranges (subsets of positive integers) for which we have a nice characteri-
zation such as in Proposition 4.2. For sake of brevity, we shall confine most of
our discussion to graphic matroids.

DEFINITION 4.4 Let R be a set of positive integers. We say that R s a good
range (for the class of graphs) if for any graph G = (V, E) and any weight vector
p € RE, p € Int.Cone(C) if and only if p € Cone (C) N Lat (C). A range that
s not good is saird to be bad.



In view of Theorems 2.3 and 2.4, a range R is good for the class of graphs if
every balanced, eulerian weighted graph (G, p) with p € RE has a circuit cover.
If R is good then so is any subset of R. Example 3.1 shows that {1,2} is a bad
range for graphs. More bad ranges can be obtained by modifying this example.

ProposiTioN 4.5 If {1,k} C R, for some k > 2, then R is bad for the class of
graphs.

Proor. I thank P. Seymour for the following construction. Let F' denote a
fixed 1-factor in Petersen’s graph Pyg. For any k& > 2, let Pl(g) denote the graph
obtained from Piq by replacing each edge in F' with £ — 1 parallel edges. We
consider the weight vector p(llg) € {1,k}? which takes the value k on exactly
one of the £ — 1 edges in each of the five parallel classes defined above, and

(k)

which takes the value 1 elsewhere. One easily checks that py, is balanced.

k) (k)

As any circuit cover of (Pl(O ,Pig’) would have to use £ — 2 digons from each
parallel class, it follows from Example 3.1 (which is the case k = 2) that p(llé) ¢
Int.Cone (C(Pl(g))). O

If some range containing 2 is good, then in particular, the circuit double
cover conjecture is true. This gives us a way of strengthening the circuit double
cover conjecture. For example, Seymour [42, (16.6)] proposed the following.

CONJECTURE 4.6 The set of positive even integers is good for the class of
graphs.

On the other hand, extending a range does not always affect it goodness.

PROPOSITION 4.7 Let R be a range of even integers and let r € R be such that
r > max R/2. Then for any odd integer k > r, RU{k} is good (for the class of
graphs) if and only if R is good.

ProoF. The “only if” part is trivial. Conversely, suppose that R is good and
let p’ € R"E N Cone (C) N Lat (C), where R’ := RU {k}. As p' is eulerian, the
set F of elements having weight k form a cycle. Clearly, p := p’ — (k — r)x¥
belongs to R¥ and is eulerian. We claim that p is balanced. Suppose not.
Then for some cocircuit B and some e € B we have p(e) > p(B\{e}) whereas
p'(e) < p'(B\{e}). As |F'N B| is even, this implies |FFN B\{e}| > 2 and e & F.
From this we have max R > p(e) > p(B\{e}) > 2r, contradicting the hypothesis
and proving the claim. Thus, p € Int.Cone (C). Since xI' € Int.Cone (C), we
have p’ € Int.Cone (C). D

In particular, {2,3} is good if and only if the circuit double conjecture is
true. We recall that the range {1,2} is bad. For larger consecutive pairs we
have the following.

PRroPOSITION 4.8 For the class of graphs, the range {k,k + 1} is good for all
k> 3.
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ProoF. When k is even, this follows from Propositions 4.2 and 4.7. It suffices
to prove the cases k = 3 and k = 5, since 4 € Int.Cone (C) for any bridgeless
graph. For these two cases we use refined versions of the results of Jaeger and
Fan mentioned in the proof of Proposition 4.2. Jaeger [23] actually proved
that any bridgeless graph contains 7 cycles C1, ..., C7 such that every edge is
contained in exactly 4 of them. If p € {3,4}F N Cone (C(G)) N Lat (C(G))
then G is bridgeless and the set F' of edges having weight 3 form a cycle. We
consider the 7 cycles of the form FFAC;. Since 7 = 344 one easily sees that any
edge in F' is contained in exactly 3 of these cycles and that any edge in E\F is
contained in exactly 4 of them. As each cycle decomposes into circuits, we have
p € Int.Cone (C).

The proof for k = 5 is exactly analogous, using the fact 11 = 5+ 6 and Fan’s
observation [11] that any bridgeless graph contains 11 cycles such that every
edge is contained in exactly 6 of them (actually, Fan shows that only 10 cycles
are needed, but we may take the empty cycle to be the eleventh). D

We remark that the this proof works equally well for any regular matroid
which has a nowhere-zero 6-flow.

Little more is known about good and bad ranges. Indeed, it is frightfully
easy to pose difficult conjectures. One which is most likely to be true, but for
which I know of no proof is the following.

CONJECTURE 4.9 For some k > 2, the range {k,k + 2} is good for the class of
graphs.

This conjecture has a very different flavor between odd and even values of k.
At the other extreme, the boldest conjecture of this type that one can possibly
make is the converse of Proposition 4.5.

CONJECTURE 4.10 A range R is good (for the class of graphs) if and only if
{1k} Z R, for all k > 2.

The following table summarizes results regarding good and bad ranges for
the class of graphic matroids.

Range Status Comments
{2} Good? | Conjecture 4.1
{k}, k#2 Good Proposition 4.2
{1k}, k>2 Bad Proposition 4.5
{2,3} Good? | Equivalent to Conjecture 4.1

{k,k+1}, k>3 Good Proposition 4.8
{k,k+2}, k>2 Good? | Conjecture 4.9
{2k k € 750} Good?? | Conjecture 4.6

Zs0\{1} Good?777 | Conjecture 4.10

Perhaps some study into good and bad ranges of cographic matroids is war-
ranted. Here we suspect that all ranges are good for this class of matroids.
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CONJECTURE 4.11 The bonds of any graph form a Hilbert basis.

As M(Pig) is not cographic, this conjecture would follow immediately from
Conjecture 3.2. However, this has only yet been verified for the class of cographic
matroids with no M*(Kj5)-minor [14]. Again, the major problem is our lack of
knowledge about the cone of cuts in graphs [7]. In contrast to the graphic
matroids, it is easy to show that any range of cardinality 1 is good for the class
of cographic matroids (see [27]). On the other hand, one cannot use flow theory
to prove statements such as Proposition 4.8 for the class of cographic matroids,
since the chromatic number (which is the dual flow number) of graphs is not
bounded.

We conclude this section by pointing out that I know of no reason why
Conjecture 4.10 cannot be extended to the class of all matroids. Further, it
is possible to formulate a common generalization to the bold Conjectures 3.2
and 4.10, although it is probably imprudent to speculate further on the matter.
Still, it would be very interesting to find any example of a matroid with a weight
vector in Cone (C) N Lat (C)\Int.C'one (C) which is not based on Petersen’s
graph (as in Proposition 4.5).

5 Cone and Lattice of Perfect Matchings

Let M denote the set of perfect matchings (as subsets of edges) in a graph
G = (V,FE). As with circuits in graphs, each of Lin.Hull (M), Cone (M) and
Lat (M) has been well characterized, and there exist polynomial-time member-
ship tests for these three subsets of RF. These results are more complicated
than the corresponding ones for circuits, and we shall only state them roughly.
We refer the reader to [8, 32] for further details.

One begins by “preprocessing” the fixed graph G. First, those edges of GG
which are contained in no perfect matchings are deleted. Then we perform a
brick decomposition on the resulting graph as follows. A tight cut is a edge cut
which intersects each perfect matching in exactly one edge. For example, any
trivial edge cut (that is, an edge cut in which one of its two shores contains a
single vertex) is tight. Any non-trivial tight cut yields two proper minors of G
obtained by contracting each of the shores of the cut. In a brick decomposition,
non-trivial tight cuts are recursively found in each of these minors. A similar
reduction is performed whenever one of the minors has a vertex-cut of cardinality
less than three. Any multiple edge occurring in a minor is replaced with a single
edge. (If G is edge-weighted then this new edge is assigned the total weight of
the parallel class it replaces.) The result of a brick decomposition of G is a list
of simple 3-connected non-bipartite minors which contain no non-trivial tight
cuts. Each member of this list is called a brick of G. It turns out that this list
of bricks is independent (up to re-ordering and isomorphism) of the particular
tight-cut decomposition chosen for G. Lovasz [32] points out that a list of bricks
for G can be obtained in polynomial time.
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THEOREM 5.1 For any graph G containing an even number of vertices,
Lin. Hull(M) = {p € QF : 3Ir € Q, p(B) = r, for all trivial cuts and tight cuts
B encountered during a brick decomposition of G}. O

The cone of perfect matchings follows from Edmonds’ well known character-
ization [8] of the convex hull. An odd cut is an edge cut such that both of its
shores contain an odd number of vertices.

THEOREM 5.2 For any graph G containing an even number of vertices,
Cone(M) = {pe QF, :3r € Q, p(B) = r, for all trivial cuts B, and p(B') > r
for all odd cuts B'}. O

The lattice of perfect matchings was characterized by Lovasz [32]. Here,
bricks of G which are isomorphic to Petersen’s graph Py play a central role.
We recall that any brick resulting from a brick decomposition of a weighted
graph (G, p) naturally inherits a weight function, which we shall also denote by

p-

THEOREM 5.3 For any graph G containing an even number of vertices,
Lat (M) = Lin.Hull(M) N {p € Z¥ : p(Cs) is even, for every circuit Cs of
length five contained in any brick of G isomorphic to Pip}. O

In particular, the lattice of perfect matchings is just the set of integer vectors
contained in the linear hull, provided that G has no Pjg-minors. This fact was
observed for cubic graphs by Seymour [45]. The necessity of the condition on
p(Cs) in Theorem 5.3 follows from the observation that each of the 6 perfect
matchings of Pjg intersect C5 in an even number of edges.

In summary, given any weighted graph (G, p), one can determine in polyno-
mial time whether p belongs to the cone, the lattice or the linear hull of perfect
matchings in G.

6 Perfect Matching Covers

Some well-known results and conjectures address the Perfect Matching Cover
Problem, the problem of determining whether a particular integer vector belongs
to Int.Cone (M). We recall the necessary condition that the vector in question
belongs to Cone (M) N Lat (M), and that M(G) is said to form a Hilbert basis
if this condition is also sufficient.

For uniform vectors k with £ > 0, k € Cone (M) if and only if, for some
r > 1, G is an r-regular graph with an even number of vertices such that all odd
cuts have size at least r. Following Seymour [45], we call such graphs r-graphs.
For example, a cubic graph is a 3-graph if and only if it is bridgeless. We note
that, for any r-graph, 2 € Lat (M). Furthermore, if an r-graph has no Pyg-brick
then 1 € Lat (M). We also note that 1 € Int.Cone (M) if and only if the graph
has a 1-factorization.
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Unlike circuit covers, Perfect Matching Cover Problems can often be reduced
to problems regarding uniform weight vectors by adding parallel edges to graphs.
For example, we have the following.

OBSERVATION 6.1 Let G be any family of graphs containing no Pig-minors, and
which closed under duplicating edges. Then M(G) forms a Hilbert basis for every
G € G if and only if 1 € Int.Cone (M(H)) for every r-graph H € G.

Proor. The “only if” direction follows immediately from the fact that 1 €
Cone (M(H)) N Lat (M(H)) for any r-graph H € G. For the converse, let
p € Cone (M(G)) N Lat (M(G)) where G € G. In (G,p), every trivial bond
has weight r for some r € Z5o. Let H be the r-regular graph obtained from
G by replacing each edge e by p(e) parallel edges. As G € G, so is H. Since
p € Cone(M(G)), 1 € Cone(M(H)) so H is an r-graph. By hypothesis,
1 € Int.Cone (M(H)). As any perfect matching in H corresponds to one in G,
we have p € Int.Cone(M(G)). O

Much of the work that has been done regarding perfect matching covers of
r-graphs deals with the case » = 3. Indeed, Seymour [45, (3.5)] has proposed
that this is really the only interesting case.

CONJECTURE 6.2 Ifr >4 then any r-graph has a perfect matching whose dele-
tion yields an (r — 1)-graph.

This conjecture is not yet known to be true for any r > 4.
Using the above terminology, we list some known results and conjectures
regarding perfect matchings

THEOREM 6.3 (Four-color theorem) For any planar 3-graph, 1 € Int.Cone (M).
O

I do not know the origin of the following natural generalization, though it is
implied by Conjecture (7.3) in [47].

CONJECTURE 6.4 For any planar r-graph with r > 0, 1 € Int.Cone (M).

The case r = 4 of this conjecture has been has been investigated by Jaeger
and others (see [25, 26]), and is known to imply the Four-color Theorem. By
Observation 6.1, Conjecture 6.4 is equivalent to the assertion that the perfect
matchings of any planar graph form a Hilbert basis.

Another well-known strengthening of the Four-color Theorem is still open

[51].

CONJECTURE 6.5 (Tutte’s 4-flow conjecture for cubic graphs) For any 3-graph
which has no Pig-minor, 1 € Int.Cone (M).

By replacing “3-graph” by “r-graph” in Tutte’s conjecture, Lovasz [33] pro-
posed a very strong conjecture which would imply Conjectures 6.4 and 6.5 and
the Four-color Theorem.
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CONJECTURE 6.6 If a graph contains no Pig-minor then its perfect matchings
form a Hilbert basis.

We note that this conjecture would hold true provided both Conjecture 6.5 and
Conjecture 6.2 were true.

Little is known about whether M(G) forms a Hilbert basis when G contains
a Pjg-minor. It is perhaps surprising that the perfect matchings of Pjg form a
Hilbert basis; this fact follows from the observation that the six perfect match-
ings in Pjg are linearly independent in @¥. However, M is not always a Hilbert
basis.

EXAMPLE 6.7 Let Pig+e denote the (unique) graph obtained from Pyg by join-
ing any two non-adjacent vertices with a new edge e. Let p be the weight function
which takes the value O on e and takes the value 1 elsewhere. As Pig + e 1s a
brick different from Pyg, it follows that p € Cone (M) N Lat (M). However,
p & Int.Cone (M), since this would imply that P has a 1-factorization. Thus
M(Pig + €) is not a Hilbert basis.

Clearly, M is not a Hilbert basis for any graph containing Pio+e€ as a subgraph.

Seymour [45] proposed the following analog of the Circuit Double Cover
Conjecture.

CONJECTURE 6.8 (Perfect Matching Double Cover Conjecture) For any r-
graph, 2 € Int.Cone (M).

The special case r = 3 of Conjecture 6.8 was first proposed by Fulkerson [15]
and is still open. Incidently, Fulkerson’s conjecture is equivalent to a strength-
ening of Jaeger’s observation as referred to in the proof of Theorem 4.8.

CONJECTURE 6.9 Any bridgeless graph contains exactly 6 cycles such that any
edge is contained in 4 of them.

The equivalence of these two conjectures becomes evident for cubic graphs when
one considers that the complement of a perfect matching is a cycle. By “blowing
up” vertices, one can see that Conjecture 6.9 holds for all graphs provided it
holds for cubic graphs.

Unlike the case with circuit covers, the Perfect Matching Cover Problem has
not been solved for larger uniform vectors k, £ > 2. By the fact 1 € Cone (M)
for any r-graph we have that, for any r-graph G, there exists £ > 1 such
that k € Int.Cone(M). However, it is not known whether k£ can be picked
independently of GG. This gives the following weak Fulkerson-type conjecture.

CONJECTURE 6.10 There exists k > 2 such that, for any r-graph G, k €
Int.Cone (M(G)).

An even weaker conjecture was proposed by B. Jackson [22].
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CONJECTURE 6.11 There exists k > 2 such that any r-graph contains k + 1
perfect matchings with empty intersection.

A form of Jaeger’s 8-flow theorem states that any bridgeless cubic graph G is
the union of 3 of its cycles. In fact, one can modify Jaeger’s proof to ensure that
at least one of the three cycles is a 2-factor of G. If one can show that all three
cycles can be chosen to be 2-factors then, by taking complements, Conjecture
6.11 will have been proven for r = 3 and k£ = 2. Jackson [22] asked the following
question. Can one show that at least two of the three cycles are 2-factors of G7
Surely, this very special consequence of Fulkerson’s conjecture must be true.

7 Circuits, Perfect Matchings and Grafts

The vague similarities between circuits and perfect matchings might be ex-
plained by considering certain l-element extensions of graphic matroids.

DEFINITION 7.1 Let A = A(G) denote the vertez-edge {0, 1}-valued incidence
matriz of a connected graph G. Thus the columns of A represent the graphic
binary matroid M (G) of rank |V(G)| — 1 with linear independence over GF(2).
Let T CV and let 7 denote the {0, 1}-valued column vector which is the charac-
teristic vector of T. Then [A 7] represents a binary matroid of rank |V (G)| — 1
on the ground set EU{t}, which we denote by Gr. Following Seymour [46], we
call the matroid G a graft.

Grafts are precisely the binary l-element extensions of graphic matroids.
A graft Gr is interesting only when |T| is even, since 7 is otherwise a coloop
in Gp. If |T| = 0 then 7 is a loop in Gp. If |T| = 2 then Gp = G + ¢
where e is a new edge joining the vertices in 7. For larger subsets T, grafts
can be non-graphic and even non-regular. Seymour [46, p. 339] shows how the
matroids Fr, Ff, M*(Ks5), M*(K33) and Rio are all grafts Gp, where G has
at most 7 vertices. For T C V, a T-join is any subset S C FE(G) such that
T = {v € V:v is incident with an odd number of non-loop edges in S} (in some
papers, T-joins are also required to be acyclic). A T-cut is an edge-cut in G
which contains an odd number of vertices of T" on each shore. T-joins and T-
cuts are closely related to matchings and have been studied by various authors
[31, 13, 34, 35, 37, 38, 39, 40, 45, 9]. One easily checks that, when |T| is even,
the cycles of a graft G'p are precisely the cycles of GG, together with sets of the
form {7} U J where J is any T-join in G. The cocycles of Gy are precisely the
cuts of G which are not T-cuts, together with the sets of the form {7}U B where
B is any T-cut in G.

If T'=V and G has a perfect matching, then then the circuits of G which
contain 7 and which have minimum cardinality are precisely the subsets of the
form {7} U F where F' € M(G). In this way, we obtain a connection between
C(G7) and M(G). In particular, the Uniform Perfect Matching Cover Problem
for graphs may be posed as a Circuit Cover Problem for grafts.
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EXAMPLE 7.2 Let k > 1 and r > 3. Let G be any r-regular graph, and set
T = V. Consider the weight function p on the graft Gp where p(7) = rk, and
p(e) =k for all e € E(G). If p is a non-negative linear combination of circuils
in C(Gr) then all circuitls having positive coefficients must be of the form TUF,
F € M(G). This gives us the following facts.

1. p € Int.Cone (C(Gr)) if and only if k € Int.Cone (M(QG)).
2. p € Cone (C(Gr)) if and only if k € Cone (M(G)).
3. p € Lat (C(Gr)) if k € Lat (M(G)).

In particular, p € Cone (C(Gr)) if and only if G is an r-graph, and p €
Lat (C(Gr)) if either k is even or G has no Pig-brick.

As it is NP-hard to decide whether 1 € Int.Cone (M) for 3-graphs [20],
Example 7.2 implies that determining whether a vector is in the integer cone of
circuits is NP-hard for the class of grafts. However, the complexity of the latter
problem remains unknown when “grafts” is replaced by “graphs”.

Example 7.2 also serves to connect two of the main conjectures presented
earlier in this paper. We have seen that Conjecture 3.2 holds for the class of
graphs. We shall see that if this conjecture were to hold true for the class
of grafts, then the Four-color Theorem would follow, as well as many of the
open problems discussed in Section 6. We begin with a curious property of
Petersen’s graph. In general, if a graft Gr contains a graphic matroid M (H)
as a minor, then one cannot deduce that G contains M(H\e) as a minor, for
some ¢ € F(H). For example, let G be the polygon of length four, and let T'
be a pair of non-adjacent vertices in G. Then Gr/7 = H where H is the graph
consisting of two digons joined at a vertex. However, one easily sees that H\e
is not a minor of G for any e € V(H).

If H is Petersen’s graph, however we have a different story. Note that Pig\e
is independent of e up to isomorphism.

LEMMA 7.3 If a graft Gt contains M (Pig) as a minor, then G contains Pig\e
as a minor.

PRrROOF. Suppose that Gr/S\R = Pig where S, R are disjoint subsets of F(G)U
{r}. Tf 7 ¢ SUR then, as in [44, (10.2)], Gp\R/S = (G\R/S)r: for some
T' C V(G\R/S). Deleting any element from (G\R/S)r: = Pig yields Pig\e
so, in particular, Pig\e = (G\R/S)r:\T = G\R/S and we are done. If 7 € R
then Pig = Gr\R/S = G\(R—{r})/S is a minor of GG, and again we are done.
Thus we assume that 7 € S. Here we have Gr\R/(S — {r}) = G/, where
G' = G\R/(S — {r}) and T" is some subset of V(G’).

Tt remains to show that G’ contains Pjg\e as a minor given that Gf., /7 = Pyq.
Suppose that G’ contains a bridge f € E(G). Then, in G/, either f is a bridge
or f is coparallel with 7. In the first case, f is also a bridge of G, /7 = Pyg, a
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contradiction. In the second case we have Pig = Gl /17 = G /f = (G'/ f)r
for some T" C V(G'/f). Deleting any element from (G'/ f)p» yields Pig\e so, in
particular, Pig\e = (G'/f)r»\7 = G'/f. Thus Pig\e is a minor of G, provided
G’ contains a bridge.

Thus we assume that G’ is a 2-edge-connected graph with 15 edges. We
claim that G = Pjo and hence that G has a Pjg-minor. It is well known that
Petersen’s graph is the only 2-edge connected graph on at most 15 edges which
is not the union of two of its cycles (this property is equivalent to having a
4-nowhere-zero flow). Suppose that G’ 22 Pyg. Then G’ is the the union of two
of its cycles, say F(G') = C1 U Cs. Since both the extension and contraction
operations preserve cycles in a matroid, both C; and C are cycles in G7%., /7,
and their union is all of G/, /7 2 Pyg. This contradiction establishes our claim
and completes the proof. O

THEOREM 7.4 If Conjecture 3.2 holds for grafis then Conjecture 6.6 holds for
graphs which have no minor isomorphic to Pig\e.

PROOF. Suppose that C(Gr) forms a Hilbert basis for any graft G having no
Pig-minor. By Observation 6.1, it suffices to show that 1 € Int.Cone (M(G))
for any r-graph G which has no minor isomorphic to Pig\e. Let (Gr,p) be
the weighted graft obtained from G as in Example 7.2 with £ = 1. By 1.
of the example, we need to show that p € Int.Cone (C(Gr)). By 2. and 3.,
p € Cone (C(Gr)) N Lat (C(Gr)), so it suffices to show that C(Gr) forms a
Hilbert basis. This follows from the hypothesis since, by Lemma 7.3, Gr does
not contain a Pjg-minor. O

Theorem 7.4 demonstrates both the relevance and the ominous difficulty of
Conjecture 3.2. Were it to hold for grafts, the Four-color Theorem and the
stronger Conjecture 6.4 would be immediate corollaries. It would be nice if
the forbidden-minor restriction in the conclusion of Theorem 7.4 could be be
dropped. This would make Tutte’s 4-flow Conjecture (6.5) a consequence of
Conjecture 3.2. To drop this restriction only requires an argument for those
graphs G which have a Pjg\e-minor, but no Pjg-minor. Although we are tan-
talizingly close to such a result, a new idea may be needed, since there exists a
3-graph which contains no Pjg-minor although the graft Gp (with 7' = V(G))
does.

It remains to address the problem of characterizing the cone, the lattice
and the integer cone of circuits in grafts. It seems unlikely that the lattice
and the cone have simple descriptions, as grafts have neither the Lattice of
Circuits nor the Sums of Circuits property (recall Theorems 2.3, 2.4). Indeed,
F? =2 Gp where G = K39, T = V(G) — v, and v is a vertex of degree 3. The
smallest 3-graph G for which G contains a F¥-minor (where T'= V(G)) is the
triangular prism (the complement of a circuit of length 6). Tt is interesting that
this graph arizes as an anomaly in matching theory, particularly with regard
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to ear-decompositions (see, for example [32, (3.2), (3.3)]). The complexity of
the cone and the lattice of circuits in grafts is also attested by the effort that
was required to characterize the special cases Cone (M(G)) and Lat (M(G))
(Theorems 5.2 and 5.3).

On the other hand this success in matching theory, and our increasing un-
derstanding of T-joins [37, 38] is encouraging. The circuits of grafts are not
impossibly complicated. For example, the lattice is fairly tame in that grafts
cannot contain the dual of the projective geometry PG(2,m) as a minor, for any
m > 2 (see Example 2.8). The cone of circuits is especially worthy of further
investigation. Indeed, it is far more important to know the cone than the lattice
when investigating whether circuits form a Hilbert basis. It is reasonable to
guess that this class of matroids will predominate much of the future research
on circuits in matroids.
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